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Features of this Text

Who will benefit from using this text?

This text can be used in Junior, Senior or graduate level courses in probability, stochastic
process, random signal processing and queuing theory. The mathematical exposition will
appeal to students and practioners in many areas. The examples, quizzes, and problems are
typical of those encountered by practicing electrical and computer engineers. Professionals
in the telecommunications and wireless industry will find it particularly useful.

What’s New?

This text has been expanded greatly with new material:

• Matlab examples and problems give students hands-on access to theory and ap-
plications. Every chapter includes guidance on how to use MATLAB to perform
calculations and simulations relevant to the subject of the chapter.

• A new chapter on Random Vectors

• Expanded and enhanced coverage of Random Signal Processing

• Streamlined exposition of Markov Chains and Queuing Theory provides quicker
access to theories of greatest practical importance

Notable Features

The Friendly Approach
The friendly and accessible writing style gives students an intuitive feeling for the
formal mathematics.

Quizzes and Homework Problems
An extensive collection of in-chapter Quizzes provides check points for readers to
gauge their understanding. Hundreds of end-of-chapter problems are clearly marked
as to their degree of difficulty from beginner to expert.

Website for Students http://www.wiley.com/college/yates
Available for download: All Matlab m-files in the text, the Quiz Solutions Manual

Instructor Support

Instructors should register at the Instructor Companion Site (ISC) at Wiley in order to
obtain supplements. The ISC can be reached by accessing the text’s companion web page
http://www.wiley.com/college/yates

• Unparalleled in its offerings, this Second Edition provides a web-based interface for
instructors to create customized solutions documents that output in PDF or PostScript.

• Extensive PowerPoint slides are available.
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Preface
What’s new in the second edition?

We are happy to introduce you to the second edition of our textbook. Students and instructors
using the first edition have responded favorably to the “friendly” approach that couples
engineering intuition to mathematical principles. They are especially pleased with the
abundance of exercises in the form of “examples,” “quizzes,” and “problems,” many of
them very simple. The exercises help students absorb the new material in each chapter and
gauge their grasp of it.

Aiming for basic insight, the first edition avoided exercises that require complex com-
putation. Although most of the original exercises have evident engineering relevance, they
are considerably simpler than their real-world counterparts. This second edition adds a
large set of Matlab programs offering students hands-on experience with simulations and
calculations. Matlab bridges the gap between the computationally simple exercises and
the more complex tasks encountered by engineering professionals. The Matlab section
at the end of each chapter presents programs we have written and also guides students to
write their own programs.

Retaining the friendly character of the first edition, we have incorporated into this edition
the suggestions of many instructors and students. In addition to the Matlab programs,
new material includes a presentation of multiple random variables in vector notation. This
format makes the math easier to grasp and provides a convenient stepping stone to the chapter
on stochastic processes, which in turn leads to an expanded treatment of the application of
probability theory to digital signal processing.

Why did we write the book?

When we started teaching the course Probability and Stochastic Processes to Rutgers un-
dergraduates in 1991, we never dreamed we would write a textbook on the subject. Our
bookshelves contain more than a twenty probability texts, many of them directed at elec-
trical and computer engineering students. We respect most of them. However, we have
yet to find one that works well for Rutgers students. We discovered to our surprise that
the majority of our students have a hard time learning the subject. Beyond meeting degree
requirements, the main motivation of most of our students is to learn how to solve practical
problems. For the majority, the mathematical logic of probability theory is, in itself, of
minor interest. What the students want most is an intuitive grasp of the basic concepts and
lots of practice working on applications.

The students told us that the textbooks we assigned, for all their mathematical elegance,
didn’t meet their needs. To help them, we distributed copies of our lecture notes, which
gradually grew into this book. We also responded to students who find that although much
of the material appears deceptively simple, it takes a lot of careful thought and practice to
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viii PREFACE

use the mathematics correctly. Even when the formulas are simple, knowing which ones to
use is difficult. This is a reversal from some mathematics courses, where the equations are
given and the solutions are hard to obtain.

What is distinctive about this book?

• The entire text adheres to a single model that begins with an experiment consisting
of a procedure and observations.

• The mathematical logic is apparent to readers. Every fact is identified clearly as a
definition, an axiom, or a theorem. There is an explanation, in simple English, of the
intuition behind every concept when it first appears in the text.

• The mathematics of discrete random variables are introduced separately from the
mathematics of continuous random variables.

• Stochastic processes and statistical inference fit comfortably within the unifying
model of the text.

• An abundance of exercises puts the theory to use. New ideas are augmented with
detailed solutions of numerical examples. Each section concludes with a simple quiz
to help students gauge their grasp of the new material. The book’s Web site contains
complete solutions of all of the quizzes.

• Each problem at the end of a chapter is labeled with a reference to a section in the
chapter and a degree of difficulty ranging from “easy” to “experts only.”

• There is considerable support on the World Wide Web for students and instructors,
including Matlab files and problem solutions.

How is the book organized?

We estimate that the material in this book represents about 150% of a one-semester under-
graduate course. We suppose that most instructors will spend about two-thirds of a semester
covering the material in the first five chapters. The remainder of a course will be devoted
to about half of the material in the final seven chapters, with the selection depending on the
preferences of the instructor and the needs of the students. Rutgers electrical and computer
engineering students take this course in the first semester of junior year. The following
semester they use much of the material in Principles of Communications.

We have also covered the entire book in one semester in an entry-level graduate course that
places more emphasis on mathematical derivations and proofs than does the undergraduate
course. Although most of the early material in the book is familiar in advance to many
graduate students, the course as a whole brings our diverse graduate student population up
to a shared level of competence.

The first five chapters carry the core material that is common to practically all intro-
ductory engineering courses in probability theory. Chapter 1 examines probability models
defined on abstract sets. It introduces the set theory notation used throughout the book and
states the three axioms of probability and several theorems that follow directly from the ax-
ioms. It defines conditional probability, the Law of Total Probability, Bayes’ theorem, and
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independence. The chapter concludes by presenting combinatorial principles and formulas
that are used later in the book.

The second and third chapters address individual discrete and continuous random vari-
ables, respectively. They introduce probability mass functions and probability density
functions, expected values, derived random variables, and random variables conditioned on
events. Chapter 4 covers pairs of random variables including joint probability functions,
conditional probability functions, correlation, and covariance. Chapter 5 extends these
concepts to multiple random variables, with an emphasis on vector notation. In studying
Chapters 1–5, students encounter many of the same ideas three times in the contexts of
abstract events, discrete random variables, and continuous random variables. We find this
repetition to be helpful pedagogically. The flow chart shows the relationship of the subse-
quent material to the fundamentals in the first five chapters. Armed with the fundamentals,
students can move next to any of three subsequent chapters.

Chapter 6 teaches students how to work with sums of random variables. For the most part
it deals with independent random variables and derives probability models using convolution
integrals and moment generating functions. A presentation of the central limit theorem
precedes examples of Gaussian approximations to sums of random variables. This material
flows into Chapter 7, which defines the sample mean and teaches students how to use
measurement data to formulate probability models.

Chapters 8 and 9 present practical applications of the theory developed in the first five
chapters. Chapter 8 introduces Bayesian hypothesis testing, the foundation of many signal
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detection techniques created by electrical and computer engineers. Chapter 9 presents
techniques for using observations of random variables to estimate other random variables.
Some of these techniques appear again in Chapter 11 in the context of random signal
processing.

Many instructors may wish to move from Chapter 5 to Chapter 10, which introduces
the basic concepts of stochastic processes with the emphasis on wide sense stationary pro-
cesses. It provides tools for working on practical applications in the last two chapters.
Chapter 11 introduces several topics related to random signal processing including: linear
filters operating on continuous-time and discrete-time stochastic processes; linear estima-
tion and linear prediction of stochastic processes; and frequency domain analysis based on
power spectral density functions. Chapter 12 introduces Markov chains and their practical
applications.

The text includes several hundred homework problems, organized to assist both instruc-
tors and students. The problem numbers refer to sections within a chapter. For example
Problem 3.4.5 requires material from Section 3.4 but not from later sections. Each problem
also has a label that reflects our estimate of degree of difficulty. Skiers will recognize the
following symbols:

• Easy � Moderate � Difficult �� Experts Only.

Every ski area emphasizes that these designations are relative to the trails at that area.
Similarly, the difficulty of our problems is relative to the other problems in this text.

Further Reading

Libraries and bookstores contain an endless collection of textbooks at all levels covering the
topics presented in this textbook. We know of two in comic book format [GS93, Pos01]. The
reference list on page 511 is a brief sampling of books that can add breadth or depth to the
material in this text. Most books on probability, statistics, stochastic processes, and random
signal processing contain expositions of the basic principles of probability and random
variables, covered in Chapters 1–4. In advanced texts, these expositions serve mainly to
establish notation for more specialized topics. [LG93] and [Pee00] share our focus on
electrical and computer engineering applications. [Dra67], [Ros02], and [BT02] introduce
the fundamentals of probability and random variables to a general audience of students with
a calculus background. [Bil95] is more advanced mathematically. It presents probability
as a branch of number theory. [MR94] and [SM95] introduce probability theory in the
context of data analysis. [Sig02] and [HL01] are beginners’ introductions to MATLAB.
[Ber96] is in a class by itself. It presents the concepts of probability from a historical
perspective, focusing on the lives and contributions of mathematicians and others who
stimulated major advances in probability and statistics and their application various fields
including psychology, economics, government policy, and risk management.

The summaries at the end of Chapters 5–12 refer to books that supplement the specialized
material in those chapters.
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A Message to Students from the Authors

A lot of students find it hard to do well in this course. We think there are a few reasons for
this difficulty. One reason is that some people find the concepts hard to use and understand.
Many of them are successful in other courses but find the ideas of probability difficult to
grasp. Usually these students recognize that learning probability theory is a struggle, and
most of them work hard enough to do well. However, they find themselves putting in more
effort than in other courses to achieve similar results.

Other people have the opposite problem. The work looks easy to them, and they under-
stand everything they hear in class and read in the book. There are good reasons for assuming
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this is easy material. There are very few basic concepts to absorb. The terminology (like
the word probability), in most cases, contains familiar words. With a few exceptions, the
mathematical manipulations are not complex. You can go a long way solving problems
with a four-function calculator.

For many people, this apparent simplicity is dangerously misleading because it is very
tricky to apply the math to specific problems. A few of you will see things clearly enough
to do everything right the first time. However, most people who do well in probability need
to practice with a lot of examples to get comfortable with the work and to really understand
what the subject is about. Students in this course end up like elementary school children
who do well with multiplication tables and long division but bomb out on “word problems.”
The hard part is figuring out what to do with the numbers, not actually doing it. Most of
the work in this course is that way, and the only way to do well is to practice a lot. Taking
the midterm and final are similar to running in a five-mile race. Most people can do it in a
respectable time, provided they train for it. Some people look at the runners who do it and
say, “I’m as strong as they are. I’ll just go out there and join in.” Without the training, most
of them are exhausted and walking after a mile or two.

So, our advice to students is, if this looks really weird to you, keep working at it. You
will probably catch on. If it looks really simple, don’t get too complacent. It may be harder
than you think. Get into the habit of doing the quizzes and problems, and if you don’t
answer all the quiz questions correctly, go over them until you understand each one.

We can’t resist commenting on the role of probability and stochastic processes in our
careers. The theoretical material covered in this book has helped both of us devise new
communication techniques and improve the operation of practical systems. We hope you
find the subject intrinsically interesting. If you master the basic ideas, you will have many
opportunities to apply them in other courses and throughout your career.

We have worked hard to produce a text that will be useful to a large population of stu-
dents and instructors. We welcome comments, criticism, and suggestions. Feel free to send
us e-mail at ryates@winlab.rutgers.edu or dgoodman@poly.edu. In addition, the Website,
http://www.wiley.com/college/yates, provides a variety of supplemental ma-
terials, including the Matlab code used to produce the examples in the text.

Roy D. Yates
Rutgers, The State University of New Jersey

David J. Goodman
Polytechnic University

March 29, 2004

 



1
Experiments, Models,

and Probabilities
Getting Started with Probability

You have read the “Message to Students” in the Preface. Now you can begin. The title
of this book is Probability and Stochastic Processes. We say and hear and read the word
probability and its relatives (possible, probable, probably) in many contexts. Within the
realm of applied mathematics, the meaning of probability is a question that has occupied
mathematicians, philosophers, scientists, and social scientists for hundreds of years.

Everyone accepts that the probability of an event is a number between 0 and 1. Some
people interpret probability as a physical property (like mass or volume or temperature)
that can be measured. This is tempting when we talk about the probability that a coin flip
will come up heads. This probability is closely related to the nature of the coin. Fiddling
around with the coin can alter the probability of heads.

Another interpretation of probability relates to the knowledge that we have about some-
thing. We might assign a low probability to the truth of the statement, It is raining now in
Phoenix, Arizona, because we know that Phoenix is in the desert. However, our knowledge
changes if we learn that it was raining an hour ago in Phoenix. This knowledge would cause
us to assign a higher probability to the truth of the statement, It is raining now in Phoenix.

Both views are useful when we apply probability theory to practical problems. Whichever
view we take, we will rely on the abstract mathematics of probability, which consists of
definitions, axioms, and inferences (theorems) that follow from the axioms. While the
structure of the subject conforms to principles of pure logic, the terminology is not entirely
abstract. Instead, it reflects the practical origins of probability theory, which was developed
to describe phenomena that cannot be predicted with certainty. The point of view is differ-
ent from the one we took when we started studying physics. There we said that if we do
the same thing in the same way over and over again – send a space shuttle into orbit, for
example – the result will always be the same. To predict the result, we have to take account
of all relevant facts.

The mathematics of probability begins when the situation is so complex that we just
can’t replicate everything important exactly – like when we fabricate and test an integrated
circuit. In this case, repetitions of the same procedure yield different results. The situ-
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2 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

ation is not totally chaotic, however. While each outcome may be unpredictable, there
are consistent patterns to be observed when we repeat the procedure a large number of
times. Understanding these patterns helps engineers establish test procedures to ensure that
a factory meets quality objectives. In this repeatable procedure (making and testing a chip)
with unpredictable outcomes (the quality of individual chips), the probability is a number
between 0 and 1 that states the proportion of times we expect a certain thing to happen,
such as the proportion of chips that pass a test.

As an introduction to probability and stochastic processes, this book serves three pur-
poses:

• It introduces students to the logic of probability theory.

• It helps students develop intuition into how the theory applies to practical situations.

• It teaches students how to apply probability theory to solving engineering problems.

To exhibit the logic of the subject, we show clearly in the text three categories of theoretical
material: definitions, axioms, and theorems. Definitions establish the logic of probability
theory, while axioms are facts that we accept without proof. Theorems are consequences
that follow logically from definitions and axioms. Each theorem has a proof that refers
to definitions, axioms, and other theorems. Although there are dozens of definitions and
theorems, there are only three axioms of probability theory. These three axioms are the
foundation on which the entire subject rests. To meet our goal of presenting the logic of
the subject, we could set out the material as dozens of definitions followed by three axioms
followed by dozens of theorems. Each theorem would be accompanied by a complete proof.

While rigorous, this approach would completely fail to meet our second aim of conveying
the intuition necessary to work on practical problems. To address this goal, we augment
the purely mathematical material with a large number of examples of practical phenomena
that can be analyzed by means of probability theory. We also interleave definitions and
theorems, presenting some theorems with complete proofs, others with partial proofs, and
omitting some proofs altogether. We find that most engineering students study probability
with the aim of using it to solve practical problems, and we cater mostly to this goal. We
also encourage students to take an interest in the logic of the subject – it is very elegant –
and we feel that the material presented will be sufficient to enable these students to fill in
the gaps we have left in the proofs.

Therefore, as you read this book you will find a progression of definitions, axioms,
theorems, more definitions, and more theorems, all interleaved with examples and comments
designed to contribute to your understanding of the theory. We also include brief quizzes
that you should try to solve as you read the book. Each one will help you decide whether
you have grasped the material presented just before the quiz. The problems at the end of
each chapter give you more practice applying the material introduced in the chapter. They
vary considerably in their level of difficulty. Some of them take you more deeply into the
subject than the examples and quizzes do.

1.1 Set Theory

The mathematical basis of probability is the theory of sets. Most people who study proba-
bility have already encountered set theory and are familiar with such terms as set, element,

 



1.1 SET THEORY 3

union, intersection, and complement. For them, the following paragraphs will review ma-
terial already learned and introduce the notation and terminology we use here. For people
who have no prior acquaintance with sets, this material introduces basic definitions and the
properties of sets that are important in the study of probability.

A set is a collection of things. We use capital letters to denote sets. The things that
together make up the set are elements. When we use mathematical notation to refer to set
elements, we usually use small letters. Thus we can have a set A with elements x , y, and
z. The symbol ∈ denotes set inclusion. Thus x ∈ A means “x is an element of set A.” The
symbol �∈ is the opposite of ∈. Thus c �∈ A means “c is not an element of set A.”

It is essential when working with sets to have a definition of each set. The definition
allows someone to consider anything conceivable and determine whether that thing is an
element of the set. There are many ways to define a set. One way is simply to name the
elements:

A = {Rutgers University, Polytechnic University, the planet Mercury} . (1.1)

Note that in stating the definition, we write the name of the set on one side of = and the
definition in curly brackets { } on the other side of =.

It follows that “the planet closest to the Sun ∈ A” is a true statement. It is also true that
“Bill Clinton �∈ A.” Another way of writing the set is to give a rule for testing something
to determine whether it is a member of the set:

B = {all Rutgers juniors who weigh more than 170 pounds} . (1.2)

In engineering, we frequently use mathematical rules for generating all of the elements of
the set:

C =
{

x2|x = 1, 2, 3, 4, 5
}

(1.3)

This notation tells us to form a set by performing the operation to the left of the vertical bar,
|, on the numbers to the right of the bar. Therefore,

C = {1, 4, 9, 16, 25} . (1.4)

Some sets have an infinite number of elements. For example

D =
{

x2|x = 1, 2, 3, . . .
}

. (1.5)

The dots tell us to continue the sequence to the left of the dots. Since there is no number to
the right of the dots,we continue the sequence indefinitely, forming an infinite set containing
all perfect squares except 0. The definition of D implies that 144 ∈ D and 10 �∈ D.

In addition to set inclusion, we also have the notion of a subset, which describes a
relationship between two sets. By definition, A is a subset of B if every member of A is
also a member of B . We use the symbol ⊂ to denote subset. Thus A ⊂ B is mathematical
notation for the statement “the set A is a subset of the set B .” Using the definitions of sets
C and D in Equations (1.3) and (1.5), we observe that C ⊂ D. If

I = {all positive integers, negative integers, and 0} , (1.6)

it follows that C ⊂ I , and D ⊂ I .

 



4 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

The definition of set equality,

A = B, (1.7)

is

A = B if and only if B ⊂ A and A ⊂ B .

This is the mathematical way of stating that A and B are identical if and only if every
element of A is an element of B and every element of B is an element of A. This definition
implies that a set is unaffected by the order of the elements in a definition. For example,
{0, 17, 46} = {17, 0, 46} = {46, 0, 17} are all the same set.

To work with sets mathematically it is necessary to define a universal set. This is the set of
all things that we could possibly consider in a given context. In any study, all set operations
relate to the universal set for that study. The members of the universal set include all of the
elements of all of the sets in the study. We will use the letter S to denote the universal set. For
example, the universal set for A could be S = {all universities in New Jersey, all planets}.
The universal set for C could be S = I = {0, 1, 2, . . .}. By definition, every set is a subset
of the universal set. That is, for any set X , X ⊂ S.

The null set, which is also important, may seem like it is not a set at all. By definition it
has no elements. The notation for the null set is φ. By definition φ is a subset of every set.
For any set A, φ ⊂ A.

It is customary to refer to Venn diagrams to display relationships among sets. By con-
vention, the region enclosed by the large rectangle is the universal set S. Closed surfaces
within this rectangle denote sets. A Venn diagram depicting the relationship A ⊂ B is

A
B

When we do set algebra, we form new sets from existing sets. There are three operations
for doing this: union, intersection, and complement. Union and intersection combine two
existing sets to produce a third set. The complement operation forms a new set from one
existing set. The notation and definitions are

A B
The union of sets A and B is the set of all elements that
are either in A or in B , or in both. The union of A and B
is denoted by A ∪ B . In this Venn diagram, A ∪ B is the
complete shaded area. Formally, the definition states

x ∈ A ∪ B if and only if x ∈ A or x ∈ B .

The set operation union corresponds to the logical “or”
operation.
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A B
The intersection of two sets A and B is the set of all ele-
ments which are contained both in A and B . The intersec-
tion is denoted by A∩ B . Another notation for intersection
is AB . Formally, the definition is

x ∈ A ∩ B if and only if x ∈ A and x ∈ B .

The set operation intersection corresponds to the logical
“and” function.

A

A
c

The complement of a set A, denoted by Ac, is the set of all
elements in S that are not in A. The complement of S is
the null set φ. Formally,

x ∈ Ac if and only if x �∈ A.

A-B
A fourth set operation is called the difference. It is a com-
bination of intersection and complement. The difference
between A and B is a set A − B that contains all elements
of A that are not elements of B . Formally,

x ∈ A − B if and only if x ∈ A and x �∈ B

Note that A − B = A ∩ Bc and Ac = S − A.

In working with probability we will frequently refer to two important properties of collec-
tions of sets. Here are the definitions.

A

B

A collection of sets A1, . . . , An is mutually exclusive if
and only if

Ai ∩ A j = φ, i �= j. (1.8)

When there are only two sets in the collection, we say that
these sets are disjoint. Formally, A and B are disjoint if
and only if A ∩ B = φ.

A1

A3
A2

A collection of sets A1, . . . , An is collectively exhaustive
if and only if

A1 ∪ A2 ∪ · · · ∪ An = S. (1.9)

In the definition of collectively exhaustive, we used the somewhat cumbersome notation
A1∪A2∪· · ·∪An for the union of N sets. Just as

∑n
i=1 xi is a shorthand for x1+x2+· · ·+xn ,
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we will use a shorthand for unions and intersections of n sets:
n⋃

i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An, (1.10)

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An. (1.11)

From the definition of set operations, we can derive many important relationships between
sets and other sets derived from them. One example is

A − B ⊂ A. (1.12)

To prove that this is true, it is necessary to show that if x ∈ A − B , then it is also true that
x ∈ A. A proof that two sets are equal, for example, X = Y , requires two separate proofs:
X ⊂ Y and Y ⊂ X . As we see in the following theorem, this can be complicated to show.

Theorem 1.1 De Morgan’s law relates all three basic operations:

(A ∪ B)c = Ac ∩ Bc.

Proof There are two parts to the proof:

• To show (A ∪ B)c ⊂ Ac ∩ Bc, suppose x ∈ (A ∪ B)c. That implies x �∈ A ∪ B. Hence, x �∈ A
and x �∈ B, which together imply x ∈ Ac and x ∈ Bc. That is, x ∈ Ac ∩ Bc.

• To show Ac ∩ Bc ⊂ (A ∪ B)c, suppose x ∈ Ac ∩ Bc. In this case, x ∈ Ac and x ∈ Bc.
Equivalently, x �∈ A and x �∈ B so that x �∈ A ∪ B. Hence, x ∈ (A ∪ B)c.

Quiz 1.1

A pizza at Gerlanda’s is either regular (R) or Tuscan (T ). In addition,
each slice may have mushrooms (M) or onions (O) as described by
the Venn diagram at right. For the sets specified below, shade the
corresponding region of the Venn diagram.

M O

T

(1) R (2) M ∪ O

(3) M ∩ O (4) R ∪ M

(5) R ∩ M (6) T c − M

1.2 Applying Set Theory to Probability

The mathematics we study is a branch of measure theory. Probability is a number that
describes a set. The higher the number, the more probability there is. In this sense prob-
ability is like a quantity that measures a physical phenomenon; for example, a weight or
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a temperature. However, it is not necessary to think about probability in physical terms.
We can do all the math abstractly, just as we defined sets and set operations in the previous
paragraphs without any reference to physical phenomena.

Fortunately for engineers, the language of probability (including the word probability
itself) makes us think of things that we experience. The basic model is a repeatable exper-
iment. An experiment consists of a procedure and observations. There is uncertainty in
what will be observed; otherwise, performing the experiment would be unnecessary. Some
examples of experiments include

1. Flip a coin. Did it land with heads or tails facing up?

2. Walk to a bus stop. How long do you wait for the arrival of a bus?

3. Give a lecture. How many students are seated in the fourth row?

4. Transmit one of a collection of waveforms over a channel. What waveform arrives
at the receiver?

5. Transmit one of a collection of waveforms over a channel. Which waveform does
the receiver identify as the transmitted waveform?

For the most part, we will analyze models of actual physical experiments. We create
models because real experiments generally are too complicated to analyze. For example,
to describe all of the factors affecting your waiting time at a bus stop, you may consider

• The time of day. (Is it rush hour?)

• The speed of each car that passed by while you waited.

• The weight, horsepower, and gear ratios of each kind of bus used by the bus company.

• The psychological profile and work schedule of each bus driver. (Some drivers drive
faster than others.)

• The status of all road construction within 100 miles of the bus stop.

It should be apparent that it would be difficult to analyze the effect of each of these factors
on the likelihood that you will wait less than five minutes for a bus. Consequently, it is
necessary to study a model of the experiment that captures the important part of the actual
physical experiment. Since we will focus on the model of the experiment almost exclusively,
we often will use the word experiment to refer to the model of an experiment.

Example 1.1 An experiment consists of the following procedure, observation, and model:

• Procedure: Flip a coin and let it land on a table.

• Observation: Observe which side (head or tail) faces you after the coin lands.

• Model: Heads and tails are equally likely. The result of each flip is unrelated to
the results of previous flips.

As we have said, an experiment consists of both a procedure and observations. It is
important to understand that two experiments with the same procedure but with different
observations are different experiments. For example, consider these two experiments:
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Example 1.2 Flip a coin three times. Observe the sequence of heads and tails.

Example 1.3 Flip a coin three times. Observe the number of heads.

These two experiments have the same procedure: flip a coin three times. They are different
experiments because they require different observations. We will describe models of exper-
iments in terms of a set of possible experimental outcomes. In the context of probability,
we give precise meaning to the word outcome.

Definition 1.1 Outcome
An outcome of an experiment is any possible observation of that experiment.

Implicit in the definition of an outcome is the notion that each outcome is distinguishable
from every other outcome. As a result, we define the universal set of all possible outcomes.
In probability terms, we call this universal set the sample space.

Definition 1.2 Sample Space
The sample space of an experiment is the finest-grain, mutually exclusive, collectively ex-
haustive set of all possible outcomes.

The finest-grain property simply means that all possible distinguishable outcomes are iden-
tified separately. The requirement that outcomes be mutually exclusive says that if one
outcome occurs, then no other outcome also occurs. For the set of outcomes to be collec-
tively exhaustive, every outcome of the experiment must be in the sample space.

Example 1.4

• The sample space in Example 1.1 is S = {h, t} where h is the outcome “observe
head,” and t is the outcome “observe tail.”

• The sample space in Example 1.2 is

S = {hhh, hht, hth, htt, thh, tht, t th, t t t} (1.13)

• The sample space in Example 1.3 is S = {0, 1, 2, 3}.
Example 1.5 Manufacture an integrated circuit and test it to determine whether it meets quality

objectives. The possible outcomes are “accepted” (a) and “rejected” (r). The sample
space is S = {a, r}.

In common speech, an event is just something that occurs. In an experiment, we may
say that an event occurs when a certain phenomenon is observed. To define an event
mathematically, we must identify all outcomes for which the phenomenon is observed.
That is, for each outcome, either the particular event occurs or it does not. In probability
terms, we define an event in terms of the outcomes of the sample space.
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Set Algebra Probability

Set Event
Universal set Sample space
Element Outcome

Table 1.1 The terminology of set theory and probability.

Definition 1.3 Event
An event is a set of outcomes of an experiment.

Table 1.1 relates the terminology of probability to set theory. All of this may seem so
simple that it is boring. While this is true of the definitions themselves, applying them is
a different matter. Defining the sample space and its outcomes are key elements of the
solution of any probability problem. A probability problem arises from some practical
situation that can be modeled as an experiment. To work on the problem, it is necessary to
define the experiment carefully and then derive the sample space. Getting this right is a big
step toward solving the problem.

Example 1.6 Suppose we roll a six-sided die and observe the number of dots on the side facing
upwards. We can label these outcomes i = 1, . . . , 6 where i denotes the outcome
that i dots appear on the up face. The sample space is S = {1, 2, . . . , 6}. Each subset
of S is an event. Examples of events are

• The event E1 = {Roll 4 or higher} = {4, 5, 6}.
• The event E2 = {The roll is even} = {2, 4, 6}.
• E3 = {The roll is the square of an integer} = {1, 4}.

Example 1.7 Wait for someone to make a phone call and observe the duration of the call in minutes.
An outcome x is a nonnegative real number. The sample space is S = {x|x ≥ 0}. The
event “the phone call lasts longer than five minutes” is {x|x > 5}.

Example 1.8 A short-circuit tester has a red light to indicate that there is a short circuit and a green
light to indicate that there is no short circuit. Consider an experiment consisting of a
sequence of three tests. In each test the observation is the color of the light that is on at
the end of a test. An outcome of the experiment is a sequence of red (r ) and green (g)
lights. We can denote each outcome by a three-letter word such as rgr , the outcome
that the first and third lights were red but the second light was green. We denote the
event that light n was red or green by Rn or Gn . The event R2 = {grg, grr, rrg, rrr}.
We can also denote an outcome as an intersection of events Ri and G j . For example,
the event R1G2 R3 is the set containing the single outcome {rgr}.

In Example 1.8, suppose we were interested only in the status of light 2. In this case,
the set of events {G2, R2} describes the events of interest. Moreover, for each possible
outcome of the three-light experiment, the second light was either red or green, so the set of
events {G2, R2} is both mutually exclusive and collectively exhaustive. However, {G2, R2}
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is not a sample space for the experiment because the elements of the set do not completely
describe the set of possible outcomes of the experiment. The set {G2, R2} does not have
the finest-grain property. Yet sets of this type are sufficiently useful to merit a name of their
own.

Definition 1.4 Event Space
An event space is a collectively exhaustive, mutually exclusive set of events.

An event space and a sample space have a lot in common. The members of both are mutually
exclusive and collectively exhaustive. They differ in the finest-grain property that applies
to a sample space but not to an event space. Because it possesses the finest-grain property,
a sample space contains all the details of an experiment. The members of a sample space
are outcomes. By contrast, the members of an event space are events. The event space is
a set of events (sets), while the sample space is a set of outcomes (elements). Usually, a
member of an event space contains many outcomes. Consider a simple example:

Example 1.9 Flip four coins, a penny, a nickel, a dime, and a quarter. Examine the coins in order
(penny, then nickel, then dime, then quarter) and observe whether each coin shows
a head (h) or a tail (t). What is the sample space? How many elements are in the
sample space?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The sample space consists of 16 four-letter words, with each letter either h or t . For
example, the outcome t thh refers to the penny and the nickel showing tails and the
dime and quarter showing heads. There are 16 members of the sample space.

Example 1.10 Continuing Example 1.9, let Bi = {outcomes with i heads}. Each Bi is an event
containing one or more outcomes. For example, B1 = {t t th, t tht, tht t,htt t} contains
four outcomes. The set B = {B0, B1, B2, B3, B4} is an event space. Its members are
mutually exclusive and collectively exhaustive. It is not a sample space because it
lacks the finest-grain property. Learning that an experiment produces an event B1
tells you that one coin came up heads, but it doesn’t tell you which coin it was.

The experiment in Example 1.9 and Example 1.10 refers to a “toy problem,” one that is
easily visualized but isn’t something we would do in the course of our professional work.
Mathematically, however, it is equivalent to many real engineering problems. For example,
observe a pair of modems transmitting four bits from one computer to another. For each bit,
observe whether the receiving modem detects the bit correctly (c), or makes an error (e). Or,
test four integrated circuits. For each one, observe whether the circuit is acceptable (a), or
a reject (r ). In all of these examples, the sample space contains 16 four-letter words formed
with an alphabet containing two letters. If we are interested only in the number of times
one of the letters occurs, it is sufficient to refer only to the event space B , which does not
contain all of the information about the experiment but does contain all of the information
we need. The event space is simpler to deal with than the sample space because it has fewer
members (there are five events in the event space and 16 outcomes in the sample space). The
simplification is much more significant when the complexity of the experiment is higher.
For example, in testing 20 circuits the sample space has 220 = 1,048,576 members, while
the corresponding event space has only 21 members.
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A B1 B2 B3 B4 C1 C2 C3 C4

Figure 1.1 In this example of Theorem 1.2, the event space is B = {B1, B2, B3, B4} and Ci =
A ∩ Bi for i = 1, . . . , 4. It should be apparent that A = C1 ∪ C2 ∪ C3 ∪ C4.

The concept of an event space is useful because it allows us to express any event as a union
of mutually exclusive events. We will observe in the next section that the entire theory of
probability is based on unions of mutually exclusive events. The following theorem shows
how to use an event space to represent an event as a union of mutually exclusive events.

Theorem 1.2 For an event space B = {B1, B2, . . .} and any event A in the sample space, let Ci = A∩ Bi .
For i �= j , the events Ci and C j are mutually exclusive and

A = C1 ∪ C2 ∪ · · · .

Figure 1.1 is a picture of Theorem 1.2.

Example 1.11 In the coin-tossing experiment of Example 1.9, let A equal the set of outcomes with
less than three heads:

A = {t t t t, htt t, tht t, t tht, t t th, hhtt,htht, htth, t thh, thth, thht} . (1.14)

From Example 1.10, let Bi = {outcomes with i heads}. Since {B0, . . . , B4} is an event
space, Theorem 1.2 states that

A = (A ∩ B0) ∪ (A ∩ B1) ∪ (A ∩ B2) ∪ (A ∩ B3) ∪ (A ∩ B4) (1.15)

In this example, Bi ⊂ A, for i = 0, 1, 2. Therefore A ∩ Bi = Bi for i = 0, 1, 2. Also, for
i = 3 and i = 4, A ∩ Bi = φ so that A = B0 ∪ B1 ∪ B2, a union of disjoint sets. In words,
this example states that the event “less than three heads” is the union of events “zero
heads,” “one head,” and “two heads.”

We advise you to make sure you understand Theorem 1.2 and Example 1.11. Many
practical problems use the mathematical technique contained in the theorem. For example,
find the probability that there are three or more bad circuits in a batch that comes from a
fabrication machine.

Quiz 1.2 Monitor three consecutive phone calls going through a telephone switching office. Classify
each one as a voice call (v) if someone is speaking, or a data call (d) if the call is carrying
a modem or fax signal. Your observation is a sequence of three letters (each letter is either
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v or d). For example, two voice calls followed by one data call corresponds to vvd. Write
the elements of the following sets:
(1) A1 = {first call is a voice call} (2) B1 = {first call is a data call}
(3) A2 = {second call is a voice call} (4) B2 = {second call is a data call}
(5) A3 = {all calls are the same} (6) B3 = {voice and data alternate}
(7) A4 = {one or more voice calls} (8) B4 = {two or more data calls}
For each pair of events A1 and B1, A2 and B2, and so on, identify whether the pair of events
is either mutually exclusive or collectively exhaustive or both.

1.3 Probability Axioms

Thus far our model of an experiment consists of a procedure and observations. This leads
to a set-theory representation with a sample space (universal set S), outcomes (s that are
elements of S), and events (A that are sets of elements). To complete the model, we assign
a probability P[A] to every event, A, in the sample space. With respect to our physical
idea of the experiment, the probability of an event is the proportion of the time that event is
observed in a large number of runs of the experiment. This is the relative frequency notion
of probability. Mathematically, this is expressed in the following axioms.

Definition 1.5 Axioms of Probability
A probability measure P[·] is a function that maps events in the sample space to real
numbers such that

Axiom 1 For any event A, P[A] ≥ 0.

Axiom 2 P[S] = 1.

Axiom 3 For any countable collection A1, A2, . . . of mutually exclusive events

P [A1 ∪ A2 ∪ · · ·] = P [A1] + P [A2] + · · · .

We will build our entire theory of probability on these three axioms. Axioms 1 and 2
simply establish a probability as a number between 0 and 1. Axiom 3 states that the prob-
ability of the union of mutually exclusive events is the sum of the individual probabilities.
We will use this axiom over and over in developing the theory of probability and in solving
problems. In fact, it is really all we have to work with. Everything else follows from
Axiom 3. To use Axiom 3 to solve a practical problem, we refer to Theorem 1.2 to analyze
a complicated event in order to express it as the union of mutually exclusive events whose
probabilities we can calculate. Then, we add the probabilities of the mutually exclusive
events to find the probability of the complicated event we are interested in.

A useful extension of Axiom 3 applies to the union of two disjoint events.
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Theorem 1.3 For mutually exclusive events A1 and A2,

P [A1 ∪ A2] = P [A1] + P [A2] .

Although it may appear that Theorem 1.3 is a trivial special case of Axiom 3,this is not so. In
fact, a simple proof of Theorem 1.3 may also use Axiom 2! If you are curious, Problem 1.4.8
gives the first steps toward a proof. It is a simple matter to extend Theorem 1.3 to any finite
union of mutually exclusive sets.

Theorem 1.4 If A = A1 ∪ A2 ∪ · · · ∪ Am and Ai ∩ A j = φ for i �= j , then

P [A] =
m∑

i=1

P [Ai ] .

In Chapter 7, we show that the probability measure established by the axioms corre-
sponds to the idea of relative frequency. The correspondence refers to a sequential exper-
iment consisting of n repetitions of the basic experiment. We refer to each repetition of
the experiment as a trial. In these n trials, NA(n) is the number of times that event A
occurs. The relative frequency of A is the fraction NA(n)/n. Theorem 7.9 proves that
limn→∞ NA(n)/n = P[A].

Another consequence of the axioms can be expressed as the following theorem:

Theorem 1.5 The probability of an event B = {s1, s2, . . . , sm} is the sum of the probabilities of the
outcomes contained in the event:

P [B] =
m∑

i=1

P [{si }] .

Proof Each outcome si is an event (a set) with the single element si . Since outcomes by definition
are mutually exclusive, B can be expressed as the union of m disjoint sets:

B = {s1} ∪ {s2} ∪ · · · ∪ {sm } (1.16)

with {si } ∩ {s j } = φ for i �= j . Applying Theorem 1.4 with Bi = {si } yields

P [B] =
m∑

i=1

P
[{si }

]
. (1.17)

Comments on Notation

We use the notation P[·] to indicate the probability of an event. The expression in the
square brackets is an event. Within the context of one experiment, P[A] can be viewed as
a function that transforms event A to a number between 0 and 1.
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Note that {si } is the formal notation for a set with the single element si . For conve-
nience, we will sometimes write P[si ] rather than the more complete P[{si }] to denote the
probability of this outcome.

We will also abbreviate the notation for the probability of the intersection of two events,
P[A ∩ B]. Sometimes we will write it as P[A, B] and sometimes as P[AB]. Thus by
definition, P[A ∩ B] = P[A, B] = P[AB].

Example 1.12 Let Ti denote the duration (in minutes) of the i th phone call you place today. The
probability that your first phone call lasts less than five minutes and your second
phone call lasts at least ten minutes is P[T1 < 5, T2 ≥ 10].

Equally Likely Outcomes

A large number of experiments have a sample space S = {s1, . . . , sn} in which our knowl-
edge of the practical situation leads us to believe that no one outcome is any more likely
than any other. In these experiments we say that the n outcomes are equally likely. In such
a case, the axioms of probability imply that every outcome has probability 1/n.

Theorem 1.6 For an experiment with sample space S = {s1, . . . , sn} in which each outcome si is equally
likely,

P [si ] = 1/n 1 ≤ i ≤ n.

Proof Since all outcomes have equal probability, there exists p such that P[si ] = p for i = 1, . . . , n.
Theorem 1.5 implies

P [S] = P
[
s1
] + · · · + P [sn] = np. (1.18)

Since Axiom 2 says P[S] = 1, we must have p = 1/n.

Example 1.13 As in Example 1.6, roll a six-sided die in which all faces are equally likely. What is the
probability of each outcome? Find the probabilities of the events: “Roll 4 or higher,”
“Roll an even number,” and “Roll the square of an integer.”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The probability of each outcome is

P [i] = 1/6 i = 1, 2, . . . , 6. (1.19)

The probabilities of the three events are

• P[Roll 4 or higher] = P[4] + P[5] + P[6] = 1/2.

• P[Roll an even number] = P[2] + P[4] + P[6] = 1/2.

• P[Roll the square of an integer] = P[1] + P[4] = 1/3.
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Quiz 1.3 A student’s test score T is an integer between 0 and 100 corresponding to the experimental
outcomes s0, . . . , s100. A score of 90 to 100 is an A, 80 to 89 is a B, 70 to 79 is a C, 60 to
69 is a D, and below 60 is a failing grade of F. Given that all scores between 51 and 100
are equally likely and a score of 50 or less never occurs, find the following probabilities:
(1) P[{s79}] (2) P[{s100}]
(3) P[A] (4) P[F]
(5) P[T ≥ 80] (6) P[T < 90]
(7) P[a C grade or better] (8) P[student passes]

1.4 Some Consequences of the Axioms

Here we list some properties of probabilities that follow directly from the three axioms.
While we do not supply the proofs, we suggest that students prove at least some of these
theorems in order to gain experience working with the axioms.

Theorem 1.7 The probability measure P[·] satisfies

(a) P[φ] = 0.

(b) P[Ac] = 1 − P[A].
(c) For any A and B (not necessarily disjoint),

P [A ∪ B] = P [A] + P [B] − P [A ∩ B] .

(d) If A ⊂ B, then P[A] ≤ P[B].

The following useful theorem refers to an event space B1, B2, . . . , Bm and any event, A.
It states that we can find the probability of A by adding the probabilities of the parts of A
that are in the separate components of the event space.

Theorem 1.8 For any event A, and event space {B1, B2, . . . , Bm},

P [A] =
m∑

i=1

P [A ∩ Bi ] .

Proof The proof follows directly from Theorem 1.2 and Theorem 1.4. In this case, the disjoint sets
are Ci = {A ∩ Bi } .

Theorem 1.8 is often used when the sample space can be written in the form of a table. In
this table, the rows and columns each represent an event space. This method is shown in
the following example.
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Example 1.14 A company has a model of telephone usage. It classifies all calls as either long (l),
if they last more than three minutes, or brief (b). It also observes whether calls carry
voice (v), data (d), or fax ( f ). This model implies an experiment in which the procedure
is to monitor a call and the observation consists of the type of call, v, d, or f , and
the length, l or b. The sample space has six outcomes S = {lv, bv, ld, bd, l f, b f }. In
this problem, each call is classifed in two ways: by length and by type. Using L for
the event that a call is long and B for the event that a call is brief, {L , B} is an event
space. Similarly, the voice (V ), data (D) and fax (F) classification is an event space
{V, D, F}. The sample space can be represented by a table in which the rows and
columns are labeled by events and the intersection of each row and column event
contains a single outcome. The corresponding table entry is the probability of that
outcome. In this case, the table is

V D F
L 0.3 0.12 0.15
B 0.2 0.08 0.15

(1.20)

For example, from the table we can read that the probability of a brief data call is
P[bd] = P[B D] = 0.08. Note that {V, D, F} is an event space corresponding to
{B1, B2, B3} in Theorem 1.8. Thus we can apply Theorem 1.8 to find the probability
of a long call:

P [L] = P [LV ] + P [L D] + P [L F] = 0.57. (1.21)

Quiz 1.4 Monitor a phone call. Classify the call as a voice call (V ) if someone is speaking, or a data
call (D) if the call is carrying a modem or fax signal. Classify the call as long (L) if the call
lasts for more than three minutes; otherwise classify the call as brief (B). Based on data
collected by the telephone company, we use the following probability model: P[V ] = 0.7,
P[L] = 0.6, P[V L] = 0.35. Find the following probabilities:
(1) P[DL] (2) P[D ∪ L]
(3) P[V B] (4) P[V ∪ L]
(5) P[V ∪ D] (6) P[L B]

1.5 Conditional Probability

As we suggested earlier, it is sometimes useful to interpret P[A] as our knowledge of the
occurrence of event A before an experiment takes place. If P[A] ≈ 1, we have advance
knowledge that A will almost certainly occur. P[A] ≈ 0 reflects strong knowledge that
A is unlikely to occur when the experiment takes place. With P[A] ≈ 1/2, we have little
knowledge about whether or not A will occur. Thus P[A] reflects our knowledge of the
occurrence of A prior to performing an experiment. Sometimes, we refer to P[A] as the a
priori probability, or the prior probability, of A.

In many practical situations, it is not possible to find out the precise outcome of an
experiment. Rather than the outcome si , itself, we obtain information that the outcome
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is in the set B . That is, we learn that some event B has occurred, where B consists of
several outcomes. Conditional probability describes our knowledge of A when we know
that B has occurred but we still don’t know the precise outcome. The notation for this new
probability is P[A|B]. We read this as “the probability of A given B .” Before going to
the mathematical definition of conditional probability, we provide an example that gives an
indication of how conditional probabilities can be used.

Example 1.15 Consider an experiment that consists of testing two integrated circuits that come from
the same silicon wafer, and observing in each case whether a circuit is accepted (a) or
rejected (r ). The sample space of the experiment is S = {rr, ra, ar, aa}. Let B denote
the event that the first chip tested is rejected. Mathematically, B = {rr, ra}. Similarly,
let A = {rr, ar } denote the event that the second circuit is a failure.

The circuits come from a high-qualityproduction line. Therefore the prior probability
P[A] is very low. In advance, we are pretty certain that the second circuit will be
accepted. However, some wafers become contaminated by dust, and these wafers
have a high proportion of defective chips. Given the knowledge of event B that the first
chip was rejected, our knowledge of the quality of the second chip changes. With the
event B that the first chip is a reject, the probability P[A|B] that the second chip will
also be rejected is higher than the a priori probability P[A] because of the likelihood
that dust contaminated the entire wafer.

Definition 1.6 Conditional Probability
The conditional probability of the event A given the occurrence of the event B is

P [A|B] = P [AB]

P [B]
.

Conditional probability is defined only when P[B] > 0. In most experiments, P[B] = 0
means that it is certain that B never occurs. In this case, it is illogical to speak of the
probability of A given that B occurs. Note that P[A|B] is a respectable probability measure
relative to a sample space that consists of all the outcomes in B . This means that P[A|B]
has properties corresponding to the three axioms of probability.

Theorem 1.9 A conditional probability measure P[A|B] has the following properties that correspond to
the axioms of probability.

Axiom 1: P[A|B] ≥ 0.

Axiom 2: P[B|B] = 1.

Axiom 3: If A = A1 ∪ A2 ∪ · · · with Ai ∩ A j = φ for i �= j , then

P [A|B] = P [A1|B] + P [A2|B] + · · ·

You should be able to prove these statements using Definition 1.6.

 



18 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

Example 1.16 With respect to Example 1.15, consider the a priori probability model

P [rr ] = 0.01, P [ra] = 0.01, P [ar ] = 0.01, P [aa] = 0.97. (1.22)

Find the probability of A = “second chip rejected” and B = “first chip rejected.” Also
find the conditional probability that the second chip is a reject given that the first chip
is a reject.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We saw in Example 1.15 that A is the union of two disjoint events (outcomes) rr and
ar . Therefore, the a priori probability that the second chip is rejected is

P [A] = P [rr ] + P [ar ] = 0.02 (1.23)

This is also the a priori probability that the first chip is rejected:

P [B] = P [rr ] + P [ra] = 0.02. (1.24)

The conditional probability of the second chip being rejected given that the first chip
is rejected is, by definition, the ratio of P[AB] to P[B], where, in this example,

P [AB] = P
[
both rejected

] = P [rr ] = 0.01 (1.25)

Thus

P [A|B] = P [AB]

P [B]
= 0.01/0.02 = 0.5. (1.26)

The information that the first chip is a reject drastically changes our state of knowledge
about the second chip. We started with near certainty, P[A] = 0.02, that the second
chip would not fail and ended with complete uncertainty about the quality of the second
chip, P[A|B] = 0.5.

Example 1.17 Shuffle a deck of cards and observe the bottom card. What is the conditional prob-
ability that the bottom card is the ace of clubs given that the bottom card is a black
card?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The sample space consists of the 52 cards that can appear on the bottom of the deck.
Let A denote the event that the bottom card is the ace of clubs. Since all cards are
equally likely to be at the bottom, the probability that a particular card, such as the ace
of clubs, is at the bottom is P[A] = 1/52. Let B be the event that the bottom card is a
black card. The event B occurs if the bottom card is one of the 26 clubs or spades,
so that P[B] = 26/52. Given B, the conditional probability of A is

P [A|B] = P [AB]

P [B]
= P [A]

P [B]
= 1/52

26/52
= 1

26
. (1.27)

The key step was observing that AB = A, because if the bottom card is the ace of
clubs, then the bottom card must be a black card. Mathematically, this is an example
of the fact that A ⊂ B implies that AB = A.

Example 1.18 Roll two fair four-sided dice. Let X1 and X2 denote the number of dots that appear on
die 1 and die 2, respectively. Let A be the event X1 ≥ 2. What is P[A]? Let B denote
the event X2 > X1. What is P[B]? What is P[A|B]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We begin by observing that the sample space has 16
elements corresponding to the four possible values of
X1 and the same four values of X2. Since the dice are
fair, the outcomes are equally likely, each with proba-
bility 1/16. We draw the sample space as a set of black
circles in a two-dimensional diagram, in which the axes
represent the events X1 and X2. Each outcome is a
pair of values (X1, X2). The rectangle represents A.
It contains 12 outcomes, each with probability 1/16.

To find P[A], we add up the probabilities of outcomes in A, so P[A] = 12/16 = 3/4.
The triangle represents B. It contains six outcomes. Therefore P[B] = 6/16 = 3/8.
The event AB has three outcomes, (2, 3), (2, 4), (3, 4), so P[AB] = 3/16. From the
definition of conditional probability, we write

P [A|B] = P [AB]

P [B]
= 1

2
. (1.28)

We can also derive this fact from the diagram by restricting our attention to the six
outcomes in B (the conditioning event), and noting that three of the six outcomes in
B (one-half of the total) are also in A.

Law of Total Probability

In many situations, we begin with information about conditional probabilities. Using these
conditional probabilities, we would like to calculate unconditional probabilities. The law
of total probability shows us how to do this.

Theorem 1.10 Law of Total Probability
For an event space{B1, B2, . . . , Bm} with P[Bi ] > 0 for all i ,

P [A] =
m∑

i=1

P [A|Bi ] P [Bi ] .

Proof This follows from Theorem 1.8 and the identity P[ABi ] = P[A|Bi ]P[Bi ], which is a direct
consequence of the definition of conditional probability.

The usefulness of the result can be seen in the next example.

Example 1.19 A company has three machines B1, B2, and B3 for making 1 k� resistors. It has
been observed that 80% of resistors produced by B1 are within 50 � of the nominal
value. Machine B2 produces 90% of resistors within 50 � of the nominal value. The
percentage for machine B3 is 60%. Each hour, machine B1 produces 3000 resistors,
B2 produces 4000 resistors, and B3 produces 3000 resistors. All of the resistors are
mixed together at random in one bin and packed for shipment. What is the probability
that the company ships a resistor that is within 50 � of the nominal value?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let A = {resistor is within 50 � of the nominal value}. Using the resistor accuracy
information to formulate a probability model, we write

P
[
A|B1

] = 0.8, P
[
A|B2

] = 0.9, P
[
A|B3

] = 0.6 (1.29)

The production figures state that 3000 + 4000 + 3000 = 10,000 resistors per hour are
produced. The fraction from machine B1 is P[B1] = 3000/10,000 = 0.3. Similarly,
P[B2] = 0.4 and P[B3] = 0.3. Now it is a simple matter to apply the law of total
probability to find the accuracy probability for all resistors shipped by the company:

P [A] = P
[
A|B1

]
P
[
B1
] + P

[
A|B2

]
P
[
B2
] + P

[
A|B3

]
P
[
B3
]

(1.30)

= (0.8)(0.3) + (0.9)(0.4) + (0.6)(0.3) = 0.78. (1.31)

For the whole factory, 78% of resistors are within 50 � of the nominal value.

Bayes’ Theorem

In many situations, we have advance information about P[A|B] and need to calculate
P[B|A]. To do so we have the following formula:

Theorem 1.11 Bayes’ theorem

P [B|A] = P [A|B] P [B]

P [A]
.

Proof

P [B|A] = P [AB]

P [A]
= P [A|B] P [B]

P [A]
. (1.32)

Bayes’ theorem is a simple consequence of the definition of conditional probability. It
has a name because it is extremely useful for making inferences about phenomena that
cannot be observed directly. Sometimes these inferences are described as “reasoning about
causes when we observe effects.” For example, let {B1, . . . , Bm} be an event space that
includes all possible states of something that interests us but which we cannot observe
directly (for example, the machine that made a particular resistor). For each possible state,
Bi , we know the prior probability P[Bi ] and P[A|Bi ], the probability that an event A occurs
(the resistor meets a quality criterion) if Bi is the actual state. Now we observe the actual
event (either the resistor passes or fails a test), and we ask about the thing we are interested
in (the machines that might have produced the resistor). That is, we use Bayes’ theorem to
find P[B1|A], P[B2|A], . . . , P[Bm |A]. In performing the calculations, we use the law of
total probability to calculate the denominator in Theorem 1.11. Thus for state Bi ,

P [Bi |A] = P [A|Bi ] P [Bi ]∑m
i=1 P [A|Bi ] P [Bi ]

. (1.33)
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Example 1.20 In Example 1.19 about a shipment of resistors from the factory, we learned that:

• The probability that a resistor is from machine B3 is P[B3] = 0.3.

• The probability that a resistor is acceptable, i.e., within 50 � of the nominal value,
is P[A] = 0.78.

• Given that a resistor is from machine B3, the conditional probability that it is
acceptable is P[A|B3] = 0.6.

What is the probability that an acceptable resistor comes from machine B3?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now we are given the event A that a resistor is within 50 � of the nominal value, and
we need to find P[B3|A]. Using Bayes’ theorem, we have

P
[
B3|A

] = P
[
A|B3

]
P
[
B3
]

P [A]
. (1.34)

Since all of the quantities we need are given in the problem description, our answer is

P
[
B3|A

] = (0.6)(0.3)/(0.78) = 0.23. (1.35)

Similarly we obtain P[B1|A] = 0.31 and P[B2|A] = 0.46. Of all resistors within 50 �

of the nominal value, only 23% come from machine B3 (even though this machine
produces 30% of all resistors). Machine B1 produces 31% of the resistors that meet
the 50 � criterion and machine B2 produces 46% of them.

Quiz 1.5 Monitor three consecutive phone calls going through a telephone switching office. Classify
each one as a voice call (v) if someone is speaking, or a data call (d) if the call is carrying
a modem or fax signal. Your observation is a sequence of three letters (each one is either v

or d). For example, three voice calls corresponds to vvv. The outcomes vvv and ddd have
probability 0.2 whereas each of the other outcomes vvd, vdv, vdd, dvv, dvd, and ddv has
probability 0.1. Count the number of voice calls NV in the three calls you have observed.
Consider the four events NV = 0, NV = 1, NV = 2, NV = 3. Describe in words and also
calculate the following probabilities:
(1) P[NV = 2] (2) P[NV ≥ 1]
(3) P[{vvd}|NV = 2] (4) P[{ddv}|NV = 2]
(5) P[NV = 2|NV ≥ 1] (6) P[NV ≥ 1|NV = 2]

1.6 Independence

Definition 1.7 Two Independent Events
Events A and B are independent if and only if

P [AB] = P [A] P [B] .

When events A and B have nonzero probabilities, the following formulas are equivalent to
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the definition of independent events:

P [A|B] = P [A] , P [B|A] = P [B] . (1.36)

To interpret independence, consider probability as a description of our knowledge of the
result of the experiment. P[A] describes our prior knowledge (before the experiment is
performed) that the outcome is included in event A. The fact that the outcome is in B is
partial information about the experiment. P[A|B] reflects our knowledge of A when we
learn that B occurs. P[A|B] = P[A] states that learning that B occurs does not change
our information about A. It is in this sense that the events are independent.

Problem 1.6.7 at the end of the chapter asks the reader to prove that if A and B are
independent, then A and Bc are also independent. The logic behind this conclusion is that
if learning that event B occurs does not alter the probability of event A, then learning that
B does not occur also should not alter the probability of A.

Keep in mind that independent and disjoint are not synonyms. In some contexts these
words can have similar meanings, but this is not the case in probability. Disjoint events have
no outcomes in common and therefore P[AB] = 0. In most situations independent events
are not disjoint! Exceptions occur only when P[A] = 0 or P[B] = 0. When we have to
calculate probabilities, knowledge that events A and B are disjoint is very helpful. Axiom 3
enables us to add their probabilities to obtain the probability of the union. Knowledge that
events C and D are independent is also very useful. Definition 1.7 enables us to multiply
their probabilities to obtain the probability of the intersection.

Example 1.21 Suppose that for the three lights of Example 1.8, each outcome (a sequence of three
lights, each either red or green) is equally likely. Are the events R2 that the second
light was red and G2 that the second light was green independent? Are the events R1
and R2 independent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Each element of the sample space

S = {rrr, rrg, rgr, rgg, grr, grg, ggr, ggg} (1.37)

has probability 1/8. Each of the events

R2 = {rrr, rrg, grr, grg} and G2 = {rgr, rgg, ggr, ggg} (1.38)

contains four outcomes so P[R2] = P[G2] = 4/8. However, R2 ∩ G2 = φ and
P[R2G2] = 0. That is, R2 and G2 must be disjoint because the second light cannot
be both red and green. Since P[R2G2] �= P[R2]P[G2], R2 and G2 are not inde-
pendent. Learning whether or not the event G2 (second light green) occurs dras-
tically affects our knowledge of whether or not the event R2 occurs. Each of the
events R1 = {rgg, rgr, rrg, rrr } and R2 = {rrg, rrr, grg, grr} has four outcomes so
P[R1] = P[R2] = 4/8. In this case, the intersection R1 ∩ R2 = {rrg, rrr} has probabil-
ity P[R1 R2] = 2/8. Since P[R1 R2] = P[R1]P[R2], events R1 and R2 are independent.
Learning whether or not the event R2 (second light red) occurs does not affect our
knowledge of whether or not the event R1 (first light red) occurs.

In this example we have analyzed a probability model to determine whether two events
are independent. In many practical applications we reason in the opposite direction. Our
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knowledge of an experiment leads us to assume that certain pairs of events are independent.
We then use this knowledge to build a probability model for the experiment.

Example 1.22 Integrated circuits undergo two tests. A mechanical test determines whether pins have
the correct spacing, and an electrical test checks the relationship of outputs to inputs.
We assume that electrical failures and mechanical failures occur independently. Our
information about circuit production tells us that mechanical failures occur with prob-
ability 0.05 and electrical failures occur with probability 0.2. What is the probability
model of an experiment that consists of testing an integrated circuit and observing the
results of the mechanical and electrical tests?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To build the probability model, we note that the sample space contains four outcomes:

S = {(ma, ea), (ma, er), (mr, ea), (mr, er)} (1.39)

where m denotes mechanical, e denotes electrical, a denotes accept, and r denotes
reject. Let M and E denote the events that the mechanical and electrical tests are
acceptable. Our prior information tells us that P[Mc] = 0.05, and P[Ec] = 0.2. This
implies P[M] = 0.95 and P[E] = 0.8. Using the independence assumption and
Definition 1.7, we obtain the probabilities of the four outcomes in the sample space as

P [(ma, ea)] = P [M E] = P [M] P [E] = 0.95 × 0.8 = 0.76, (1.40)

P [(ma, er)] = P
[
M Ec] = P [M] P

[
Ec] = 0.95 × 0.2 = 0.19, (1.41)

P [(mr, ea)] = P
[
Mc E

] = P
[
Mc] P [E] = 0.05 × 0.8 = 0.04, (1.42)

P [(mr, er)] = P
[
Mc Ec] = P

[
Mc] P

[
Ec] = 0.05 × 0.2 = 0.01. (1.43)

Thus far, we have considered independence as a property of a pair of events. Often we
consider larger sets of independent events. For more than two events to be independent,
the probability model has to meet a set of conditions. To define mutual independence, we
begin with three sets.

Definition 1.8 3 Independent Events
A1, A2, and A3 are independent if and only if

(a) A1 and A2 are independent,

(b) A2 and A3 are independent,

(c) A1 and A3 are independent,

(d) P[A1 ∩ A2 ∩ A3] = P[A1]P[A2]P[A3].

The final condition is a simple extension of Definition 1.7. The following example shows
why this condition is insufficient to guarantee that “everything is independent of everything
else,” the idea at the heart of independence.

Example 1.23 In an experiment with equiprobable outcomes, the event space is S = {1, 2, 3, 4}.
P[s] = 1/4 for all s ∈ S. Are the events A1 = {1, 3, 4}, A2 = {2, 3, 4}, and A3 = φ

independent?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
These three sets satisfy the final condition of Definition 1.8 because A1 ∩ A2 ∩ A3 = φ,
and

P
[
A1 ∩ A2 ∩ A3

] = P
[
A1

]
P
[
A2

]
P
[
A3

] = 0. (1.44)

However, A1 and A2 are not independent because, with all outcomes equiprobable,

P
[
A1 ∩ A2

] = P [{3, 4}] = 1/2 �= P
[
A1

]
P
[
A2

] = 3/4 × 3/4. (1.45)

Hence the three events are dependent.

The definition of an arbitrary number of independent events is an extension of Defini-
tion 1.8.

Definition 1.9 More than Two Independent Events
If n ≥ 3, the sets A1, A2, . . . , An are independent if and only if

(a) every set of n − 1 sets taken from A1, A2, . . . An is independent,

(b) P[A1 ∩ A2 ∩ · · · ∩ An] = P[A1]P[A2] · · · P[An].

This definition and Example 1.23 show us that when n > 2 it is a complex matter to
determine whether or not a set of n events is independent. On the other hand, if we know
that a set is independent, it is a simple matter to determine the probability of the intersection
of any subset of the events. Just multiply the probabilities of the events in the subset.

Quiz 1.6 Monitor two consecutive phone calls going through a telephone switching office. Classify
each one as a voice call (v) if someone is speaking, or a data call (d) if the call is carrying
a modem or fax signal. Your observation is a sequence of two letters (either v or d).
For example, two voice calls corresponds to vv. The two calls are independent and the
probability that any one of them is a voice call is 0.8. Denote the identity of call i by Ci .
If call i is a voice call, then Ci = v; otherwise, Ci = d. Count the number of voice calls
in the two calls you have observed. NV is the number of voice calls. Consider the three
events NV = 0, NV = 1, NV = 2. Determine whether the following pairs of events are
independent:
(1) {NV = 2} and {NV ≥ 1} (2) {NV ≥ 1} and {C1 = v}
(3) {C2 = v} and {C1 = d} (4) {C2 = v} and {NV is even}

1.7 Sequential Experiments and Tree Diagrams

Many experiments consist of a sequence of subexperiments. The procedure followed for
each subexperiment may depend on the results of the previous subexperiments. We often
find it useful to use a type of graph referred to as a tree diagram to represent the sequence of
subexperiments. To do so, we assemble the outcomes of each subexperiment into sets in an
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B2
0.4����� B10.3

����� B30.3

����� A0.8

N0.2

����� A0.9

����� N0.1

A0.6����� N0.4

•B1 A 0.24

•B1N 0.06

•B2 A 0.36

•B2N 0.04

•B3 A 0.18

•B3N 0.12

Figure 1.2 The sequential tree for Example 1.24.

event space. Starting at the root of the tree, 1 we represent each event in the event space of
the first subexperiment as a branch and we label the branch with the probability of the event.
Each branch leads to a node. The events in the event space of the second subexperiment
appear as branches growing from every node at the end of the first subexperiment. The
labels of the branches of the second subexperiment are the conditional probabilities of
the events in the second subexperiment. We continue the procedure taking the remaining
subexperiments in order. The nodes at the end of the final subexperiment are the leaves
of the tree. Each leaf corresponds to an outcome of the entire sequential experiment. The
probability of each outcome is the product of the probabilities and conditional probabilities
on the path from the root to the leaf. We usually label each leaf with a name for the event
and the probability of the event.

This is a complicated description of a simple procedure as we see in the following five
examples.

Example 1.24 For the resistors of Example 1.19, we have used A to denote the event that a randomly
chosen resistor is “within 50 � of the nominal value.” This could mean “acceptable.”
We use the notation N (“not acceptable”) for the complement of A. The experiment
of testing a resistor can be viewed as a two-step procedure. First we identify which
machine (B1, B2, or B3) produced the resistor. Second, we find out if the resistor is
acceptable. Sketch a sequential tree for this experiment. What is the probability of
choosing a resistor from machine B2 that is not acceptable?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This two-step procedure corresponds to the tree shown in Figure 1.2. To use the
tree to find the probability of the event B2N , a nonacceptable resistor from machine
B2, we start at the left and find that the probability of reaching B2 is P[B2] = 0.4.
We then move to the right to B2N and multiply P[B2] by P[N |B2] = 0.1 to obtain
P[B2N ] = (0.4)(0.1) = 0.04.

We observe in this example a general property of all tree diagrams that represent sequen-
tial experiments. The probabilities on the branches leaving any node add up to 1. This is a
consequence of the law of total probability and the property of conditional probabilities that

1Unlike biological trees, which grow from the ground up, probabilities usually grow from left to right. Some of
them have their roots on top and leaves on the bottom.
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corresponds to Axiom 3 (Theorem 1.9). Moreover, Axiom 2 implies that the probabilities
of all of the leaves add up to 1.

Example 1.25 Suppose traffic engineers have coordinated the timing of two traffic lights to encourage
a run of green lights. In particular, the timing was designed so that with probability 0.8
a driver will find the second light to have the same color as the first. Assuming the first
light is equally likely to be red or green, what is the probability P[G2] that the second
light is green? Also, what is P[W ], the probability that you wait for at least one light?
Lastly, what is P[G1|R2], the conditional probability of a green first light given a red
second light?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the case of the two-light experiment, the complete tree is

�����G10.5

����� R10.5

�����G20.8

����� R20.2

�����G20.2

����� R20.8

•G1G2 0.4

•G1 R2 0.1

•R1G2 0.1

•R1 R2 0.4

The probability that the second light is green is

P
[
G2

] = P
[
G1G2

] + P
[
R1G2

] = 0.4 + 0.1 = 0.5. (1.46)

The event W that you wait for at least one light is

W = {R1G2 ∪ G1 R2 ∪ R1 R2} . (1.47)

The probability that you wait for at least one light is

P [W ] = P
[
R1G2

] + P
[
G1 R2

] + P
[
R1 R2

] = 0.1 + 0.1 + 0.4 = 0.6. (1.48)

To find P[G1|R2], we need P[R2] = 1 − P[G2] = 0.5. Since P[G1 R2] = 0.1, the
conditional probability that you have a green first light given a red second light is

P
[
G1|R2

] = P
[
G1 R2

]
P
[
R2

] = 0.1

0.5
= 0.2. (1.49)

Example 1.26 Consider the game of Three. You shuffle a deck of three cards: ace, 2, 3. With the
ace worth 1 point, you draw cards until your total is 3 or more. You win if your total is
3. What is P[W ], the probability that you win?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let Ci denote the event that card C is the i th card drawn. For example, 32 is the event
that the 3 was the second card drawn. The tree is
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����� A11/3

211/3����� 311/3

����� 221/2

321/2

A2
1/2����� 321/2

•A122 1/6

•A132 1/6

•21 A2 1/6

•2132 1/6

•31 1/3

You win if A122, 21 A2, or 31 occurs. Hence, the probability that you win is

P [W ] = P
[
A122

] + P
[
21 A2

] + P
[
31
]

(1.50)

=
(

1

3

)(
1

2

)
+
(

1

3

)(
1

2

)
+ 1

3
= 2

3
. (1.51)

Example 1.27 Suppose you have two coins, one biased, one fair, but you don’t know which coin is
which. Coin 1 is biased. It comes up heads with probability 3/4, while coin 2 will
flip heads with probability 1/2. Suppose you pick a coin at random and flip it. Let Ci
denote the event that coin i is picked. Let H and T denote the possible outcomes of
the flip. Given that the outcome of the flip is a head, what is P[C1|H ], the probability
that you picked the biased coin? Given that the outcome is a tail, what is the probability
P[C1|T ] that you picked the biased coin?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First, we construct the sample tree.

������ C11/2

������ C21/2

������ H3/4

T1/4

H
1/2������ T1/2

•C1 H 3/8

•C1T 1/8

•C2 H 1/4

•C2T 1/4

To find the conditional probabilities, we see

P
[
C1|H

] = P
[
C1 H

]
P [H ]

= P
[
C1 H

]
P
[
C1 H

] + P
[
C2 H

] = 3/8

3/8 + 1/4
= 3

5
. (1.52)

Similarly,

P
[
C1|T

] = P
[
C1T

]
P [T ]

= P
[
C1T

]
P
[
C1T

] + P
[
C2T

] = 1/8

1/8 + 1/4
= 1

3
. (1.53)

As we would expect, we are more likely to have chosen coin 1 when the first flip is
heads, but we are more likely to have chosen coin 2 when the first flip is tails.

Quiz 1.7 In a cellular phone system, a mobile phone must be paged to receive a phone call. However,
paging attempts don’t always succeed because the mobile phone may not receive the paging
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signal clearly. Consequently, the system will page a phone up to three times before giving
up. If a single paging attempt succeeds with probability 0.8, sketch a probability tree for
this experiment and find the probability P[F] that the phone is found.

1.8 Counting Methods

Suppose we have a shuffled full deck and we deal seven cards. What is the probability that
we draw no queens? In theory, we can draw a sample space tree for the seven cards drawn.
However, the resulting tree is so large that this is impractical. In short, it is too difficult to
enumerate all 133 million combinations of seven cards. (In fact, you may wonder if 133
million is even approximately the number of such combinations.) To solve this problem,
we need to develop procedures that permit us to count how many seven-card combinations
there are and how many of them do not have a queen.

The results we will derive all follow from the fundamental principle of counting.

Definition 1.10 Fundamental Principle of Counting
If subexperiment A has n possible outcomes, and subexperiment B has k possible outcomes,
then there are nk possible outcomes when you perform both subexperiments.

This principle is easily demonstrated by a few examples.

Example 1.28 There are two subexperiments. The first subexperiment is “Flip a coin.” It has two
outcomes, H and T . The second subexperiment is “Roll a die.” It has six outcomes,
1, 2, . . . , 6. The experiment, “Flip a coin and roll a die,” has 2 × 6 = 12 outcomes:

(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),

(T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6).

Generally, if an experiment E has k subexperiments E1, . . . , Ek where Ei has ni out-
comes, then E has

∏k
i=1 ni outcomes.

Example 1.29 Shuffle a deck and observe each card starting from the top. The outcome of the ex-
periment is an ordered sequence of the 52 cards of the deck. How many possible
outcomes are there?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The procedure consists of 52 subexperiments. In each one the observation is the
identity of one card. The first subexperiment has 52 possible outcomes correspond-
ing to the 52 cards that could be drawn. After the first card is drawn, the second
subexperiment has 51 possible outcomes corresponding to the 51 remaining cards.
The total number of outcomes is

52 × 51 × · · · × 1 = 52! . (1.54)

Example 1.30 Shuffle the deck and choose three cards in order. How many outcomes are there?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In this experiment, there are 52 possible outcomes for the first card, 51 for the second
card, and 50 for the third card. The total number of outcomes is 52 × 51 × 50.

In Example 1.30, we chose an ordered sequence of three objects out of a set of 52
distinguishable objects. In general, an ordered sequence of k distinguishable objects is
called a k-permutation. We will use the notation (n)k to denote the number of possible k-
permutations of n distinguishable objects. To find (n)k , suppose we have n distinguishable
objects, and the experiment is to choose a sequence of k of these objects. There are n
choices for the first object, n − 1 choices for the second object, etc. Therefore, the total
number of possibilities is

(n)k = n(n − 1)(n − 2) · · · (n − k + 1). (1.55)

Multiplying the right side by (n − k)!/(n − k)! yields our next theorem.

Theorem 1.12 The number of k-permutations of n distinguishable objects is

(n)k = n(n − 1)(n − 2) · · · (n − k + 1) = n!
(n − k)! .

Sampling without Replacement

Choosing objects from a collection is also called sampling,and the chosen objects are known
as a sample. A k-permutation is a type of sample obtained by specific rules for selecting
objects from the collection. In particular, once we choose an object for a k-permutation, we
remove the object from the collection and we cannot choose it again. Consequently, this is
also called sampling without replacement. When an object can be chosen repeatedly, we
have sampling with replacement, which we examine in the next subsection.

When we choose a k-permutation, different outcomes are distinguished by the order in
which we choose objects. However, in many practical problems, the order in which the
objects are chosen makes no difference. For example, in many card games, only the set
of cards received by a player is of interest. The order in which they arrive is irrelevant.
Suppose there are four objects, A, B , C , and D, and we define an experiment in which
the procedure is to choose two objects, arrange them in alphabetical order, and observe the
result. In this case, to observe AD we could choose A first or D first or both A and D
simultaneously. What we are doing is picking a subset of the collection of objects. Each
subset is called a k-combination. We want to find the number of k-combinations.

We will use
(n

k

)
, which is read as “n choose k,” to denote the number of k-combinations

of n objects. To find
(n

k

)
, we perform the following two subexperiments to assemble a

k-permutation of n distinguishable objects:

1. Choose a k-combination out of the n objects.

2. Choose a k-permutation of the k objects in the k-combination.
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Theorem 1.12 tells us that the number of outcomes of the combined experiment is (n)k .
The first subexperiment has

(n
k

)
possible outcomes, the number we have to derive. By

Theorem 1.12, the second experiment has (k)k = k! possible outcomes. Since there are
(n)k possible outcomes of the combined experiment,

(n)k =
(

n

k

)
· k! (1.56)

Rearranging the terms yields our next result.

Theorem 1.13 The number of ways to choose k objects out of n distinguishable objects is(
n

k

)
= (n)k

k! = n!
k!(n − k)! .

We encounter
(n

k

)
in other mathematical studies. Sometimes it is called a binomial

coefficient because it appears (as the coefficient of xk yn−k) in the expansion of the binomial
(x + y)n . In addition, we observe that(

n

k

)
=
(

n

n − k

)
. (1.57)

The logic behind this identity is that choosing k out of n elements to be part of a subset is
equivalent to choosing n − k elements to be excluded from the subset.

In many (perhaps all) other books,
(n

k

)
is undefined except for integers n and k with

0 ≤ k ≤ n. Instead, we adopt the following extended definition:

Definition 1.11 n choose k
For an integer n ≥ 0, we define

(
n

k

)
=
⎧⎨
⎩

n!
k!(n − k)! k = 0, 1, . . . , n,

0 otherwise.

This definition captures the intuition that given, say, n = 33 objects, there are zero ways
of choosing k = −5 objects, zero ways of choosing k = 8.7 objects, and zero ways of
choosing k = 87 objects. Although this extended definition may seem unnecessary, and
perhaps even silly, it will make many formulas in later chapters more concise and easier for
students to grasp.

Example 1.31

• The number of five-card poker hands is(
52

5

)
= 52 · 51 · 50 · 49 · 48

2 · 3 · 4 · 5
= 2,598,960. (1.58)

• The number of ways of picking 60 out of 120 students is
(120

60
)
.
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• The number of ways of choosing 5 starters for a basketball team with 11 players
is
(11

5
) = 462.

• A baseball team has 15 field players and 10 pitchers. Each field player can take
any of the 8 nonpitching positions. Therefore, the number of possible starting
lineups is N = (10

1
)(15

8
) = 64,350 since you must choose 1 of the 10 pitchers

and you must choose 8 out of the 15 field players. For each choice of starting
lineup, the manager must submit to the umpire a batting order for the 9 starters.
The number of possible batting orders is N × 9! = 23,351,328,000 since there
are N ways to choose the 9 starters, and for each choice of 9 starters, there are
9! = 362,880 possible batting orders.

Example 1.32 To return to our original question of this section, suppose we draw seven cards. What
is the probability of getting a hand without any queens?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
There are H = (52

7
)

possible hands. All H hands have probability 1/H . There are

HN Q = (48
7
)

hands that have no queens since we must choose 7 cards from a deck
of 48 cards that has no queens. Since all hands are equally likely, the probability of
drawing no queens is HN Q /H = 0.5504.

Sampling with Replacement

Now we address sampling with replacement. In this case, each object can be chosen
repeatedly because a selected object is replaced by a duplicate.

Example 1.33 A laptop computer has PCMCIA expansion card slots A and B. Each slot can be filled
with either a modem card (m), a SCSI interface (i), or a GPS card (g). From the set
{m, i, g} of possible cards, what is the set of possible ways to fill the two slots when
we sample with replacement? In other words, how many ways can we fill the two card
slots when we allow both slots to hold the same type of card?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let xy denote the outcome that card type x is used in slot A and card type y is used
in slot B. The possible outcomes are

S = {mm, mi, mg, im, ii, ig, gm, gi, gg} . (1.59)

As we see from S, the number of possible outcomes is nine.

The fact that Example 1.33 had nine possible outcomes should not be surprising. Since
we were sampling with replacement, there were always three possible outcomes for each
of the subexperiments to choose a PCMCIA card. Hence, by the fundamental theorem of
counting, Example 1.33 must have 3 × 3 = 9 possible outcomes.

In Example 1.33, mi and im are distinct outcomes. This result generalizes naturally
when we want to choose with replacement a sample of n objects out of a collection of m
distinguishable objects. The experiment consists of a sequence of n identical subexperi-
ments. Sampling with replacement ensures that in each subexperiment, there are m possible
outcomes. Hence there are mn ways to choose with replacement a sample of n objects.
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Theorem 1.14 Given m distinguishable objects, there are mn ways to choose with replacement an ordered
sample of n objects.

Example 1.34 There are 210 = 1024 binary sequences of length 10.

Example 1.35 The letters A through Z can produce 264 = 456,976 four-letter words.

Sampling with replacement also arises when we perform n repetitions of an identical
subexperiment. Each subexperiment has the same sample space S. Using xi to denote the
outcome of the i th subexperiment, the result for n repetitions of the subexperiment is a
sequence x1, . . . , xn . Note that each observation xi is some element s in t“‘he sample space
S.

Example 1.36 A chip fabrication facility produces microprocessors. Each microprocessor is tested
to determine whether it runs reliably at an acceptable clock speed. A subexperiment
to test a microprocessor has sample space S = {0, 1} to indicate whether the test was
a failure (0) or a success (1). For test i , we record xi = 0 or xi = 1 to indicate the
result. In testing four microprocessors, the observation sequence x1x2x3x4 is one of
16 possible outcomes:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Note that we can think of the observation sequence x1, . . . , xn as having been generated
by sampling with replacement n times from a collection S. For sequences of identical
subexperiments, we can formulate the following restatement of Theorem 1.14.

Theorem 1.15 For n repetitions of a subexperiment with sample space S = {s0, . . . , sm−1}, there are mn

possible observation sequences.

Example 1.37 A chip fabrication facility produces microprocessors. Each microprocessor is tested
and assigned a grade s ∈ S = {s0, . . . , s3}. A grade of s j indicates that the micropro-
cessor will function reliably at a maximum clock rate of s j megahertz (MHz). In testing
10 microprocessors, we use xi to denote the grade of the i th microprocessor tested.
Testing 10 microprocessors, for example, may produce an observation sequence

x1x2 · · · x10 = s3s0s3s1s2s3s0s2s2s1. (1.60)

The entire set of possible sequences contains 410 = 1,048,576 elements.

In the preceding examples, repeating a subexperimentn times and recording the observa-
tion can be viewed as constructing a word with n symbols from the alphabet {s0, . . . , sm−1}.
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For example, for m = 2, we have a binary alphabet with symbols s0 and s1 and it is common
to simply define s0 = 0 and s1 = 1.

A more challenging problem is to calculate the number of observation sequences such
that each subexperiment outcome appears a certain number of times. We start with the case
in which each subexperiment is a trial with sample space S = {0, 1} indicating failure or
success.

Example 1.38 For five subexperiments with sample space S = {0, 1}, how many observation se-
quences are there in which 0 appears n0 = 2 times and 1 appears n1 = 3 times?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The set of five-letter words with 0 appearing twice and 1 appearing three times is

{00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100}.
There are exactly 10 such words.

Writing down all 10 sequences of Example 1.38 and making sure that no sequences
are overlooked is surprisingly difficult. However, with some additional effort, we will see
that it is not so difficult to count the number of such sequences. Each sequence is uniquely
determined by the placement of the ones. That is, given five slots for the five subexperiment
observations, a possible observation sequence is completely specified by choosing three of
the slots to hold a 1. There are exactly

(5
3

) = 10 such ways to choose those three slots.
More generally, for length n binary words with n1 1’s, we must choose

( n
n1

)
slots to hold a

1.

Theorem 1.16 The number of observation sequences for n subexperiments with sample space S = {0, 1}
with 0 appearing n0 times and 1 appearing n1 = n − n0 times is

( n
n1

)
.

Theorem 1.16 can be generalized to subexperiments with m > 2 elements in the sample
space. For n trials of a subexperiment with sample space S = {s0, . . . , sm−1}, we want
to find the number of observation sequences in which s0 appears n0 times, s1 appears n1
times, and so on. Of course, there are no such sequences unless n0 + · · · + nm−1 = n. The
number of such words is known as the multinomial coefficient and is denoted by(

n

n0, . . . , nm−1

)
.

To find the multinomial coefficient, we generalize the logic used in the binary case. Rep-
resenting the observation sequence by n slots, we first choose n0 slots to hold s0, then n1
slots to hold s1, and so on. The details can be found in the proof of the following theorem:

Theorem 1.17 For n repetitions of a subexperiment with sample space S = {s0, . . . , sm−1}, the number of
length n = n0 + · · · + nm−1 observation sequences with si appearing ni times is(

n

n0, . . . , nm−1

)
= n!

n0!n1! · · · nm−1! .

Proof Let M = ( n
n0,...,nm−1

)
. Start with n empty slots and perform the following sequence of
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subexperiments:

Subexperiment Procedure
0 Label n0 slots as s0.
1 Label n1 slots as s1.
...

...

m − 1 Label the remaining nm−1 slots as sm−1.

There are
( n
n0

)
ways to perform subexperiment 0. After n0 slots have been labeled, there are

(n−n0
n1

)
ways to perform subexperiment 1. After subexperiment j −1, n0 +· · ·+n j−1 slots have already been

filled, leaving
(n−(n0+···+n j−1)

n j

)
ways to perform subexperiment j . From the fundamental counting

principle,

M =
(

n

n0

)(
n − n0

n1

)(
n − n0 − n1

n2

)
· · ·

(
n − n0 − · · · − nm−2

nm−1

)
(1.61)

= n!
(n − n0)!n0!

(n − n0)!
(n − n0 − n1)!n1! · · · (n − n0 − · · · − nm−2)!

(n − n0 − · · · − nm−1)!nm−1! . (1.62)

Canceling the common factors, we obtain the formula of the theorem.

Note that a binomial coefficient is the special case of the multinomial coefficient for an
alphabet with m = 2 symbols. In particular, for n = n0 + n1,(

n

n0, n1

)
=
(

n

n0

)
=
(

n

n1

)
. (1.63)

Lastly, in the same way that we extended the definition of the binomial coefficient, we
will employ the following extended definition for the multinomial coefficient.

Definition 1.12 Multinomial Coefficient
For an integer n ≥ 0, we define

(
n

n0, . . . , nm−1

)
=

⎧⎪⎪⎨
⎪⎪⎩

n!
n0!n1! · · · nm−1!

n0 + · · · + nm−1 = n;
ni ∈ {0, 1, . . . , n} , i = 0, 1, . . . , m − 1,

0 otherwise.

Quiz 1.8 Consider a binary code with 4 bits (0 or 1) in each code word. An example of a code word
is 0110.

(1) How many different code words are there?

(2) How many code words have exactly two zeroes?

(3) How many code words begin with a zero?

(4) In a constant-ratio binary code, each code word has N bits. In every word, M of the
N bits are 1 and the other N − M bits are 0. How many different code words are in
the code with N = 8 and M = 3?
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1.9 Independent Trials

We now apply the counting methods of Section 1.8 to derive probability models for exper-
iments consisting of independent repetitions of a subexperiment. We start with a simple
subexperiment in which there are two outcomes: a success occurs with probability p; oth-
erwise, a failure occurs with probability 1− p. The results of all trials of the subexperiment
are mutually independent. An outcome of the complete experiment is a sequence of suc-
cesses and failures denoted by a sequence of ones and zeroes. For example, 10101 . . . is an
alternating sequence of successes and failures. Let Sn0,n1 denote the event n0 failures and
n1 successes in n = n0 + n1 trials. To find P[Sn0,n1], we consider an example.

Example 1.39 What is the probability P[S2,3] of two failures and three successes in five independent
trials with success probability p.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To find P[S2,3], we observe that the outcomes with three successes in five trials are
11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011, and 00111. We note
that the probability of each outcome is a product of five probabilities, each related to
one subexperiment. In outcomes with three successes, three of the probabilities are
p and the other two are 1 − p. Therefore each outcome with three successes has
probability (1 − p)2 p3.

From Theorem 1.16, we know that the number of such sequences is
(5
3
)
. To find

P[S2,3], we add up the probabilitiesassociated with the 10 outcomes with 3 successes,
yielding

P
[
S2,3

] =
(

5

3

)
(1 − p)2 p3. (1.64)

In general, for n = n0 + n1 independent trials we observe that

• Each outcome with n0 failures and n1 successes has probability (1 − p)n0 pn1 .

• There are
( n

n0

) = ( n
n1

)
outcomes that have n0 failures and n1 successes.

Therefore the probability of n1 successes in n independent trials is the sum of
( n

n1

)
terms,

each with probability (1 − p)n0 pn1 = (1 − p)n−n1 pn1 .

Theorem 1.18 The probability of n0 failures and n1 successes in n = n0 + n1 independent trials is

P
[
Sn0,n1

] =
(

n

n1

)
(1 − p)n−n1 pn1 =

(
n

n0

)
(1 − p)n0 pn−n0 .

The second formula in this theorem is the result of multiplying the probability of n0 failures
in n trials by the number of outcomes with n0 failures.

Example 1.40 In Example 1.19, we found that a randomly tested resistor was acceptable with prob-
ability P[A] = 0.78. If we randomly test 100 resistors, what is the probability of Ti , the
event that i resistors test acceptable?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Testing each resistor is an independent trial with a success occurring when a resistor
is acceptable. Thus for 0 ≤ i ≤ 100,

P
[
Ti
] =

(
100

i

)
(0.78)i (1 − 0.78)100−i (1.65)
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We note that our intuition says that since 78% of the resistors are acceptable, then in
testing 100 resistors, the number acceptable should be near 78. However, P[T78] ≈
0.096, which is fairly small. This shows that although we might expect the number
acceptable to be close to 78, that does not mean that the probability of exactly 78
acceptable is high.

Example 1.41 To communicate one bit of information reliably, cellular phones transmit the same
binary symbol five times. Thus the information “zero” is transmitted as 00000 and
“one” is 11111. The receiver detects the correct information if three or more binary
symbols are received correctly. What is the information error probability P[E], if the
binary symbol error probability is q = 0.1?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this case, we have five trials corresponding to the five times the binary symbol is
sent. On each trial, a success occurs when a binary symbol is received correctly. The
probability of a success is p = 1−q = 0.9. The error event E occurs when the number
of successes is strictly less than three:

P [E] = P
[
S0,5

] + P
[
S1,4

] + P
[
S2,3

]
(1.66)

=
(

5

0

)
q5 +

(
5

1

)
pq4 +

(
5

2

)
p2q3 = 0.00856. (1.67)

By increasing the number of binary symbols per information bit from 1 to 5, the cellular
phone reduces the probability of error by more than one order of magnitude, from 0.1
to 0.0081.

Now suppose we perform n independent repetitions of a subexperiment for which there
are m possible outcomes for any subexperiment. That is, the sample space for each subex-
periment is (s0, . . . , sm−1) and every event in one subexperiment is independent of the
events in all the other subexperiments. Therefore, in every subexperiment the probabilities
of corresponding events are the same and we can use the notation P[sk] = pk for all of the
subexperiments.

An outcome of the experiment consists of a sequence of n subexperiment outcomes. In
the probability tree of the experiment,each node has m branches and branch i has probability
pi . The probability of an experimental outcome is just the product of the branch probabilities
encountered on a path from the root of the tree to the leaf representing the outcome. For
example, the experimental outcome s2s0s3s2s4 occurs with probability p2 p0 p3 p2 p4. We
want to find the probability of the event

Sn0,...,nm−1 = {s0 occurs n0 times, . . . , sm−1 occurs nm−1 times} (1.68)

Note that buried in the notation Sn0,...,nm−1 is the implicit fact that there is a sequence of
n = n0 + · · · + nm−1 trials.

To calculate P[Sn0,...,nm−1], we observe that the probability of the outcome

s0 · · · s0︸ ︷︷ ︸
n0 times

s1 · · · s1︸ ︷︷ ︸
n1 times

· · · sm−1 · · · sm−1︸ ︷︷ ︸
nm−1 times

(1.69)

is
pn0

0 pn1
1 · · · p

nm−1
m−1 . (1.70)

 



1.9 INDEPENDENT TRIALS 37

Next, we observe that any other experimental outcome that is a reordering of the preceding
sequence has the same probability because on each path through the tree to such an outcome
there are ni occurrences of si . As a result,

P
[
Sn0,...,nm−1

] = Mpn1
1 pn2

2 · · · pnr
r (1.71)

where M , the number of such outcomes, is the multinomial coefficient
( n

n0,...,nm−1

)
of Defi-

nition 1.12. Applying Theorem 1.17, we have the following theorem:

Theorem 1.19 A subexperiment has sample space S = {s0, . . . , sm−1} with P[si ] = pi . For n = n0 +
· · · + nm−1 independent trials, the probability of ni occurences of si , i = 0, 1, . . . , m − 1,
is

P
[
Sn0,...,nm−1

] =
(

n

n0, . . . , nm−1

)
pn0

0 · · · pnm−1
m−1 .

Example 1.42 Each call arriving at a telephone switch is independently either a voice call with prob-
ability 7/10, a fax call with probability 2/10, or a modem call with probability 1/10. Let
Sv, f,m denote the event that we observe v voice calls, f fax calls, and m modem calls
out of 100 observed calls. In this case,

P
[
Sv, f,m

] =
(

100

v, f, m

)(
7

10

)v ( 2

10

) f ( 1

10

)m
(1.72)

Keep in mind that by the extended definition of the multinomial coefficient, P[Sv, f,m]
is nonzero only if v, f , and m are nonnegative integers such that v + f + m = 100.

Example 1.43 Continuing with Example 1.37, suppose in testing a microprocessor that all four grades
have probability 0.25, independent of any other microprocessor. In testing n = 100
microprocessors, what is the probability of exactly 25 microprocessors of each grade?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let S25,25,25,25 denote the probability of exactly 25 microprocessors of each grade.
From Theorem 1.19,

P
[
S25,25,25,25

] =
(

100

25, 25, 25, 25

)
(0.25)100 = 0.0010. (1.73)

Quiz 1.9 Data packets containing 100 bits are transmitted over a communication link. A transmitted
bit is received in error (either a 0 sent is mistaken for a 1, or a 1 sent is mistaken for a 0)
with probability ε = 0.01, independent of the correctness of any other bit. The packet has
been coded in such a way that if three or fewer bits are received in error, then those bits
can be corrected. If more than three bits are received in error, then the packet is decoded
with errors.

(1) Let Sk,100−k denote the event that a received packet has k bits in error and 100 − k
correctly decoded bits. What is P[Sk,100−k ] for k = 0, 1, 2, 3?

(2) Let C denote the event that a packet is decoded correctly. What is P[C]?
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Components in Series Components in Parallel

W1 W2 W3

W1

W2

W3

Figure 1.3 Serial and parallel devices.

1.10 Reliability Problems

Independent trials can also be used to describe reliability problems in which we would like
to calculate the probability that a particular operation succeeds. The operation consists of
n components and each component succeeds with probability p, independent of any other
component. Let Wi denote the event that component i succeeds. As depicted in Figure 1.3,
there are two basic types of operations.

• Components in series. The operation succeeds if all of its components succeed.
One example of such an operation is a sequence of computer programs in which each
program after the first one uses the result of the previous program. Therefore, the
complete operation fails if any component program fails. Whenever the operation
consists of k components in series, we need all k components to succeed in order to
have a successful operation. The probability that the operation succeeds is

P [W ] = P [W1W2 · · · Wn ] = p × p × · · · × p = pn (1.74)

• Components in parallel. The operation succeeds if any component works.
This operation occurs when we introduce redundancy to promote reliability. In a
redundant system, such as a space shuttle, there are n computers on board so that the
shuttle can continue to function as long as at least one computer operates successfully.
If the components are in parallel, the operation fails when all elements fail, so we
have

P
[
W c] = P

[
W c

1 W c
2 · · · W c

n

] = (1 − p)n. (1.75)

The probability that the parallel operation succeeds is

P [W ] = 1 − P
[
W c] = 1 − (1 − p)n. (1.76)

We can analyze complicated combinations of components in series and in parallel by
reducing several components in parallel or components in series to a single equivalent
component.

Example 1.44 An operation consists of two redundant parts. The first part has two components in
series (W1 and W2) and the second part has two components in series (W3 and W4).
All components succeed with probability p = 0.9. Draw a diagram of the operation
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W1 W2

W3 W4

W5

W6

Figure 1.4 The operation described in Example 1.44. On the left is the original operation. On
the right is the equivalent operation with each pair of series components replaced with an equivalent
component.

and calculate the probability that the operation succeeds.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A diagram of the operation is shown in Figure 1.4. We can create an equivalent
component, W5, with probability of success p5 by observing that for the combination
of W1 and W2,

P
[
W5

] = p5 = P[W1W2] = p2 = 0.81. (1.77)

Similarly, the combination of W3 and W4 in series produces an equivalent component,
W6, with probability of success p6 = p5 = 0.81. The entire operation then consists of
W5 and W6 in parallel which is also shown in Figure 1.4. The success probability of
the operation is

P [W ] = 1 − (1 − p5)2 = 0.964 (1.78)

We could consider the combination of W5 and W6 to be an equivalent component W7
with success probability p7 = 0.964 and then analyze a more complex operation that
contains W7 as a component.

Working on these reliability problems leads us to the observation that in calculating
probabilities of events involving independent trials, it is easy to find the probability of
an intersection and difficult to find directly the probability of a union. Specifically, for
a device with components in series, it is difficult to calculate directly the probability that
device fails. Similarly, when the components are in parallel, calculating the probability that
the device succeeds is hard. However, De Morgan’s law (Theorem 1.1) allows us to express
a union as the complement of an intersection and vice versa. Therefore when it is difficult
to calculate directly the probability we need, we can often calculate the probability of the
complementary event first and then subtract this probability from one to find the answer.
This is how we calculated the probability that the parallel device works.

Quiz 1.10 A memory module consists of nine chips. The device is designed with redundancy so that
it works even if one of its chips is defective. Each chip contains n transistors and functions
properly if all of its transistors work. A transistor works with probability p independent of
any other transistor. What is the probability P[C] that a chip works? What is the probability
P[M] that the memory module works?
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1.11 Matlab

Engineers have studied and applied probability theory long before the invention ofMatlab.
If you don’t have access to Matlab or if you’re not interested in Matlab, feel free to
skip this section. You can use this text to learn probability without Matlab. Nevertheless,
Matlabprovides a convenient programming environment for solving probability problems
and for building models of probabilistic systems. Versions of Matlab, including a low
cost student edition, are available for most computer systems.

At the end of each chapter, we include a Matlab section (like this one) that introduces
ways that Matlab can be applied to the concepts and problems of the chapter. We assume
you already have some familiarity with the basics of running Matlab. If you do not, we
encourage you to investigate the built-in tutorial, books dedicated to Matlab, and various
Web resources.

Matlab can be used two ways to study and apply probability theory. Like a sophisti-
cated scientific calculator, it can perform complex numerical calculations and draw graphs.
It can also simulate experiments with random outcomes. To simulate experiments, we need
a source of randomness. Matlab uses a computer algorithm, referred to as a pseudo-
random number generator, to produce a sequence of numbers between 0 and 1. Unless
someone knows the algorithm, it is impossible to examine some of the numbers in the se-
quence and thereby calculate others. The calculation of each random number is similar to
an experiment in which all outcomes are equally likely and the sample space is all binary
numbers of a certain length. (The length depends on the machine running Matlab.) Each
number is interpreted as a fraction, with a binary point preceding the bits in the binary
number. To use the pseudo-random number generator to simulate an experiment that con-
tains an event with probability p, we examine one number, r , produced by the Matlab
algorithm and say that the event occurs if r < p; otherwise it does not occur.

A Matlab simulation of an experiment starts with the rand operator: rand(m,n)
produces an m × n array of pseudo-random numbers. Similarly, rand(n) produces an
n × n array and rand(1) is just a scalar random number. Each number produced by
rand(1) is in the interval (0, 1). Each time we use rand, we get new, unpredictable
numbers. Suppose p is a number between 0 and 1. The comparison rand(1) < p
produces a 1 if the random number is less than p; otherwise it produces a zero. Roughly
speaking, the function rand(1) < p simulates a coin flip with P[tail] = p.

Example 1.45

» X=rand(1,4)
X =
0.0879 0.9626 0.6627 0.2023

» X<0.5
ans =

1 0 0 1

Since rand(1,4)<0.5 compares
four random numbers against 0.5,
the result is a random sequence of
zeros and ones that simulates a se-
quence of four flips of a fair coin.
We associate the outcome 1 with
{head} and 0 with {tail}.

Because Matlab can simulate these coin flips much faster than we can actually flip
coins, a few lines of Matlab code can yield quick simulations of many experiments.

 



CHAPTER SUMMARY 41

Example 1.46 Using Matlab, perform 75 experiments. In each experiment, flip a coin 100 times
and record the number of heads in a vector Y such that the i th element Yi is the
number of heads in subexperiment i .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X=rand(75,100)<0.5;
Y=sum(X,2);

The Matlab code for this task appears on the left.
The 75 × 100 matrix X has i, j th element Xi j = 0
(tails) or Xi j = 1 (heads) to indicate the result of flip
j of subexperiment i .

Since Y sums X across the second dimension, Yi is the number of heads in the
i th subexperiment. Each Yi is between 0 and 100 and generally in the neighborhood
of 50.

Example 1.47 Simulate the testing of 100 microprocessors as described in Example 1.43. Your output
should be a 4 × 1 vector X such that Xi is the number of grade i microprocessors.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

%chiptest.m
G=ceil(4*rand(1,100));
T=1:4;
X=hist(G,T);

The first line generates a row vector G of random
grades for 100 microprocessors. The possi-
ble test scores are in the vector T. Lastly,
X=hist(G,T) returns a histogram vector X such
that X(j) counts the number of elements G(i)
that equal T(j).

Note that “ help hist” will show the variety of ways that the hist function can be
called. Morever, X=hist(G,T) does more than just count the number of elements
of G that equal each element of T. In particular, hist(G,T) creates bins centered
around each T(j) and counts the number of elements of G that fall into each bin.

Note that in Matlab all variables are assumed to be matrices. In writing Matlab
code, X may be an n × m matrix, an n × 1 column vector, a 1 × m row vector, or a 1 × 1
scalar. In Matlab, we write X(i,j) to index the i, j th element. By contrast, in this
text, we vary the notation depending on whether we have a scalar X , or a vector or matrix
X. In addition, we use Xi, j to denote the i, j th element. Thus, X and X (in a Matlab
code fragment) may both refer to the same variable.

Quiz 1.11 The flip of a thick coin yields heads with probability 0.4, tails with probability 0.5, or lands
on its edge with probability 0.1. Simulate 100 thick coin flips. Your output should be a 3×1
vector X such that X1, X2, and X3 are the number of occurrences of heads, tails, and edge.

Chapter Summary

An experiment consists of a procedure and observations. Outcomes of the experiment are
elements of a sample space. A probability model assigns a number to every set in the sample
space. Three axioms contain the fundamental properties of probability. The rest of this
book uses these axioms to develop methods of working on practical problems.

• Sample space, event, and outcome are probability terms for the set theory concepts of
universal set, set, and element.
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• A probability measure P[A] is a function that assigns a number between 0 and 1 to
every event A in a sample space. The assigned probabilities conform to the three axioms
presented in Section 1.3.

• A conditional probability P[A|B] describes the likelihood of A given that B has oc-
curred. If we consider B to be the sample space, the conditional probability P[A|B]
also satisfies the three axioms of probability.

• A and B are independent events if and only if P[AB] = P[A]P[B].
• Tree diagrams illustrate experiments that consist of a sequence of steps. The labels on

the tree branches can be used to calculate the probabilities of outcomes of the combined
experiment.

• Counting methods determine the number of outcomes of complicated experiments.
These methods are particularly useful for sequences of independent trials in which the
probability tree is too large to draw.

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

1.1.1• For Gerlanda’s pizza in Quiz 1.1, answer these ques-
tions:

(a) Are T and M mutually exclusive?

(b) Are R, T , and M collectively exhaustive?

(c) Are T and O mutually exclusive? State this con-
dition in words.

(d) Does Gerlanda’s make Tuscan pizzas with
mushrooms and onions?

(e) Does Gerlanda’s make regular pizzas that have
neither mushrooms nor onions?

1.1.2• Continuing Quiz 1.1, write Gerlanda’s entire menu
in words (supply prices if you wish).

1.2.1• A fax transmission can take place at any of three
speeds depending on the condition of the phone con-
nection between the two fax machines. The speeds
are high (h) at 14, 400 b/s, medium (m) at 9600
b/s, and low (l) at 4800 b/s. In response to requests
for information, a company sends either short faxes
of two (t) pages, or long faxes of four ( f ) pages.
Consider the experiment of monitoring a fax trans-
mission and observing the transmission speed and
length. An observation is a two-letter word, for ex-
ample, a high-speed, two-page fax is ht .

(a) What is the sample space of the experiment?

(b) Let A1 be the event “medium-speed fax.” What
are the outcomes in A1?

(c) Let A2 be the event “short (two-page) fax.”
What are the outcomes in A2?

(d) Let A3 be the event “high-speed fax or low-speed
fax.” What are the outcomes in A3?

(e) Are A1, A2, and A3 mutually exclusive?

(f) Are A1, A2, and A3 collectively exhaustive?

1.2.2• An integrated circuit factory has three machines X ,
Y , and Z . Test one integrated circuit produced by
each machine. Either a circuit is acceptable (a) or it
fails ( f ). An observation is a sequence of three test
results corresponding to the circuits from machines
X , Y , and Z , respectively. For example, aa f is the
observation that the circuits from X and Y pass the
test and the circuit from Z fails the test.

(a) What are the elements of the sample space of
this experiment?

(b) What are the elements of the sets

ZF = {circuit from Z fails} ,

X A = {circuit from X is acceptable} .

(c) Are ZF and X A mutually exclusive?

(d) Are ZF and X A collectively exhaustive?
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(e) What are the elements of the sets

C = {more than one circuit acceptable} ,

D = {at least two circuits fail} .

(f) Are C and D mutually exclusive?

(g) Are C and D collectively exhaustive?

1.2.3• Shuffle a deck of cards and turn over the first card.
What is the sample space of this experiment? How
many outcomes are in the event that the first card is
a heart?

1.2.4• Find out the birthday (month and day but not year)
of a randomly chosen person. What is the sample
space of the experiment. How many outcomes are
in the event that the person is born in July?

1.2.5• Let the sample space of an experiment consist of
all the undergraduates at a university. Give four
examples of event spaces.

1.2.6• Let the sample space of the experiment consist of
the measured resistances of two resistors. Give four
examples of event spaces.

1.3.1• Computer programs are classified by the length of
the source code and by the execution time. Pro-
grams with more than 150 lines in the source code
are big (B). Programs with ≤ 150 lines are little
(L). Fast programs (F) run in less than 0.1 sec-
onds. Slow programs (W ) require at least 0.1 sec-
onds. Monitor a program executed by a computer.
Observe the length of the source code and the run
time. The probability model for this experiment
contains the following information: P[L F] = 0.5,
P[B F] = 0.2, and P[BW ] = 0.2. What is the
sample space of the experiment? Calculate the fol-
lowing probabilities:

(a) P[W ]
(b) P[B]
(c) P[W ∪ B]

1.3.2• There are two types of cellular phones, handheld
phones (H ) that you carry and mobile phones (M)
that are mounted in vehicles. Phone calls can be
classified by the traveling speed of the user as fast
(F) or slow (W ). Monitor a cellular phone call
and observe the type of telephone and the speed
of the user. The probability model for this experi-
ment has the following information: P[F] = 0.5,
P[H F] = 0.2, P[MW ] = 0.1. What is the sample
space of the experiment? Calculate the following
probabilities:

(a) P[W ]
(b) P[M F ]
(c) P[H ]

1.3.3• Shuffle a deck of cards and turn over the first card.
What is the probability that the first card is a heart?

1.3.4• You have a six-sided die that you roll once and ob-
serve the number of dots facing upwards. What is
the sample space? What is the probability of each
sample outcome? What is the probability of E , the
event that the roll is even?

1.3.5• A student’s score on a 10-point quiz is equally likely
to be any integer between 0 and 10. What is the
probability of an A, which requires the student to
get a score of 9 or more? What is the probability
the student gets an F by getting less than 4?

1.4.1• Mobile telephones perform handoffs as they move
from cell to cell. During a call, a telephone either
performs zero handoffs (H0), one handoff (H1), or
more than one handoff (H2). In addition, each call
is either long (L), if it lasts more than three min-
utes, or brief (B). The following table describes the
probabilities of the possible types of calls.

H0 H1 H2
L 0.1 0.1 0.2
B 0.4 0.1 0.1

What is the probability P[H0] that a phone makes
no handoffs? What is the probability a call is brief?
What is the probability a call is long or there are at
least two handoffs?

1.4.2• For the telephone usage model of Example 1.14, let
Bm denote the event that a call is billed for m min-
utes. To generate a phone bill, observe the duration
of the call in integer minutes (rounding up). Charge
for M minutes M = 1, 2, 3, . . . if the exact duration
T is M −1 < t ≤ M . A more complete probability
model shows that for m = 1, 2, . . . the probability
of each event Bm is

P [Bm] = α(1 − α)m−1

where α = 1 − (0.57)1/3 = 0.171.

(a) Classify a call as long, L , if the call lasts more
than three minutes. What is P[L]?

(b) What is the probability that a call will be billed
for nine minutes or less?
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1.4.3
�

The basic rules of genetics were discovered in mid-
1800s by Mendel, who found that each characteris-
tic of a pea plant, such as whether the seeds were
green or yellow, is determined by two genes, one
from each parent. Each gene is either dominant d
or recessive r . Mendel’s experiment is to select a
plant and observe whether the genes are both dom-
inant d , both recessive r , or one of each (hybrid) h.
In his pea plants, Mendel found that yellow seeds
were a dominant trait over green seeds. A yy pea
with two yellow genes has yellow seeds; a gg pea
with two recessive genes has green seeds; a hybrid
gy or yg pea has yellow seeds. In one of Mendel’s
experiments, he started with a parental generation
in which half the pea plants were yy and half the
plants were gg. The two groups were crossbred so
that each pea plant in the first generation was gy. In
the second generation, each pea plant was equally
likely to inherit a y or a g gene from each first gen-
eration parent. What is the probability P[Y ] that a
randomly chosen pea plant in the second generation
has yellow seeds?

1.4.4
�

Use Theorem 1.7 to prove the following facts:

(a) P[A ∪ B] ≥ P[A]
(b) P[A ∪ B] ≥ P[B]
(c) P[A ∩ B] ≤ P[A]
(d) P[A ∩ B] ≤ P[B]

1.4.5
�

Use Theorem 1.7 to prove by induction the union
bound: For any collection of events A1, . . . , An ,

P
[
A1 ∪ A2 ∪ · · · ∪ An

] ≤
n∑

i=1

P
[
Ai
]
.

1.4.6
�

Suppose a cellular telephone is equally likely to
make zero handoffs (H0), one handoff (H1), or more
than one handoff (H2). Also, a caller is either on
foot (F) with probability 5/12 or in a vehicle (V ).

(a) Given the preceding information, find three
ways to fill in the following probability table:

H0 H1 H2
F
V

(b) Suppose we also learn that 1/4 of all callers are
on foot making calls with no handoffs and that
1/6 of all callers are vehicle users making calls
with a single handoff. Given these additional

facts, find all possible ways to fill in the table of
probabilities.

1.4.7
�

Using only the three axioms of probability, prove
P[φ] = 0.

1.4.8
�

Using the three axioms of probability and the fact
that P[φ] = 0, prove Theorem 1.4. Hint: Define
Ai = Bi for i = 1, . . . , m and Ai = φ for i > m.

1.4.9
��

For each fact stated in Theorem 1.7, determine
which of the three axioms of probability are needed
to prove the fact.

1.5.1• Given the model of handoffs and call lengths in
Problem 1.4.1,

(a) What is the probability that a brief call will have
no handoffs?

(b) What is the probability that a call with one hand-
off will be long?

(c) What is the probability that a long call will have
one or more handoffs?

1.5.2• You have a six-sided die that you roll once. Let Ri
denote the event that the roll is i . Let G j denote the
event that the roll is greater than j . Let E denote
the event that the roll of the die is even-numbered.

(a) What is P[R3|G1], the conditional probability
that 3 is rolled given that the roll is greater than
1?

(b) What is the conditional probability that 6 is
rolled given that the roll is greater than 3?

(c) What is P[G3|E], the conditional probability
that the roll is greater than 3 given that the roll
is even?

(d) Given that the roll is greater than 3, what is the
conditional probability that the roll is even?

1.5.3• You have a shuffled deck of three cards: 2, 3, and
4. You draw one card. Let Ci denote the event that
card i is picked. Let E denote the event that card
chosen is a even-numbered card.

(a) What is P[C2|E], the probability that the 2 is
picked given that an even-numbered card is cho-
sen?

(b) What is the conditional probability that an even-
numbered card is picked given that the 2 is
picked?

1.5.4
�

From Problem 1.4.3, what is the conditional proba-
bility of yy, that a pea plant has two dominant genes
given the event Y that it has yellow seeds?
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1.5.5
�

You have a shuffled deck of three cards: 2, 3, and 4
and you deal out the three cards. Let Ei denote the
event that i th card dealt is even numbered.

(a) What is P[E2|E1], the probability the second
card is even given that the first card is even?

(b) What is the conditional probability that the first
two cards are even given that the third card is
even?

(c) Let Oi represent the event that the i th card dealt
is odd numbered. What is P[E2|O1], the con-
ditional probability that the second card is even
given that the first card is odd?

(d) What is the conditional probability that the sec-
ond card is odd given that the first card is odd?

1.5.6
�

Deer ticks can carry both Lyme disease and human
granulocytic ehrlichiosis (HGE). In a study of ticks
in the Midwest, it was found that 16% carried Lyme
disease, 10% had HGE, and that 10% of the ticks
that had either Lyme disease or HGE carried both
diseases.

(a) What is the probability P[L H ] that a tick carries
both Lyme disease (L) and HGE (H )?

(b) What is the conditional probability that a tick
has HGE given that it has Lyme disease?

1.6.1• Is it possible for A and B to be independent events
yet satisfy A = B?

1.6.2
�

Use a Venn diagram in which the event areas are
proportional to their probabilities to illustrate two
events A and B that are independent.

1.6.3
�

In an experiment, A, B, C , and D are events with
probabilities P[A] = 1/4, P[B] = 1/8, P[C] =
5/8, and P[D] = 3/8. Furthermore, A and B are
disjoint, while C and D are independent.

(a) Find P[A ∩ B], P[A ∪ B], P[A ∩ Bc], and
P[A ∪ Bc].

(b) Are A and B independent?

(c) Find P[C ∩ D], P[C ∩ Dc], and P[Cc ∩ Dc].
(d) Are Cc and Dc independent?

1.6.4
�

In an experiment, A, B, C , and D are events
with probabilities P[A ∪ B] = 5/8, P[A] = 3/8,
P[C ∩ D] = 1/3, and P[C] = 1/2. Furthermore,
A and B are disjoint, while C and D are indepen-
dent.

(a) Find P[A ∩ B], P[B], P[A ∩ Bc], and
P[A ∪ Bc].

(b) Are A and B independent?

(c) Find P[D], P[C ∩ Dc], P[Cc ∩ Dc], and
P[C|D].

(d) Find P[C ∪ D] and P[C ∪ Dc].
(e) Are C and Dc independent?

1.6.5
�

In an experiment with equiprobable outcomes, the
event space is S = {1, 2, 3, 4} and P[s] = 1/4 for
all s ∈ S. Find three events in S that are pairwise in-
dependent but are not independent. (Note: Pairwise
independent events meet the first three conditions of
Definition 1.8).

1.6.6
�

(Continuation of Problem 1.4.3) One of Mendel’s
most significant results was the conclusion that
genes determining different characteristics are
transmitted independently. In pea plants, Mendel
found that round peas are a dominant trait over wrin-
kled peas. Mendel crossbred a group of (rr, yy)

peas with a group of (ww, gg) peas. In this no-
tation, rr denotes a pea with two “round” genes
and ww denotes a pea with two “wrinkled” genes.
The first generation were either (rw, yg), (rw, gy),
(wr, yg), or (wr, gy) plants with both hybrid shape
and hybrid color. Breeding among the first gen-
eration yielded second-generation plants in which
genes for each characteristic were equally likely to
be either dominant or recessive. What is the prob-
ability P[Y ] that a second-generation pea plant has
yellow seeds? What is the probability P[R] that a
second-generation plant has round peas? Are R and
Y independent events? How many visibly different
kinds of pea plants would Mendel observe in the
second generation? What are the probabilities of
each of these kinds?

1.6.7
�

For independent events A and B, prove that

(a) A and Bc are independent.

(b) Ac and B are independent.

(c) Ac and Bc are independent.

1.6.8
�

Use a Venn diagram in which the event areas are
proportional to their probabilities to illustrate three
events A, B, and C that are independent.

1.6.9
�

Use a Venn diagram in which the event areas are
proportional to their probabilities to illustrate three
events A, B, and C that are pairwise independent
but not independent.

1.7.1• Suppose you flip a coin twice. On any flip, the coin
comes up heads with probability 1/4. Use Hi and
Ti to denote the result of flip i .
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(a) What is the probability, P[H1|H2], that the first
flip is heads given that the second flip is heads?

(b) What is the probability that the first flip is heads
and the second flip is tails?

1.7.2• For Example 1.25, suppose P[G1] = 1/2,
P[G2|G1] = 3/4, and P[G2|R1] = 1/4. Find
P[G2], P[G2|G1], and P[G1|G2].

1.7.3• At the end of regulation time, a basketball team is
trailing by one point and a player goes to the line for
two free throws. If the player makes exactly one free
throw, the game goes into overtime. The probabil-
ity that the first free throw is good is 1/2. However,
if the first attempt is good, the player relaxes and
the second attempt is good with probability 3/4.
However, if the player misses the first attempt, the
added pressure reduces the success probability to
1/4. What is the probability that the game goes
into overtime?

1.7.4• You have two biased coins. Coin A comes up heads
with probability 1/4. Coin B comes up heads with
probability 3/4. However, you are not sure which
is which so you choose a coin randomly and you
flip it. If the flip is heads, you guess that the flipped
coin is B; otherwise, you guess that the flipped coin
is A. Let events A and B designate which coin
was picked. What is the probability P[C] that your
guess is correct?

1.7.5
�

Suppose that for the general population, 1 in 5000
people carries the human immunodeficiency virus
(HIV). A test for the presence of HIV yields either a
positive (+) or negative (−) response. Suppose the
test gives the correct answer 99% of the time. What
is P[−|H ], the conditional probability that a per-
son tests negative given that the person does have
the HIV virus? What is P[H |+], the conditional
probability that a randomly chosen person has the
HIV virus given that the person tests positive?

1.7.6
�

A machine produces photo detectors in pairs. Tests
show that the first photo detector is acceptable with
probability 3/5. When the first photo detector is
acceptable, the second photo detector is acceptable
with probability 4/5. If the first photo detector is
defective, the second photo detector is acceptable
with probability 2/5.

(a) What is the probability that exactly one photo
detector of a pair is acceptable?

(b) What is the probability that both photo detectors
in a pair are defective?

1.7.7
�

You have two biased coins. Coin A comes up heads
with probability 1/4. Coin B comes up heads with
probability 3/4. However, you are not sure which
is which so you flip each coin once, choosing the
first coin randomly. Use Hi and Ti to denote the
result of flip i . Let A1 be the event that coin A was
flipped first. Let B1 be the event that coin B was
flipped first. What is P[H1 H2]? Are H1 and H2
independent? Explain your answer.

1.7.8
�

Suppose Dagwood (Blondie’s husband) wants to eat
a sandwich but needs to go on a diet. So, Dagwood
decides to let the flip of a coin determine whether he
eats. Using an unbiased coin, Dagwood will post-
pone the diet (and go directly to the refrigerator) if
either (a) he flips heads on his first flip or (b) he
flips tails on the first flip but then proceeds to get
two heads out of the next three flips. Note that the
first flip is not counted in the attempt to win two of
three and that Dagwood never performs any unnec-
essary flips. Let Hi be the event that Dagwood flips
heads on try i . Let Ti be the event that tails occurs
on flip i .

(a) Sketch the tree for this experiment. Label the
probabilities of all outcomes carefully.

(b) What are P[H3] and P[T3]?
(c) Let D be the event that Dagwood must diet.

What is P[D]? What is P[H1|D]?
(d) Are H3 and H2 independent events?

1.7.9
�

The quality of each pair of photodiodes produced
by the machine in Problem 1.7.6 is independent of
the quality of every other pair of diodes.

(a) What is the probability of finding no good diodes
in a collection of n pairs produced by the ma-
chine?

(b) How many pairs of diodes must the machine pro-
duce to reach a probability of 0.99 that there will
be at least one acceptable diode?

1.7.10
�

Each time a fisherman casts his line, a fish is caught
with probability p, independent of whether a fish is
caught on any other cast of the line. The fisherman
will fish all day until a fish is caught and then he will
quit and go home. Let Ci denote the event that on
cast i the fisherman catches a fish. Draw the tree for
this experiment and find P[C1], P[C2], and P[Cn].

1.8.1• Consider a binary code with 5 bits (0 or 1) in each
code word. An example of a code word is 01010.
How many different code words are there? How
many code words have exactly three 0’s?
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1.8.2• Consider a language containing four letters: A, B,
C , D. How many three-letter words can you form
in this language? How many four-letter words can
you form if each letter appears only once in each
word?

1.8.3
�

Shuffle a deck of cards and pick two cards at random.
Observe the sequence of the two cards in the order
in which they were chosen.

(a) How many outcomes are in the sample space?

(b) How many outcomes are in the event that the
two cards are the same type but different suits?

(c) What is the probability that the two cards are the
same type but different suits?

(d) Suppose the experiment specifies observing the
set of two cards without considering the order in
which they are selected, and redo parts (a)–(c).

1.8.4• On an American League baseball team with 15 field
players and 10 pitchers, the manager must select for
the starting lineup, 8 field players, 1 pitcher, and 1
designated hitter. A starting lineup specifies the
players for these positions and the positions in a
batting order for the 8 field players and designated
hitter. If the designated hitter must be chosen among
all the field players, how many possible starting line-
ups are there?

1.8.5
�

Suppose that in Problem 1.8.4, the designated hitter
can be chosen from among all the players. How
many possible starting lineups are there?

1.8.6
�

A basketball team has three pure centers, four pure
forwards, four pure guards, and one swingman who
can play either guard or forward. A pure position
player can play only the designated position. If the
coach must start a lineup with one center, two for-
wards, and two guards, how many possible lineups
can the coach choose?

1.8.7
�

An instant lottery ticket consists of a collection
of boxes covered with gray wax. For a subset of
the boxes, the gray wax hides a special mark. If
a player scratches off the correct number of the
marked boxes (and no boxes without the mark), then
that ticket is a winner. Design an instant lottery
game in which a player scratches five boxes and the
probability that a ticket is a winner is approximately
0.01.

1.9.1• Consider a binary code with 5 bits (0 or 1) in each
code word. An example of a code word is 01010.
In each code word, a bit is a zero with probability
0.8, independent of any other bit.

(a) What is the probability of the code word 00111?

(b) What is the probability that a code word contains
exactly three ones?

1.9.2• The Boston Celtics have won 16 NBA champi-
onships over approximately 50 years. Thus it may
seem reasonable to assume that in a given year the
Celtics win the title with probability p = 0.32, inde-
pendent of any other year. Given such a model, what
would be the probability of the Celtics winning eight
straight championships beginning in 1959? Also,
what would be the probability of the Celtics win-
ning the title in 10 out of 11 years, starting in 1959?
Given your answers, do you trust this simple prob-
ability model?

1.9.3• Suppose each day that you drive to work a traffic
light that you encounter is either green with prob-
ability 7/16, red with probability 7/16, or yellow
with probability 1/8, independent of the status of the
light on any other day. If over the course of five days,
G, Y , and R denote the number of times the light is
found to be green, yellow, or red, respectively, what
is the probability that P[G = 2, Y = 1, R = 2]?
Also, what is the probability P[G = R]?

1.9.4
�

In a game between two equal teams, the home team
wins any game with probability p > 1/2. In a best
of three playoff series, a team with the home advan-
tage has a game at home, followed by a game away,
followed by a home game if necessary. The series is
over as soon as one team wins two games. What is
P[H ], the probability that the team with the home
advantage wins the series? Is the home advantage
increased by playing a three-game series rather than
one-game playoff? That is, is it true that P[H ] ≥ p
for all p ≥ 1/2?

1.9.5
�

There is a collection of field goal kickers, which
can be divided into two groups 1 and 2. Group i
has 3i kickers. On any kick, a kicker from group
i will kick a field goal with probability 1/(i + 1),
independent of the outcome of any other kicks by
that kicker or any other kicker.

(a) A kicker is selected at random from among all
the kickers and attempts one field goal. Let K be
the event that a field goal is kicked. Find P[K ].

(b) Two kickers are selected at random. For j =
1, 2, let K j be the event that kicker j kicks a
field goal. Find P[K1 ∩ K2]. Are K1 and K2
independent events?
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(c) A kicker is selected at random and attempts 10
field goals. Let M be the number of misses. Find
P[M = 5].

1.10.1
�

A particular operation has six components. Each
component has a failure probability q, independent
of any other component. The operation is success-
ful if both

•Components 1, 2, and 3 all work, or compo-
nent 4 works.

•Either component 5 or component 6 works.

Sketch a block diagram for this operation similar to
those of Figure 1.3 on page 38. What is the proba-
bility P[W ] that the operation is successful?

1.10.2
�

We wish to modify the cellular telephone coding
system in Example 1.41 in order to reduce the num-
ber of errors. In particular, if there are two or three
zeroes in the received sequence of 5 bits, we will
say that a deletion (event D) occurs. Otherwise, if
at least 4 zeroes are received, then the receiver de-
cides a zero was sent. Similarly, if at least 4 ones are
received, then the receiver decides a one was sent.
We say that an error occurs if either a one was sent
and the receiver decides zero was sent or if a zero
was sent and the receiver decides a one was sent.
For this modified protocol, what is the probability
P[E] of an error? What is the probability P[D] of
a deletion?

1.10.3
�

Suppose a 10-digit phone number is transmitted by
a cellular phone using four binary symbols for each
digit, using the model of binary symbol errors and
deletions given in Problem 1.10.2. If C denotes
the number of bits sent correctly, D the number
of deletions, and E the number of errors, what is
P[C = c, D = d, E = e]? Your answer should be
correct for any choice of c, d , and e.

1.10.4
�

Consider the device described in Problem 1.10.1.
Suppose we can replace any one of the components
with an ultrareliable component that has a failure
probability of q/2. Which component should we
replace?

1.11.1• Following Quiz 1.3, use Matlab to generate a vec-
tor T of 200 independent test scores such that all
scores between 51 and 100 are equally likely.

1.11.2
�

Build a Matlab simulation of 50 trials of the ex-
periment of Example 1.27. Your output should be a
pair of 50 × 1 vectors C and H. For the i th trial, Hi
will record whether it was heads (Hi = 1) or tails
(Hi = 0), and Ci ∈ {1, 2} will record which coin
was picked.

1.11.3
�

Following Quiz 1.9, suppose the communication
link has different error probabilities for transmitting
0 and 1. When a 1 is sent, it is received as a 0 with
probability 0.01. When a 0 is sent, it is received as
a 1 with probability 0.03. Each bit in a packet is
still equally likely to be a 0 or 1. Packets have been
coded such that if five or fewer bits are received in
error, then the packet can be decoded. Simulate the
transmission of 100 packets, each containing 100
bits. Count the number of packets decoded cor-
rectly.

1.11.4
�

For a failure probability q = 0.2, simulate 100 trials
of the six-component test of Problem 1.10.1. How
many devices were found to work? Perform 10 rep-
etitions of the 100 trials. Are your results fairly
consistent?

1.11.5
�

Write a function N=countequal(G,T) that
duplicates the action of hist(G,T) in Exam-
ple 1.47. Hint: Use the ndgrid function.

1.11.6
�

In this problem, we use a Matlab simulation to
“solve” Problem 1.10.4. Recall that a particular op-
eration has six components. Each component has a
failure probability q, independent of any other com-
ponent. The operation is successful if both

•Components 1, 2, and 3 all work, or compo-
nent 4 works.

•Either component 5 or component 6 works.

With q = 0.2, simulate the replacement of a com-
ponent with an ultrareliable component. For each
replacement of a regular component, perform 100
trials. Are 100 trials sufficient to conclude which
component should be replaced?  



2
Discrete Random Variables

2.1 Definitions

Chapter 1 defines a probability model. It begins with a physical model of an experiment. An
experiment consists of a procedure and observations. The set of all possible observations, S,
is the sample space of the experiment. S is the beginning of the mathematical probability
model. In addition to S, the mathematical model includes a rule for assigning numbers
between 0 and 1 to sets A in S. Thus for every A ⊂ S, the model gives us a probability
P[A], where 0 ≤ P[A] ≤ 1.

In this chapter and for most of the remainder of the course, we will examine probability
models that assign numbers to the outcomes in the sample space. When we observe one of
these numbers, we refer to the observation as a random variable. In our notation, the name
of a random variable is always a capital letter, for example, X . The set of possible values of
X is the range of X . Since we often consider more than one random variable at a time, we
denote the range of a random variable by the letter S with a subscript which is the name of
the random variable. Thus SX is the range of random variable X , SY is the range of random
variable Y , and so forth. We use SX to denote the range of X because the set of all possible
values of X is analogous to S, the set of all possible outcomes of an experiment.

A probability model always begins with an experiment. Each random variable is related
directly to this experiment. There are three types of relationships.

1. The random variable is the observation.

Example 2.1 The experiment is to attach a photo detector to an optical fiber and count the
number of photons arriving in a one microsecond time interval. Each observation
is a random variable X . The range of X is SX = {0, 1, 2, . . .}. In this case, SX ,
the range of X , and the sample space S are identical.

2. The random variable is a function of the observation.

Example 2.2 The experiment is to test six integrated circuits and after each test observe
whether the circuit is accepted (a) or rejected (r). Each observation is a sequence
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of six letters where each letter is either a or r . For example, s8 = aaraaa. The
sample space S consists of the 64 possible sequences. A random variable
related to this experiment is N , the number of accepted circuits. For outcome
s8, N = 5 circuits are accepted. The range of N is SN = {0, 1, . . . , 6}.

3. The random variable is a function of another random variable.

Example 2.3 In Example 2.2, the net revenue R obtained for a batch of six integrated circuits is
$5 for each circuit accepted minus $7 for each circuit rejected. (This is because
for each bad circuit that goes out of the factory, it will cost the company $7 to deal
with the customer’s complaint and supply a good replacement circuit.) When N
circuits are accepted, 6 − N circuits are rejected so that the net revenue R is
related to N by the function

R = g(N) = 5N − 7(6 − N) = 12N − 42 dollars. (2.1)

Since SN = {0, . . . , 6}, the range of R is

SR = {−42, −30, −18, −6, 6, 18, 30} . (2.2)

If we have a probability model for the integrated circuit experiment in Example 2.2,
we can use that probability model to obtain a probability model for the random variable.
The remainder of this chapter will develop methods to characterize probability models
for random variables. We observe that in the preceding examples, the value of a random
variable can always be derived from the outcome of the underlying experiment. This is not
a coincidence. The formal definition of a random variable reflects this fact.

Definition 2.1 Random Variable
A random variable consists of an experiment with a probability measure P[·] defined on a
sample space S and a function that assigns a real number to each outcome in the sample
space of the experiment.

This definition acknowledges that a random variable is the result of an underlying experi-
ment, but it also permits us to separate the experiment, in particular, the observations, from
the process of assigning numbers to outcomes. As we saw in Example 2.1, the assignment
may be implicit in the definition of the experiment, or it may require further analysis.

In some definitions of experiments, the procedures contain variable parameters. In these
experiments, there can be values of the parameters for which it is impossible to perform the
observations specified in the experiments. In these cases, the experiments do not produce
random variables. We refer to experiments with parameter settings that do not produce
random variables as improper experiments.

Example 2.4 The procedure of an experiment is to fire a rocket in a vertical direction from the Earth’s
surface with initial velocity V km/h. The observation is T seconds, the time elapsed
until the rocket returns to Earth. Under what conditions is the experiment improper?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
At low velocities, V , the rocket will return to Earth at a random time T seconds that
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depends on atmospheric conditions and small details of the rocket’s shape and weight.
However, when V > v∗ ≈ 40,000 km/hr, the rocket will not return to Earth. Thus, the
experiment is improper when V > v∗ because it is impossible to perform the specified
observation.

On occasion, it is important to identify the random variable X by the function X (s)
that maps the sample outcome s to the corresponding value of the random variable X . As
needed, we will write {X = x} to emphasize that there is a set of sample points s ∈ S for
which X (s) = x . That is, we have adopted the shorthand notation

{X = x} = {s ∈ S|X (s) = x} (2.3)

Here are some more random variables:

• A, the number of students asleep in the next probability lecture;

• C , the number of phone calls you answer in the next hour;

• M , the number of minutes you wait until you next answer the phone.

Random variables A and C are discrete random variables. The possible values of these
random variables form a countable set. The underlying experiments have sample spaces
that are discrete. The random variable M can be any nonnegative real number. It is a
continuous random variable. Its experiment has a continuous sample space. In this chapter,
we study the properties of discrete random variables. Chapter 3 covers continuous random
variables.

Definition 2.2 Discrete Random Variable
X is a discrete random variable if the range of X is a countable set

SX = {x1, x2, . . .} .

The defining characteristic of a discrete random variable is that the set of possible values can
(in principle) be listed, even though the list may be infinitely long. By contrast, a random
variable Y that can take on any real number y in an interval a ≤ y ≤ b is a continuous
random variable.

Definition 2.3 Finite Random Variable
X is a finite random variable if the range is a finite set

SX = {x1, x2, · · · , xn} .

Often, but not always, a discrete random variable takes on integer values. An exception is
the random variable related to your probability grade. The experiment is to take this course
and observe your grade. At Rutgers, the sample space is

S = {
F, D, C, C+, B, B+, A

}
. (2.4)
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The function G(·) that transforms this sample space into a random variable, G, is

G(F) = 0, G(C) = 2, G(B) = 3, G(A) = 4,

G(D) = 1, G(C+) = 2.5, G(B+) = 3.5.
(2.5)

G is a finite random variable. Its values are in the set SG = {0, 1, 2, 2.5, 3, 3.5, 4}. Have you
thought about why we transform letter grades to numerical values? We believe the principal
reason is that it allows us to compute averages. In general, this is also the main reason
for introducing the concept of a random variable. Unlike probability models defined on
arbitrary sample spaces, random variables allow us to compute averages. In the mathematics
of probability, averages are called expectations or expected values of random variables. We
introduce expected values formally in Section 2.5.

Example 2.5 Suppose we observe three calls at a telephone switch where voice calls (v) and data
calls (d) are equally likely. Let X denote the number of voice calls, Y the number of data
calls, and let R = XY . The sample space of the experiment and the corresponding
values of the random variables X , Y , and R are

Outcomes ddd ddv dvd dvv vdd vdv vvd vvv

P[·] 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Random X 0 1 1 2 1 2 2 3
Variables Y 3 2 2 1 2 1 1 0

R 0 2 2 2 2 2 2 0

Quiz 2.1 A student takes two courses. In each course, the student will earn a B with probability 0.6
or a C with probability 0.4, independent of the other course. To calculate a grade point
average (GPA), a B is worth 3 points and a C is worth 2 points. The student’s GPA is
the sum of the GPA for each course divided by 2. Make a table of the sample space of the
experiment and the corresponding values of the student’s GPA, G.

2.2 Probability Mass Function

Recall that a discrete probability model assigns a number between 0 and 1 to each outcome
in a sample space. When we have a discrete random variable X , we express the probability
model as a probability mass function (PMF) PX (x). The argument of a PMF ranges over
all real numbers.

Definition 2.4 Probability Mass Function (PMF)
The probability mass function (PMF) of the discrete random variable X is

PX (x) = P [X = x]

Note that X = x is an event consisting of all outcomes s of the underlying experiment for
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which X (s) = x . On the other hand, PX (x) is a function ranging over all real numbers x .
For any value of x , the function PX (x) is the probability of the event X = x .

Observe our notation for a random variable and its PMF. We use an uppercase letter
(X in the preceding definition) for the name of a random variable. We usually use the
corresponding lowercase letter (x) to denote a possible value of the random variable. The
notation for the PMF is the letter P with a subscript indicating the name of the random
variable. Thus PR(r) is the notation for the PMF of random variable R. In these examples,
r and x are just dummy variables. The same random variables and PMFs could be denoted
PR(u) and PX (u) or, indeed, PR(·) and PX (·).

We graph a PMF by marking on the horizontal axis each value with nonzero probability
and drawing a vertical bar with length proportional to the probability.

Example 2.6 From Example 2.5, what is the PMF of R?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Example 2.5, we see that R = 0 if either outcome, DDD or V V V , occurs so
that

P [R = 0] = P [DDD] + P [V V V ] = 1/4. (2.6)

For the other six outcomes of the experiment, R = 2 so that P[R = 2] = 6/8. The
PMF of R is

−1 0 1 2 3
0

0.5

1

r

P
R
(r

)

PR (r) =
⎧⎨
⎩

1/4 r = 0,

3/4 r = 2,

0 otherwise.

(2.7)

Note that the PMF of R states the value of PR(r) for every real number r . The first
two lines of Equation (2.7) give the function for the values of R associated with nonzero
probabilities: r = 0 and r = 2. The final line is necessary to specify the function at all
other numbers. Although it may look silly to see “PR(r) = 0 otherwise” appended to
almost every expression of a PMF, it is an essential part of the PMF. It is helpful to keep
this part of the definition in mind when working with the PMF. Do not omit this line in your
expressions of PMFs.

Example 2.7 When the basketball player Wilt Chamberlain shot two free throws, each shot was
equally likely either to be good (g) or bad (b). Each shot that was good was worth 1
point. What is the PMF of X , the number of points that he scored?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
There are four outcomes of this experiment: gg, gb, bg, and bb. A simple tree diagram
indicates that each outcome has probability 1/4. The random variable X has three
possible values corresponding to three events:

{X = 0} = {bb} , {X = 1} = {gb, bg} , {X = 2} = {gg} . (2.8)

Since each outcome has probability 1/4, these three events have probabilities

P [X = 0] = 1/4, P [X = 1] = 1/2, P [X = 2] = 1/4. (2.9)
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We can express the probabilities of these events as the probability mass function

−1 0 1 2 3
0

0.5

1

x

P
X
(x

)

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

1/4 x = 0,

1/2 x = 1,

1/4 x = 2,

0 otherwise.

(2.10)

The PMF contains all of our information about the random variable X . Because PX (x)

is the probability of the event {X = x}, PX (x) has a number of important properties. The
following theorem applies the three axioms of probability to discrete random variables.

Theorem 2.1 For a discrete random variable X with PMF PX (x) and range SX :

(a) For any x, PX (x) ≥ 0.

(b)
∑

x∈SX
PX (x) = 1.

(c) For any event B ⊂ SX , the probability that X is in the set B is

P [B] =
∑
x∈B

PX (x) .

Proof All three properties are consequences of the axioms of probability (Section 1.3). First,
PX (x) ≥ 0 since PX (x) = P[X = x]. Next, we observe that every outcome s ∈ S is associated
with a number x ∈ SX . Therefore, P[x ∈ SX ] = ∑

x∈SX
PX (x) = P[s ∈ S] = P[S] = 1. Since

the events {X = x} and {X = y} are disjoint when x �= y, B can be written as the union of disjoint
events B = ⋃

x∈B{X = x}. Thus we can use Axiom 3 (if B is countably infinite) or Theorem 1.4 (if
B is finite) to write

P [B] =
∑
x∈B

P [X = x] =
∑
x∈B

PX (x) . (2.11)

Quiz 2.2 The random variable N has PMF

PN (n) =
{

c/n n = 1, 2, 3,

0 otherwise.
(2.12)

Find
(1) The value of the constant c (2) P[N = 1]
(3) P[N ≥ 2] (4) P[N > 3]

2.3 Families of Discrete Random Variables

Thus far in our discussion of random variables we have described how each random variable
is related to the outcomes of an experiment. We have also introduced the probability mass
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function, which contains the probability model of the experiment. In practical applications,
certain families of random variables appear over and over again in many experiments.
In each family, the probability mass functions of all the random variables have the same
mathematical form. They differ only in the values of one or two parameters. This enables
us to study in advance each family of random variables and later apply the knowledge we
gain to specific practical applications. In this section, we define six families of discrete
random variables. There is one formula for the PMF of all the random variables in a
family. Depending on the family, the PMF formula contains one or two parameters. By
assigning numerical values to the parameters, we obtain a specific random variable. Our
nomenclature for a family consists of the family name followed by one or two parameters
in parentheses. For example, binomial (n, p) refers in general to the family of binomial
random variables. Binomial (7, 0.1) refers to the binomial random variable with parameters
n = 7 and p = 0.1. Appendix A summarizes important properties of 17 families of random
variables.

Example 2.8 Consider the following experiments:

• Flip a coin and let it land on a table. Observe whether the side facing up is heads
or tails. Let X be the number of heads observed.

• Select a student at random and find out her telephone number. Let X = 0 if the
last digit is even. Otherwise, let X = 1.

• Observe one bit transmitted by a modem that is downloading a file from the
Internet. Let X be the value of the bit (0 or 1).

All three experiments lead to the probability mass function

PX (x) =
⎧⎨
⎩

1/2 x = 0,

1/2 x = 1,

0 otherwise.

(2.13)

Because all three experiments lead to the same probability mass function, they can all be
analyzed the same way. The PMF in Example 2.8 is a member of the family of Bernoulli
random variables.

Definition 2.5 Bernoulli (p) Random Variable
X is a Bernoulli (p) random variable if the PMF of X has the form

PX (x) =
⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

where the parameter p is in the range 0 < p < 1.

In the following examples, we use an integrated circuit test procedure to represent any
experiment with two possible outcomes. In this particular experiment, the outcome r ,
that a circuit is a reject, occurs with probability p. Some simple experiments that involve
tests of integrated circuits will lead us to the Bernoulli, binomial, geometric, and Pas-
cal random variables. Other experiments produce discrete uniform random variables and
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Poisson random variables. These six families of random variables occur often in practical
applications.

Example 2.9 Suppose you test one circuit. With probability p, the circuit is rejected. Let X be the
number of rejected circuits in one test. What is PX (x)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Because there are only two outcomes in the sample space, X = 1 with probability p
and X = 0 with probability 1 − p.

PX (x) =
⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

(2.14)

Therefore, the number of circuits rejected in one test is a Bernoulli (p) random variable.

Example 2.10 If there is a 0.2 probability of a reject,

−1 0 1 2
0

0.5

1

x

P
X
(x

)

PX (x) =
⎧⎨
⎩

0.8 x = 0
0.2 x = 1
0 otherwise

(2.15)

Example 2.11 In a test of integrated circuits there is a probability p that each circuit is rejected. Let
Y equal the number of tests up to and including the first test that discovers a reject.
What is the PMF of Y ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The procedure is to keep testing circuits until a reject appears. Using a to denote an
accepted circuit and r to denote a reject, the tree is

������ rp

a1−p
������ rp

a1−p
������ rp

a1−p

•Y=1 •Y=2 •Y=3

...

From the tree, we see that P[Y = 1] = p, P[Y = 2] = p(1− p), P[Y = 3] = p(1− p)2,
and, in general, P[Y = y] = p(1 − p)y−1. Therefore,

PY (y) =
{

p(1 − p)y−1 y = 1, 2, . . .

0 otherwise.
(2.16)

Y is referred to as a geometric random variable because the probabilities in the PMF
constitute a geometric series.
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Definition 2.6 Geometric (p) Random Variable
X is a geometric (p) random variable if the PMF of X has the form

PX (x) =
{

p(1 − p)x−1 x = 1, 2, . . .

0 otherwise.

where the parameter p is in the range 0 < p < 1.

Example 2.12 If there is a 0.2 probability of a reject,

0 10 20
0

0.1

0.2

y

P
Y
(y

)

PY (y) =
{

(0.2)(0.8)y−1 y = 1, 2, . . .

0 otherwise
(2.17)

Example 2.13 Suppose we test n circuits and each circuit is rejected with probability p independent
of the results of other tests. Let K equal the number of rejects in the n tests. Find the
PMF PK (k).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adopting the vocabulary of Section 1.9, we call each discovery of a defective circuit
a success, and each test is an independent trial with success probability p. The
event K = k corresponds to k successes in n trials, which we have already found, in
Equation (1.18), to be the binomial probability

PK (k) =
(

n

k

)
pk(1 − p)n−k . (2.18)

K is an example of a binomial random variable.

Definition 2.7 Binomial (n, p) Random Variable
X is a binomial (n, p) random variable if the PMF of X has the form

PX (x) =
(

n

x

)
px(1 − p)n−x

where 0 < p < 1 and n is an integer such that n ≥ 1.

We must keep in mind that Definition 2.7 depends on
(n

x

)
being defined as zero for all

x �∈ {0, 1, . . . , n}.
Whenever we have a sequence of n independent trials each with success probability p,

the number of successes is a binomial random variable. In general, for a binomial (n, p)
random variable, we call n the number of trials and p the success probability. Note that a
Bernoulli random variable is a binomial random variable with n = 1.
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Example 2.14 If there is a 0.2 probability of a reject and we perform 10 tests,

0 5 10
0

0.2

0.4

k

P
K
(k

)

PK (k) =
(

10

k

)
(0.2)k(0.8)10−k . (2.19)

Example 2.15 Suppose you test circuits until you find k rejects. Let L equal the number of tests.
What is the PMF of L?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For large values of k, the tree becomes difficult to draw. Once again, we view the tests
as a sequence of independent trials where finding a reject is a success. In this case,
L = l if and only if there are k − 1 successes in the first l − 1 trials, and there is a
success on trial l so that

P [L = l] = P

⎡
⎢⎣k − 1 rejects in l − 1 attempts︸ ︷︷ ︸

A

, success on attempt l︸ ︷︷ ︸
B

⎤
⎥⎦ (2.20)

The events A and B are independent since the outcome of attempt l is not affected
by the previous l − 1 attempts. Note that P[A] is the binomial probability of k − 1
successes in l − 1 trials so that

P [A] =
(

l − 1

k − 1

)
pk−1(1 − p)l−1−(k−1) (2.21)

Finally, since P[B] = p,

PL (l) = P [A] P [B] =
(

l − 1

k − 1

)
pk(1 − p)l−k (2.22)

L is an example of a Pascal random variable.

Definition 2.8 Pascal (k, p) Random Variable
X is a Pascal (k, p) random variable if the PMF of X has the form

PX (x) =
(

x − 1

k − 1

)
pk(1 − p)x−k

where 0 < p < 1 and k is an integer such that k ≥ 1.

For a sequence of n independent trials with success probability p, a Pascal random
variable is the number of trials up to and including the kth success. We must keep in mind
that for a Pascal (k, p) random variable X , PX (x) is nonzero only for x = k, k + 1, . . ..
Mathematically, this is guaranteed by the extended definition of

(x−1
k−1

)
. Also note that a

geometric (p) random variable is a Pascal (k = 1, p) random variable.
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Example 2.16 If there is a 0.2 probability of a reject and we seek four defective circuits, the random
variable L is the number of tests necessary to find the four circuits. The PMF is

0 10 20 30 40
0

0.02

0.04

0.06

l

P
L
(l

)
PL (l) =

(
l − 1

3

)
(0.2)4(0.8)l−4. (2.23)

Example 2.17 In an experiment with equiprobable outcomes, the random variable N has the range
SN = {k, k + 1, k + 2, · · · , l}, where k and l are integers with k < l. The range contains
l − k + 1 numbers, each with probability 1/(l − k + 1). Therefore, the PMF of N is

PN (n) =
{

1/(l − k + 1) n = k, k + 1, k + 2, . . . , l
0 otherwise

(2.24)

N is an example of a discrete uniform random variable.

Definition 2.9 Discrete Uniform (k, l) Random Variable
X is a discrete uniform (k, l) random variable if the PMF of X has the form

PX (x) =
{

1/(l − k + 1) x = k, k + 1, k + 2, . . . , l
0 otherwise

where the parameters k and l are integers such that k < l.

To describe this discrete uniform random variable, we use the expression “X is uniformly
distributed between k and l.”

Example 2.18 Roll a fair die. The random variable N is the number of spots that appears on the side
facing up. Therefore, N is a discrete uniform (1, 6) random variable and

0 5
0

0.1

0.2

n

P
N
(n

)

PN (n) =
{

1/6 n = 1, 2, 3, 4, 5, 6
0 otherwise.

(2.25)

The probability model of a Poisson random variable describes phenomena that occur ran-
domly in time. While the time of each occurrence is completely random, there is a known
average number of occurrences per unit time. The Poisson model is used widely in many
fields. For example, the arrival of information requests at a World Wide Web server, the
initiation of telephone calls, and the emission of particles from a radioactive source are
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often modeled as Poisson random variables. We will return to Poisson random variables
many times in this text. At this point, we consider only the basic properties.

Definition 2.10 Poisson (α) Random Variable
X is a Poisson (α) random variable if the PMF of X has the form

PX (x) =
{

αx e−α/x ! x = 0, 1, 2, . . . ,

0 otherwise,

where the parameter α is in the range α > 0.

To describe a Poisson random variable, we will call the occurrence of the phenomenon
of interest an arrival. A Poisson model often specifies an average rate, λ arrivals per second
and a time interval, T seconds. In this time interval, the number of arrivals X has a Poisson
PMF with α = λT .

Example 2.19 The number of hits at a Web site in any time interval is a Poisson random variable.
A particular site has on average λ = 2 hits per second. What is the probability that
there are no hits in an interval of 0.25 seconds? What is the probability that there are
no more than two hits in an interval of one second?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In an interval of 0.25 seconds, the number of hits H is a Poisson random variable with
α = λT = (2 hits/s) × (0.25 s) = 0.5 hits. The PMF of H is

PH (h) =
{

0.5he−0.5/h! h = 0, 1, 2, . . .

0 otherwise.
(2.26)

The probability of no hits is

P [H = 0] = PH (0) = (0.5)0e−0.5/0! = 0.607. (2.27)

In an interval of 1 second, α = λT = (2 hits/s) × (1s) = 2 hits. Letting J denote the
number of hits in one second, the PMF of J is

PJ ( j) =
{

2 j e−2/j ! j = 0, 1, 2, . . .

0 otherwise.
(2.28)

To find the probability of no more than two hits, we note that {J ≤ 2} = {J = 0} ∪
{J = 1} ∪ {J = 2} is the union of three mutually exclusive events. Therefore,

P [J ≤ 2] = P [J = 0] + P [J = 1] + P [J = 2] (2.29)

= PJ (0) + PJ (1) + PJ (2) (2.30)

= e−2 + 21e−2/1! + 22e−2/2! = 0.677. (2.31)

Example 2.20 The number of database queries processed by a computer in any 10-second interval
is a Poisson random variable, K , with α = 5 queries. What is the probability that there
will be no queries processed in a 10-second interval? What is the probability that at
least two queries will be processed in a 2-second interval?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The PMF of K is

PK (k) =
{

5ke−5/k! k = 0, 1, 2, . . .

0 otherwise.
(2.32)

Therefore P[K = 0] = PK (0) = e−5 = 0.0067. To answer the question about the
2-second interval, we note in the problem definition that α = 5 queries = λT with
T = 10 seconds. Therefore, λ = 0.5 queries per second. If N is the number of
queries processed in a 2-second interval, α = 2λ = 1 and N is the Poisson (1)

random variable with PMF

PN (n) =
{

e−1/n! n = 0, 1, 2, . . .

0 otherwise.
(2.33)

Therefore,

P [N ≥ 2] = 1 − PN (0) − PN (1) = 1 − e−1 − e−1 = 0.264. (2.34)

Note that the units of λ and T have to be consistent. Instead of λ = 0.5 queries per second
for T = 10 seconds, we could use λ = 30 queries per minute for the time interval T = 1/6
minutes to obtain the same α = 5 queries, and therefore the same probability model.

In the following examples, we see that for a fixed rate λ, the shape of the Poisson PMF
depends on the length T over which arrivals are counted.

Example 2.21 Calls arrive at random times at a telephone switching office with an average of λ = 0.25
calls/second. The PMF of the number of calls that arrive in a T = 2-second interval
is the Poisson (0.5) random variable with PMF
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P
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)

PJ ( j) =
{

(0.5) j e−0.5/j ! j = 0, 1, . . . ,

0 otherwise.
(2.35)

Note that we obtain the same PMF if we define the arrival rate as λ = 60 · 0.25 = 15
calls per minute and derive the PMF of the number of calls that arrive in 2/60 = 1/30
minutes.

Example 2.22 Calls arrive at random times at a telephone switching office with an average of λ = 0.25
calls per second. The PMF of the number of calls that arrive in any T = 20-second
interval is the Poisson (5) random variable with PMF
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)

PJ ( j) =
{

5 j e−5/j ! j = 0, 1, . . . ,

0 otherwise.
(2.36)
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Quiz 2.3 Each time a modem transmits one bit, the receiving modem analyzes the signal that arrives
and decides whether the transmitted bit is 0 or 1. It makes an error with probability p,
independent of whether any other bit is received correctly.

(1) If the transmission continues until the receiving modem makes its first error, what is
the PMF of X, the number of bits transmitted?

(2) If p = 0.1, what is the probability that X = 10? What is the probability that X ≥ 10?

(3) If the modem transmits 100 bits, what is the PMF of Y , the number of errors?

(4) If p = 0.01 and the modem transmits 100 bits, what is the probability of Y = 2 errors
at the receiver? What is the probability that Y ≤ 2?

(5) If the transmission continues until the receiving modem makes three errors, what is
the PMF of Z, the number of bits transmitted?

(6) If p = 0.25, what is the probability of Z = 12 bits transmitted?

2.4 Cumulative Distribution Function (CDF)

Like the PMF, the CDF of a discrete random variable contains complete information about
the probability model of the random variable. The two functions are closely related. Each
can be obtained easily from the other.

Definition 2.11 Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of random variable X is

FX (x) = P [X ≤ x] .

For any real number x , the CDF is the probability that the random variable X is no larger than
x . All random variables have cumulative distribution functions but only discrete random
variables have probability mass functions. The notation convention for the CDF follows
that of the PMF, except that we use the letter F with a subscript corresponding to the name
of the random variable. Because FX (x) describes the probability of an event, the CDF has
a number of properties.

Theorem 2.2 For any discrete random variable X with range SX = {x1, x2, . . .} satisfying x1 ≤ x2 ≤ . . .,

(a) FX (−∞) = 0 and FX (∞) = 1.

(b) For all x ′ ≥ x, FX (x ′) ≥ FX (x).

(c) For xi ∈ SX and ε, an arbitrarily small positive number,

FX (xi ) − FX (xi − ε) = PX (xi ) .

(d) FX (x) = FX (xi ) for all x such that xi ≤ x < xi+1.
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Each property of Theorem 2.2 has an equivalent statement in words:

(a) Going from left to right on the x-axis, FX (x) starts at zero and ends at one.

(b) The CDF never decreases as it goes from left to right.

(c) For a discrete random variable X , there is a jump (discontinuity) at each value of
xi ∈ SX . The height of the jump at xi is PX (xi).

(d) Between jumps, the graph of the CDF of the discrete random variable X is a horizontal
line.

Another important consequence of the definition of the CDF is that the difference between
the CDF evaluated at two points is the probability that the random variable takes on a value
between these two points:

Theorem 2.3 For all b ≥ a,

FX (b) − FX (a) = P [a < X ≤ b] .

Proof To prove this theorem, express the event Eab = {a < X ≤ b} as a part of a union of disjoint
events. Start with the event Eb = {X ≤ b}. Note that Eb can be written as the union

Eb = {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} = Ea ∪ Eab (2.37)

Note also that Ea and Eab are disjoint so that P[Eb] = P[Ea] + P[Eab]. Since P[Eb] = FX (b)

and P[Ea] = FX (a), we can write FX (b) = FX (a) + P[a < X ≤ b]. Therefore P[a < X ≤ b] =
FX (b) − FX (a).

In working with the CDF, it is necessary to pay careful attention to the nature of inequal-
ities, strict (<) or loose (≤). The definition of the CDF contains a loose (less than or equal)
inequality, which means that the function is continuous from the right. To sketch a CDF
of a discrete random variable, we draw a graph with the vertical value beginning at zero
at the left end of the horizontal axis (negative numbers with large magnitude). It remains
zero until x1, the first value of x with nonzero probability. The graph jumps by an amount
PX (xi ) at each xi with nonzero probability. We draw the graph of the CDF as a staircase
with jumps at each xi with nonzero probability. The CDF is the upper value of every jump
in the staircase.

Example 2.23 In Example 2.6, we found that random variable R has PMF
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)

PR (r) =
⎧⎨
⎩

1/4 r = 0,

3/4 r = 2,

0 otherwise.

(2.38)

Find and sketch the CDF of random variable R.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the PMF PR(r), random variable R has CDF

 



64 CHAPTER 2 DISCRETE RANDOM VARIABLES
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FR (r) = P [R ≤ r ] =
⎧⎨
⎩

0 r < 0,

1/4 0 ≤ r < 2,

1 r ≥ 2.

(2.39)

Keep in mind that at the discontinuities r = 0 and r = 2, the values of FR(r) are the
upper values: FR(0) = 1/4, and FR(2) = 1. Math texts call this the right hand limit of
FR(r).

Consider any finite random variable X with possible values (nonzero probability) be-
tween xmin and xmax. For this random variable, the numerical specification of the CDF
begins with

FX (x) = 0 x < xmin,

and ends with

FX (x) = 1 x ≥ xmax.

Like the statement “PX (x) = 0 otherwise,” the description of the CDF is incomplete without
these two statements. The next example displays the CDF of an infinite discrete random
variable.

Example 2.24 In Example 2.11, let the probability that a circuit is rejected equal p = 1/4. The PMF
of Y , the number of tests up to and including the first reject, is the geometric (1/4)

random variable with PMF

PY (y) =
{

(1/4)(3/4)y−1 y = 1, 2, . . .

0 otherwise.
(2.40)

What is the CDF of Y ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Y is an infinite random variable, with nonzero probabilities for all positive integers. For
any integer n ≥ 1, the CDF is

FY (n) =
n∑

j=1

PY ( j) =
n∑

j=1

1

4

(
3

4

) j−1
. (2.41)

Equation (2.41) is a geometric series. Familiarity with the geometric series is essential
for calculating probabilities involving geometric random variables. AppendixB summa-
rizes the most important facts. In particular, Math Fact B.4 implies (1−x)

∑n
j=1 x j−1 =

1 − xn . Substituting x = 3/4, we obtain

FY (n) = 1 −
(

3

4

)n
. (2.42)

The complete expression for the CDF of Y must show FY (y) for all integer and nonin-
teger values of y. For an integer-valued random variable Y , we can do this in a simple
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way using the floor function �y
, which is the largest integer less than or equal to y.
In particular, if n ≤ y < n − 1 for some integer n, then n = �y
 and

FY (y) = P [Y ≤ y] = P [Y ≤ n] = FY (n) = FY (�y
) . (2.43)

In terms of the floor function, we can express the CDF of Y as

0 5 10
0

0.5

1

y

F
Y
(y

)

FY (y) =
{

0 y < 1,

1 − (3/4)�y
 y ≥ 1.
(2.44)

To find the probability that Y takes a value in the set {4, 5, 6, 7, 8}, we refer to Theo-
rem 2.3 and compute

P [3 < Y ≤ 8] = FY (8) − FY (3) = (3/4)3 − (3/4)8 = 0.322. (2.45)

Quiz 2.4 Use the CDF FY (y) to find the following probabilities:

0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

y

F
Y
(y

) (1) P[Y < 1] (2) P[Y ≤ 1]
(3) P[Y > 2] (4) P[Y ≥ 2]
(5) P[Y = 1] (6) P[Y = 3]

2.5 Averages

The average value of a collection of numerical observations is a statistic of the collection,
a single number that describes the entire collection. Statisticians work with several kinds
of averages. The ones that are used the most are the mean, the median, and the mode.

The mean value of a set of numbers is perhaps the most familiar. You get the mean value
by adding up all the numbers in the collection and dividing by the number of terms in the
sum. Think about the mean grade in the mid-term exam for this course. The median is also
an interesting typical value of a set of data.

The median is a number in the middle of the set of numbers, in the sense that an equal
number of members of the set are below the median and above the median.

A third average is the mode of a set of numbers. The mode is the most common number
in the collection of observations. There are as many or more numbers with that value than
any other value. If there are two or more numbers with this property, the collection of
observations is called multimodal.
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Example 2.25 For one quiz, 10 students have the following grades (on a scale of 0 to 10):

9, 5, 10, 8, 4, 7, 5, 5, 8, 7 (2.46)

Find the mean, the median, and the mode.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The sum of the ten grades is 68. The mean value is 68/10 = 6.8. The median is 7
since there are four scores below 7 and four scores above 7. The mode is 5 since
that score occurs more often than any other. It occurs three times.

Example 2.25 and the preceding comments on averages apply to observations collected
by an experimenter. We use probability models with random variables to characterize
experiments with numerical outcomes. A parameter of a probability model corresponds to
a statistic of a collection of outcomes. Each parameter is a number that can be computed from
the PMF or CDF of a random variable. The most important of these is the expected value of
a random variable, corresponding to the mean value of a collection of observations. We will
work with expectations throughout the course. Corresponding to the other two averages,
we have the following definitions:

Definition 2.12 Mode
A mode of random variable X is a number xmod satisfying PX (xmod) ≥ PX (x) for all x .

Definition 2.13 Median
A median, xmed, of random variable X is a number that satisfies

P [X < xmed] = P [X > xmed]

If you read the definitions of mode and median carefully, you will observe that neither the
mode nor the median of a random variable X need be unique. A random variable can have
several modes or medians.

The expected value of a random variable corresponds to adding up a number of mea-
surements and dividing by the number of terms in the sum. Two notations for the expected
value of random variable X are E[X] and μX .

Definition 2.14 Expected Value
The expected value of X is

E [X] = μX =
∑

x∈SX

x PX (x) .

Expectation is a synonym for expected value. Sometimes the term mean value is also used
as a synonym for expected value. We prefer to use mean value to refer to a statistic of a
set of experimental outcomes (the sum divided by the number of outcomes) to distinguish
it from expected value, which is a parameter of a probability model. If you recall your
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studies of mechanics, the form of Definition 2.14 may look familiar. Think of point masses
on a line with a mass of PX (x) kilograms at a distance of x meters from the origin. In this
model, μX in Definition 2.14 is the center of mass. This is why PX (x) is called probability
mass function.

To understand how this definition of expected value corresponds to the notion of adding
up a set of measurements, suppose we have an experiment that produces a random variable
X and we perform n independent trials of this experiment. We denote the value that X
takes on the i th trial by x(i). We say that x(1), . . . , x(n) is a set of n sample values of X .
Corresponding to the average of a set of numbers, we have, after n trials of the experiment,
the sample average

mn = 1

n

n∑
i=1

x(i). (2.47)

Each x(i) takes values in the set SX . Out of the n trials, assume that each x ∈ SX occurs
Nx times. Then the sum (2.47) becomes

mn = 1

n

∑
x∈SX

Nx x =
∑

x∈SX

Nx

n
x . (2.48)

Recall our discussion in Section 1.3 of the relative frequency interpretation of probability.
There we pointed out that if in n observations of an experiment, the event A occurs NA

times, we can interpret the probability of A as

P [A] = lim
n→∞

NA

n
(2.49)

This is the relative frequency of A. In the notation of random variables, we have the
corresponding observation that

PX (x) = lim
n→∞

Nx

n
. (2.50)

This suggests that

lim
n→∞ mn =

∑
x∈SX

x PX (x) = E [X] . (2.51)

Equation (2.51) says that the definition of E[X] corresponds to a model of doing the
same experiment repeatedly. After each trial, add up all the observations to date and divide
by the number of trials. We prove in Chapter 7 that the result approaches the expected value
as the number of trials increases without limit. We can use Definition 2.14 to derive the
expected value of each family of random variables defined in Section 2.3.

Theorem 2.4 The Bernoulli (p) random variable X has expected value E[X] = p.

Proof E[X] = 0 · PX (0) + 1PX (1) = 0(1 − p) + 1(p) = p.
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Example 2.26 Random variable R in Example 2.6 has PMF

PR (r) =
⎧⎨
⎩

1/4 r = 0,

3/4 r = 2,

0 otherwise.

(2.52)

What is E[R]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E [R] = μR = 0 · PR (0) + 2PR (2) = 0(1/4) + 2(3/4) = 3/2. (2.53)

Theorem 2.5 The geometric (p) random variable X has expected value E[X] = 1/p.

Proof Let q = 1 − p. The PMF of X becomes

PX (x) =
{

pqx−1 x = 1, 2, . . .

0 otherwise.
(2.54)

The expected value E[X] is the infinite sum

E [X] =
∞∑

x=1

x PX (x) =
∞∑

x=1

xpqx−1. (2.55)

Applying the identity of Math Fact B.7, we have

E [X] = p
∞∑

x=1

xqx−1 = p

q

∞∑
x=1

xqx = p

q

q

1 − q2
= p

p2
= 1

p
. (2.56)

This result is intuitive if you recall the integrated circuit testing experiments and consider
some numerical values. If the probability of rejecting an integrated circuit is p = 1/5, then
on average, you have to perform E[Y ] = 1/p = 5 tests to observe the first reject. If
p = 1/10, the average number of tests until the first reject is E[Y ] = 1/p = 10.

Theorem 2.6 The Poisson (α) random variable in Definition 2.10 has expected value E[X] = α.

Proof

E [X] =
∞∑

x=0

x PX (x) =
∞∑

x=0

x
αx

x! e−α. (2.57)

We observe that x/x! = 1/(x − 1)! and also that the x = 0 term in the sum is zero. In addition, we
substitute αx = α · αx−1 to factor α from the sum to obtain

E [X] = α

∞∑
x=1

αx−1

(x − 1)! e−α. (2.58)
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Next we substitute l = x − 1, with the result

E [X] = α

∞∑
l=0

αl

l ! e−α

︸ ︷︷ ︸
1

= α. (2.59)

We can conclude that the marked sum equals 1 either by invoking the identity eα = ∑∞
l=0 αl/l ! or

by applying Theorem 2.1(b) to the fact that the marked sum is the sum of the Poisson PMF over all
values in the range of the random variable.

In Section 2.3, we modeled the number of random arrivals in an interval of length T by
a Poisson random variable with parameter α = λT . We referred to λ as the average rate
of arrivals with little justification. Theorem 2.6 provides the justification by showing that
λ = α/T is the expected number of arrivals per unit time.

The next theorem provides, without derivations, the expected values of binomial, Pascal,
and discrete uniform random variables.

Theorem 2.7

(a) For the binomial (n, p) random variable X of Definition 2.7,

E [X] = np.

(b) For the Pascal (k, p) random variable X of Definition 2.8,

E [X] = k/p.

(c) For the discrete uniform (k, l) random variable X of Definition 2.9,

E [X] = (k + l)/2.

In the following theorem, we show that the Poisson PMF is a limiting case of a binomial
PMF. In the binomial model, n, the number of Bernoulli trials grows without limit but the
expected number of trials np remains constant at α, the expected value of the Poisson PMF.
In the theorem, we let α = λT and divide the T -second interval into n time slots each
with duration T/n. In each slot, we assume that there is either one arrival, with probability
p = λT/n = α/n, or there is no arrival in the time slot, with probability 1 − p.

Theorem 2.8 Perform n Bernoulli trials. In each trial, let the probability of success be α/n, where α > 0
is a constant and n > α. Let the random variable Kn be the number of successes in the n
trials. As n → ∞, PKn (k) converges to the PMF of a Poisson (α) random variable.

Proof We first note that Kn is the binomial (n, αn) random variable with PMF

PKn (k) =
(

n

k

)
(α/n)k

(
1 − α

n

)n−k
. (2.60)
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For k = 0, . . . , n, we can write

PK (k) = n(n − 1) · · · (n − k + 1)

nk

αk

k!
(

1 − α

n

)n−k
. (2.61)

Notice that in the first fraction, there are k terms in the numerator. The denominator is nk , also a
product of k terms, all equal to n. Therefore, we can express this fraction as the product of k fractions
each of the form (n − j)/n. As n → ∞, each of these fractions approaches 1. Hence,

lim
n→∞

n(n − 1) · · · (n − k + 1)

nk
= 1. (2.62)

Furthermore, we have (
1 − α

n

)n−k =
(
1 − α

n
)n

(
1 − α

n
)k

. (2.63)

As n grows without bound, the denominator approaches 1 and, in the numerator, we recognize the
identity limn→∞(1 − α/n)n = e−α . Putting these three limits together leads us to the result that for
any integer k ≥ 0,

lim
n→∞ PKn (k) =

{
αke−α/k! k = 0, 1, . . .

0 otherwise,
(2.64)

which is the Poisson PMF.

Quiz 2.5 The probability that a call is a voice call is P[V ] = 0.7. The probability of a data call is
P[D] = 0.3. Voice calls cost 25 cents each and data calls cost 40 cents each. Let C equal
the cost (in cents) of one telephone call and find
(1) The PMF PC (c) (2) The expected value E[C]

2.6 Functions of a Random Variable

In many practical situations, we observe sample values of a random variable and use these
sample values to compute other quantities. One example that occurs frequently is an
experiment in which the procedure is to measure the power level of the received signal in a
cellular telephone. An observation is x , the power level in units of milliwatts. Frequently
engineers convert the measurements to decibels by calculating y = 10 log10 x dBm (decibels
with respect to one milliwatt). If x is a sample value of a random variable X , Definition 2.1
implies that y is a sample value of a random variable Y . Because we obtain Y from another
random variable, we refer to Y as a derived random variable.

Definition 2.15 Derived Random Variable
Each sample value y of a derived random variable Y is a mathematical function g(x) of a
sample value x of another random variable X. We adopt the notation Y = g(X) to describe
the relationship of the two random variables.
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Example 2.27 The random variable X is the number of pages in a facsimile transmission. Based on
experience, you have a probability model PX (x) for the number of pages in each fax
you send. The phone company offers you a new charging plan for faxes: $0.10 for
the first page, $0.09 for the second page, etc., down to $0.06 for the fifth page. For
all faxes between 6 and 10 pages, the phone company will charge $0.50 per fax. (It
will not accept faxes longer than ten pages.) Find a function Y = g(X) for the charge
in cents for sending one fax.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The following function corresponds to the new charging plan.

Y = g(X) =
{

10.5X − 0.5X2 1 ≤ X ≤ 5
50 6 ≤ X ≤ 10

(2.65)

You would like a probability model PY (y) for your phone bill under the new charging
plan. You can analyze this model to decide whether to accept the new plan.

In this section we determine the probability model of a derived random variable from the
probability model of the original random variable. We start with PX (x) and a function
Y = g(X). We use this information to obtain PY (y).

Before we present the procedure for obtaining PY (y), we address an issue that can
be confusing to students learning probability, which is the properties of PX (x) and g(x).
Although they are both functions with the argument x , they are entirely different. PX (x)

describes the probability model of a random variable. It has the special structure prescribed
in Theorem 2.1. On the other hand, g(x) can be any function at all. When we combine them
to derive the probability model for Y , we arrive at a PMF that also conforms to Theorem 2.1.

To describe Y in terms of our basic model of probability, we specify an experiment
consisting of the following procedure and observation:

Sample value of Y = g(X)

Perform an experiment and observe an outcome s.
From s, find x, the corresponding value of X.
Observe y by calculating y = g(x).

This procedure maps each experimental outcome to a number, y, that is a sample value
of a random variable, Y . To derive PY (y) from PX (x) and g(·), we consider all of the
possible values of x . For each x ∈ SX , we compute y = g(x). If g(x) transforms different
values of x into different values of y (g(x1) �= g(x2) if x1 �= x2) we have simply that

PY (y) = P [Y = g(x)] = P [X = x] = PX (x) (2.66)

The situation is a little more complicated when g(x) transforms several values of x to the
same y. In this case, we consider all the possible values of y. For each y ∈ SY , we add
the probabilities of all of the values x ∈ Sx for which g(x) = y. Theorem 2.9 applies in
general. It reduces to Equation (2.66) when g(x) is a one-to-one tranformation.

Theorem 2.9 For a discrete random variable X, the PMF of Y = g(X) is

PY (y) =
∑

x :g(x)=y

PX (x) .

If we view X = x as the outcome of an experiment, then Theorem 2.9 says that P[Y = y]
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Figure 2.1 The derived random variable Y = g(X) for Example 2.29.

equals the sum of the probabilities of all the outcomes X = x for which Y = y.

Example 2.28 In Example 2.27, suppose all your faxes contain 1, 2, 3, or 4 pages with equal proba-
bility. Find the PMF and expected value of Y , the charge for a fax.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the problem statement, the number of pages X has PMF

PX (x) =
{

1/4 x = 1, 2, 3, 4,

0 otherwise.
(2.67)

The charge for the fax, Y , has range SY = {10, 19, 27, 34} corresponding to SX =
{1, 2, 3, 4}. The experiment can be described by the following tree. Here each value
of Y results in a unique value of X . Hence, we can use Equation (2.66) to find PY (y).

������� X=11/4

������� X=4
1/4

������� X=21/4

							 X=31/4

•Y=10

•Y=19

•Y=27

•Y=34

PY (y) =
{

1/4 y = 10, 19, 27, 34,

0 otherwise.
(2.68)

The expected fax bill is E[Y ] = (1/4)(10 + 19 + 27 + 34) = 22.5 cents.
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Example 2.29 Suppose the probability model for the number of pages X of a fax in Example 2.28 is

0 5 10
0

0.1

0.2

x

P
X
(x

)

PX (x) =
⎧⎨
⎩

0.15 x = 1, 2, 3, 4
0.1 x = 5, 6, 7, 8
0 otherwise

(2.69)

For the pricing plan given in Example 2.27, what is the PMF and expected value of Y ,
the cost of a fax?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now we have three values of X , specifically (6, 7, 8), transformed by g(·) into Y =
50. For this situation we need the more general view of the PMF of Y , given by
Theorem 2.9. In particular, y6 = 50, and we have to add the probabilities of the
outcomes X = 6, X = 7, and X = 8 to find PY (50). That is,

PY (50) = PX (6) + PX (7) + PX (8) = 0.30. (2.70)

The steps in the procedure are illustrated in the diagram of Figure 2.1. Applying
Theorem 2.9, we have

10 19 27 34 40 50
0

0.1

0.2

0.3

y

P
Y
(y

)

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.15 y = 10, 19, 27, 34,

0.10 y = 40,

0.30 y = 50,

0 otherwise.

(2.71)

For this probability model, the expected cost of sending a fax is

E [Y ] = 0.15(10 + 19 + 27 + 34) + 0.10(40) + 0.30(50) = 32.5 cents. (2.72)

Example 2.30 The amplitude V (volts) of a sinusoidal signal is a random variable with PMF

−5 0 5
0

0.1

0.2

v

P
V
(v

)

PV (v) =
{

1/7 v = −3, −2, . . . , 3
0 otherwise

(2.73)

Let Y = V 2/2 watts denote the average power of the transmitted signal. Find PY (y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The possible values of Y are SY = {0, 0.5, 2, 4.5}. Since Y = y when V = √

2y
or V = −√

2y, we see that PY (0) = PV (0) = 1/7. For y = 1/2, 2, 9/2, PY (y) =
PV (

√
2y) + PV (−√

2y) = 2/7. Therefore,

0 1 2 3 4 5
0

0.2

y

P
Y
(y

)

PY (y) =
⎧⎨
⎩

1/7 y = 0,

2/7 y = 1/2, 2, 9/2,

0 otherwise.

(2.74)
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Quiz 2.6 Monitor three phone calls and observe whether each one is a voice call or a data call. The
random variable N is the number of voice calls. Assume N has PMF

PN (n) =
⎧⎨
⎩

0.1 n = 0,

0.3 n = 1, 2, 3,

0 otherwise.
(2.75)

Voice calls cost 25 cents each and data calls cost 40 cents each. T cents is the cost of the
three telephone calls monitored in the experiment.
(1) Express T as a function of N. (2) Find PT (t) and E[T ].

2.7 Expected Value of a Derived Random Variable

We encounter many situations in which we need to know only the expected value of a
derived random variable rather than the entire probability model. Fortunately, to obtain
this average, it is not necessary to compute the PMF or CDF of the new random variable.
Instead, we can use the following property of expected values.

Theorem 2.10 Given a random variable X with PMF PX (x) and the derived random variable Y = g(X),
the expected value of Y is

E [Y ] = μY =
∑

x∈SX

g(x)PX (x)

Proof From the definition of E[Y ] and Theorem 2.9, we can write

E [Y ] =
∑

y∈SY

y PY (y) =
∑

y∈SY

y
∑

x :g(x)=y

PX (x) =
∑

y∈SY

∑
x :g(x)=y

g(x)PX (x) , (2.76)

where the last double summation follows because g(x) = y for each x in the inner sum. Since g(x)

transforms each possible outcome x ∈ SX to a value y ∈ SY , the preceding double summation can
be written as a single sum over over all possible values x ∈ SX . That is,

E [Y ] =
∑

x∈SX

g(x)PX (x) (2.77)

Example 2.31 In Example 2.28,

PX (x) =
{

1/4 x = 1, 2, 3, 4,

0 otherwise,
(2.78)

and

Y = g(X) =
{

10.5X − 0.5X2 1 ≤ X ≤ 5,

50 6 ≤ X ≤ 10.
(2.79)

What is E[Y ]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Applying Theorem 2.10 we have

E [Y ] =
4∑

x=1

PX (x) g(x) (2.80)

= (1/4)[(10.5)(1) − (0.5)(1)2] + (1/4)[(10.5)(2) − (0.5)(2)2] (2.81)

+ (1/4)[(10.5)(3) − (0.5)(3)2] + (1/4)[(10.5)(4) − (0.5)(4)2] (2.82)

= (1/4)[10 + 19 + 27 + 34] = 22.5 cents. (2.83)

This of course is the same answer obtained in Example 2.28 by first calculating PY (y)

and then applying Definition 2.14. As an exercise, you may want to compute E[Y ] in
Example 2.29 directly from Theorem 2.10.

From this theorem we can derive some important properties of expected values. The
first one has to do with the difference between a random variable and its expected value.
When students learn their own grades on a midterm exam, they are quick to ask about
the class average. Let’s say one student has 73 and the class average is 80. She may be
inclined to think of her grade as “seven points below average,” rather than “73.” In terms
of a probability model, we would say that the random variable X points on the midterm has
been transformed to the random variable

Y = g(X) = X − μX points above average. (2.84)

The expected value of X − μX is zero, regardless of the probability model of X .

Theorem 2.11 For any random variable X,
E [X − μX ] = 0.

Proof Defining g(X) = X − μX and applying Theorem 2.10 yields

E [g(X)] =
∑

x∈SX

(x − μX )PX (x) =
∑

x∈SX

x PX (x) − μX
∑

x∈SX

PX (x) . (2.85)

The first term on the right side is μX by definition. In the second term,
∑

x∈SX
PX (x) = 1, so both

terms on the right side are μX and the difference is zero.

Another property of the expected value of a function of a random variable applies to linear
transformations.1

Theorem 2.12 For any random variable X,

E [a X + b] = a E [X] + b.

This follows directly from Definition 2.14 and Theorem 2.10. A linear transformation is

1We call the transformation aX + b linear although, strictly speaking, it should be called affine.
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essentially a scale change of a quantity, like a transformation from inches to centimeters
or from degrees Fahrenheit to degrees Celsius. If we express the data (random variable X)
in new units, the new average is just the old average transformed to the new units. (If the
professor adds five points to everyone’s grade, the average goes up by five points.)

This is a rare example of a situation in which E[g(X)] = g(E[X]). It is tempting, but
usually wrong, to apply it to other transformations. For example, if Y = X2, it is usually
the case that E[Y ] �= (E[X])2. Expressing this in general terms, it is usually the case that
E[g(X)] �= g(E[X]).

Example 2.32 Recall that in Examples 2.6 and 2.26, we found that R has PMF

PR (r) =
⎧⎨
⎩

1/4 r = 0,

3/4 r = 2,

0 otherwise,

(2.86)

and expected value E[R] = 3/2. What is the expected value of V = g(R) = 4R + 7?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 2.12,

E [V ] = E [g(R)] = 4E [R] + 7 = 4(3/2) + 7 = 13. (2.87)

We can verify this result by applying Theorem 2.10. Using the PMF PR(r) given in
Example 2.6, we can write

E [V ] = g(0)PR (0) + g(2)PR (2) = 7(1/4) + 15(3/4) = 13. (2.88)

Example 2.33 In Example 2.32, let W = h(R) = R2. What is E[W ]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem 2.10 gives

E [W ] =
∑

h(r)PR (r) = (1/4)02 + (3/4)22 = 3. (2.89)

Note that this is not the same as h(E[W ]) = (3/2)2.

Quiz 2.7 The number of memory chips M needed in a personal computer depends on how many
application programs, A, the owner wants to run simultaneously. The number of chips M
and the number of application programs A are described by

M =

⎧⎪⎪⎨
⎪⎪⎩

4 chips for 1 program,
4 chips for 2 programs,
6 chips for 3 programs,
8 chips for 4 programs,

PA (a) =
{

0.1(5 − a) a = 1, 2, 3, 4,

0 otherwise.
(2.90)

(1) What is the expected number of programs μA = E[A]?
(2) Express M, the number of memory chips, as a function M = g(A) of the number of

application programs A.

(3) Find E[M] = E[g(A)]. Does E[M] = g(E[A])?
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2.8 Variance and Standard Deviation

In Section 2.5, we describe an average as a typical value of a random variable. It is one
number that summarizes an entire probability model. After finding an average, someone
who wants to look further into the probability model might ask, “How typical is the average?”
or, “What are the chances of observing an event far from the average?” In the example of
the midterm exam, after you find out your score is 7 points above average, you are likely
to ask, “How good is that? Is it near the top of the class or somewhere near the middle?”
A measure of dispersion is an answer to these questions wrapped up in a single number.
If this measure is small, observations are likely to be near the average. A high measure of
dispersion suggests that it is not unusual to observe events that are far from the average.

The most important measures of dispersion are the standard deviation and its close
relative, the variance. The variance of random variable X describes the difference between
X and its expected value. This difference is the derived random variable, Y = X − μX .
Theorem 2.11 states that μY = 0, regardless of the probability model of X . Therefore μY

provides no information about the dispersion of X around μX . A useful measure of the
likely difference between X and its expected value is the expected absolute value of the
difference, E[|Y |]. However, this parameter is not easy to work with mathematically in
many situations, and it is not used frequently.

Instead we focus on E[Y 2] = E[(X − μX )2], which is referred to as Var[X], the variance
of X . The square root of the variance is σX , the standard deviation of X .

Definition 2.16 Variance
The variance of random variable X is

Var[X] = E
[
(X − μX )2

]
.

Definition 2.17 Standard Deviation
The standard deviation of random variable X is

σX = √
Var [X].

It is useful to take the square root of Var[X] because σX has the same units (for example,
exam points) as X . The units of the variance are squares of the units of the random
variable (exam points squared). Thus σX can be compared directly with the expected value.
Informally we think of outcomes within ±σX of μX as being in the center of the distribution.
Thus if the standard deviation of exam scores is 12 points, the student with a score of +7
with respect to the mean can think of herself in the middle of the class. If the standard
deviation is 3 points, she is likely to be near the top. Informally, we think of sample values
within σX of the expected value, x ∈ [μX − σX , μX + σX ], as “typical” values of X and
other values as “unusual.”
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Because (X − μX )2 is a function of X , Var[X] can be computed according to Theo-
rem 2.10.

Var [X] = σ 2
X =

∑
x∈SX

(x − μX )2 PX (x) . (2.91)

By expanding the square in this formula, we arrive at the most useful approach to computing
the variance.

Theorem 2.13
Var [X] = E

[
X2

]
− μ2

X = E
[

X2
]

− (E [X])2

Proof Expanding the square in (2.91), we have

Var[X] =
∑

x∈SX

x2 PX (x) −
∑

x∈SX

2μX x PX (x) +
∑

x∈SX

μ2
X PX (x)

= E[X2] − 2μX
∑

x∈SX

x PX (x) + μ2
X

∑
x∈SX

PX (x)

= E[X2] − 2μ2
X + μ2

X

We note that E[X] and E[X2] are examples of moments of the random variable X . Var[X]
is a central moment of X .

Definition 2.18 Moments
For random variable X:

(a) The nth moment is E[Xn].
(b) The nth central moment is E[(X − μX )n].

Thus, E[X] is the first moment of random variable X . Similarly, E[X2] is the second
moment. Theorem 2.13 says that the variance of X is the second moment of X minus the
square of the first moment.

Like the PMF and the CDF of a random variable, the set of moments of X is a complete
probability model. We learn in Section 6.3 that the model based on moments can be
expressed as a moment generating function.

Example 2.34 In Example 2.6, we found that random variable R has PMF

PR (r) =
⎧⎨
⎩

1/4 r = 0,

3/4 r = 2,

0 otherwise.

(2.92)

In Example 2.26, we calculated E[R] = μR = 3/2. What is the variance of R?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In order of increasing simplicity, we present three ways to compute Var[R].

• From Definition 2.16, define

W = (R − μR)2 = (R − 3/2)2 (2.93)
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The PMF of W is

PW (w) =
⎧⎨
⎩

1/4 w = (0 − 3/2)2 = 9/4,

3/4 w = (2 − 3/2)2 = 1/4,

0 otherwise.

(2.94)

Then
Var [R] = E [W ] = (1/4)(9/4) + (3/4)(1/4) = 3/4. (2.95)

• Recall that Theorem 2.10 produces the same result without requiring the deriva-
tion of PW (w).

Var[R] = E
[
(R − μR)2

]
(2.96)

= (0 − 3/2)2 PR (0) + (2 − 3/2)2 PR (2) = 3/4 (2.97)

• To apply Theorem 2.13, we find that

E
[

R2
]

= 02 PR (0) + 22 PR (2) = 3 (2.98)

Thus Theorem 2.13 yields

Var [R] = E
[

R2
]

− μ2
R = 3 − (3/2)2 = 3/4 (2.99)

Note that (X − μX )2 ≥ 0. Therefore, its expected value is also nonnegative. That is,
for any random variable X

Var [X] ≥ 0. (2.100)

The following theorem is related to Theorem 2.12

Theorem 2.14
Var [a X + b] = a2 Var [X]

Proof We let Y = aX + b and apply Theorem 2.13. We first expand the second moment to obtain

E
[
Y 2

]
= E

[
a2 X2 + 2abX + b2

]
= a2 E

[
X2

]
+ 2abμX + b2. (2.101)

Expanding the right side of Theorem 2.12 yields

μ2
Y = a2μ2

X + 2abμx + b2. (2.102)

Because Var[Y ] = E[Y 2] − μ2
Y , Equations (2.101) and (2.102) imply that

Var [Y ] = a2 E
[

X2
]

− a2μ2
X = a2(E

[
X2

]
− μ2

X ) = a2 Var [X] . (2.103)

If we let a = 0 in this theorem, we have Var[b] = 0 because there is no dispersion around
the expected value of a constant. If we let a = 1, we have Var[X + b] = Var[X] because
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shifting a random variable by a constant does not change the dispersion of outcomes around
the expected value.

Example 2.35 A new fax machine automatically transmits an initial cover page that precedes the
regular fax transmission of X information pages. Using this new machine, the number
of pages in a fax is Y = X + 1. What are the expected value and variance of Y ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The expected number of transmitted pages is E[Y ] = E[X] + 1. The variance of the
number of pages sent is Var[Y ] = Var[X].

If we let b = 0 in Theorem 2.12, we have Var[a X] = a2 Var[X] and σa X = aσ X .
Multiplying a random variable by a constant is equivalent to a scale change in the units of
measurement of the random variable.

Example 2.36 In Example 2.30, the amplitude V in volts has PMF

PV (v) =
{

1/7 v = −3,−2, . . . , 3,

0 otherwise.
(2.104)

A new voltmeter records the amplitude U in millivolts. What is the variance of U?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note that U = 1000V . To use Theorem 2.14, we first find the variance of V . The
expected value of the amplitude is

μV = 1/7[−3 + (−2) + (−1) + 0 + 1 + 2 + 3] = 0 volts. (2.105)

The second moment is

E
[
V 2

]
= 1/7[(−3)2 + (−2)2 + (−1)2 + 02 + 12 + 22 + 32] = 4 volts2 (2.106)

Therefore the variance is Var[V ] = E[V 2] − μ2
V = 4 volts2. By Theorem 2.14,

Var [U ] = 10002 Var[V ] = 4,000,000 millivolts2. (2.107)

The following theorem states the variances of the families of random variables defined
in Section 2.3.

Theorem 2.15

(a) If X is Bernoulli (p), then Var[X] = p(1 − p).

(b) If X is geometric (p), then Var[X] = (1 − p)/p2.

(c) If X is binomial (n, p), then Var[X] = np(1 − p).

(d) If X is Pascal (k, p), then Var[X] = k(1 − p)/p2.

(e) If X is Poisson (α), then Var[X] = α.

(f) If X is discrete uniform (k, l), then Var[X] = (l − k)(l − k + 2)/12.
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Quiz 2.8 In an experiment to monitor two calls, the PMF of N the number of voice calls, is

PN (n) =

⎧⎪⎪⎨
⎪⎪⎩

0.1 n = 0,

0.4 n = 1,

0.5 n = 2,

0 otherwise.

(2.108)

Find
(1) The expected value E[N] (2) The second moment E[N2]
(3) The variance Var[N] (4) The standard deviation σN

2.9 Conditional Probability Mass Function

Recall from Section 1.5 that the conditional probability P[A|B] is a number that expresses
our new knowledge about the occurrence of event A, when we learn that another event B
occurs. In this section, we consider event A to be the observation of a particular value of
a random variable. That is, A = {X = x}. The conditioning event B contains information
about X but not the precise value of X . For example, we might learn that X ≤ 33 or
that |X | > 100. In general, we learn of the occurrence of an event B that describes some
property of X .

Example 2.37 Let N equal the number of bytes in a fax. A conditioning event might be the event
I that the fax contains an image. A second kind of conditioning would be the event
{N > 10,000} which tells us that the fax required more than 10,000 bytes. Both events
I and {N > 10,000} give us information that the fax is likely to have many bytes.

The occurrence of the conditioning event B changes the probabilities of the event
{X = x}. Given this information and a probability model for our experiment, we can
use Definition 1.6 to find the conditional probabilities

P [A|B] = P [X = x |B] (2.109)

for all real numbers x . This collection of probabilities is a function of x . It is the conditional
probability mass function of random variable X , given that B occurred.

Definition 2.19 Conditional PMF
Given the event B, with P[B] > 0, the conditional probability mass function of X is

PX |B (x) = P [X = x |B] .

Here we extend our notation convention for probability mass functions. The name of a
PMF is the letter P with a subscript containing the name of the random variable. For
a conditional PMF, the subscript contains the name of the random variable followed by
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a vertical bar followed by a statement of the conditioning event. The argument of the
function is usually the lowercase letter corresponding to the variable name. The argument
is a dummy variable. It could be any letter, so that PX |B(x) is the same function as PX |B(u).
Sometimes we write the function with no specified argument at all, PX |B(·).

In some applications, we begin with a set of conditional PMFs, PX |Bi(x), i = 1, 2, . . . , m,
where B1, B2, . . . , Bm is an event space. We then use the law of total probability to find
the PMF PX (x).

Theorem 2.16 A random variable X resulting from an experiment with event space B1, . . . , Bm has PMF

PX (x) =
m∑

i=1

PX |Bi (x) P [Bi ] .

Proof The theorem follows directly from Theorem 1.10 with A denoting the event {X = x}.

Example 2.38 Let X denote the number of additional years that a randomly chosen 70 year old
person will live. If the person has high blood pressure, denoted as event H , then X
is a geometric (p = 0.1) random variable. Otherwise, if the person’s blood pressure
is regular, event R, then X has a geometric (p = 0.05) PMF with parameter. Find the
conditional PMFs PX |H (x) and PX |R(x). If 40 percent of all seventy year olds have
high blood pressure, what is the PMF of X?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The problem statement specifies the conditional PMFs in words. Mathematically, the
two conditional PMFs are

PX |H (x) =
{

0.1(0.9)x−1 x = 1, 2, . . .

0 otherwise,
(2.110)

PX |R (x) =
{

0.05(0.95)x−1 x = 1, 2, . . .

0 otherwise.
(2.111)

Since H, R is an event space, we can use Theorem 2.16 to write

PX (x) = PX |H (x) P [H ] + PX |R (x) P [R] (2.112)

=
{

(0.4)(0.1)(0.9)x−1 + (0.6)(0.05)(0.95)x−1 x = 1, 2, . . .

0 otherwise.
(2.113)

When a conditioning event B ⊂ SX , the PMF PX (x) determines both the probability of
B as well as the conditional PMF:

PX |B (x) = P [X = x, B]

P [B]
. (2.114)

Now either the event X = x is contained in the event B or it is not. If x ∈ B , then
{X = x}∩ B = {X = x} and P[X = x, B] = PX (x). Otherwise, if x �∈ B , then {X = x}∩
B = φ and P[X = x, B] = 0. The next theorem uses Equation (2.114) to calculate the
conditional PMF.
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Theorem 2.17

PX |B (x) =
⎧⎨
⎩

PX (x)

P [B]
x ∈ B,

0 otherwise.

The theorem states that when we learn that an outcome x ∈ B , the probabilities of all
x �∈ B are zero in our conditional model and the probabilities of all x ∈ B are proportionally
higher than they were before we learned x ∈ B .

Example 2.39 In the probability model of Example 2.29, the length of a fax X has PMF

PX (x) =
⎧⎨
⎩

0.15 x = 1, 2, 3, 4,

0.1 x = 5, 6, 7, 8,

0 otherwise.

(2.115)

Suppose the company has two fax machines, one for faxes shorter than five pages
and the other for faxes that have five or more pages. What is the PMF of fax length in
the second machine?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Relative to PX (x), we seek a conditional PMF. The condition is x ∈ L where L =
{5, 6, 7, 8}. From Theorem 2.17,

PX |L (x) =
⎧⎨
⎩

PX (x)

P [L]
x = 5, 6, 7, 8,

0 otherwise.
(2.116)

From the definition of L , we have

P [L] =
8∑

x=5

PX (x) = 0.4. (2.117)

With PX (x) = 0.1 for x ∈ L ,

PX |L (x) =
{

0.1/0.4 = 0.25 x = 5, 6, 7, 8,

0 otherwise.
(2.118)

Thus the lengths of long faxes are equally likely. Among the long faxes, each length
has probability 0.25.

Sometimes instead of a letter such as B or L that denotes the subset of SX that forms the
condition, we write the condition itself in the PMF. In the preceding example we could use
the notation PX |X≥5(x) for the conditional PMF.

Example 2.40 Suppose X , the time in integer minutes you must wait for a bus, has the uniform PMF

PX (x) =
{

1/20 x = 1, 2, . . . , 20,

0 otherwise.
(2.119)

Suppose the bus has not arrived by the eighth minute, what is the conditional PMF of
your waiting time X?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let A denote the event X > 8. Observing that P[A] = 12/20, we can write the
conditional PMF of X as

PX |X>8 (x) =
⎧⎨
⎩

1/20

12/20
= 1

12
x = 9, 10, . . . , 20,

0 otherwise.

(2.120)

Note that PX |B(x) is a perfectly respectable PMF. Because the conditioning event B tells
us that all possible outcomes are in B , we rewrite Theorem 2.1 using B in place of S.

Theorem 2.18

(a) For any x ∈ B, PX |B(x) ≥ 0.

(b)
∑

x∈B PX |B(x) = 1.

(c) For any event C ⊂ B, P[C|B], the conditional probability that X is in the set C, is

P [C|B] =
∑
x∈C

PX |B (x) .

Therefore, we can compute averages of the conditional random variable X |B and averages
of functions of X |B in the same way that we compute averages of X . The only difference
is that we use the conditional PMF PX |B(·) in place of PX (·).

Definition 2.20 Conditional Expected Value
The conditional expected value of random variable X given condition B is

E [X |B] = μX |B =
∑
x∈B

x PX |B (x) .

When we are given a family of conditional probability models PX |Bi (x) for an event space
B1, . . . , Bm , we can compute the expected value E[X] in terms of the conditional expected
values E[X |Bi ].

Theorem 2.19 For a random variable X resulting from an experiment with event space B1, . . . , Bm,

E [X] =
m∑

i=1

E [X |Bi ] P [Bi ] .

Proof Since E[X] = ∑
x x PX (x), we can use Theorem 2.16 to write

E [X] =
∑

x
x

m∑
i=1

PX |Bi (x) P
[
Bi

]
(2.121)

=
m∑

i=1

P
[
Bi

]∑
x

x PX |Bi (x) =
m∑

i=1

P
[
Bi

]
E

[
X |Bi

]
. (2.122)
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For a derived random variable Y = g(X), we have the equivalent of Theorem 2.10.

Theorem 2.20 The conditional expected value of Y = g(X) given condition B is

E [Y |B] = E [g(X)|B] =
∑
x∈B

g(x)PX |B (x) .

It follows that the conditional variance and conditional standard deviation conform to Def-
initions 2.16 and 2.17 with X |B replacing X .

Example 2.41 Find the conditional expected value, the conditional variance, and the conditional stan-
dard deviation for the long faxes defined in Example 2.39.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E [X |L] = μX |L =
8∑

x=5

x PX |L (x) = 0.25
8∑

x=5

x = 6.5 pages (2.123)

E
[

X2|L
]

= 0.25
8∑

x=5

x2 = 43.5 pages2 (2.124)

Var [X |L] = E
[

X2|L
]

− μ2
X |L = 1.25 pages2 (2.125)

σX |L = √
Var [X |L] = 1.12 pages (2.126)

Quiz 2.9 On the Internet, data is transmitted in packets. In a simple model for World Wide Web
traffic, the number of packets N needed to transmit a Web page depends on whether the
page has graphic images. If the page has images (event I ), then N is uniformly distributed
between 1 and 50 packets. If the page is just text (event T ), then N is uniform between 1
and 5 packets. Assuming a page has images with probability 1/4, find the
(1) conditional PMF PN |I (n) (2) conditional PMF PN |T (n)

(3) PMF PN (n) (4) conditional PMF PN |N≤10(n)

(5) conditional expected value E[N |N ≤ 10] (6) conditional variance Var[N |N ≤ 10]

2.10 Matlab

For discrete random variables, this section will develop a variety of ways to use Matlab.
We start by calculating probabilities for any finite random variable with arbitrary PMF
PX (x). We then compute PMFs and CDFs for the families of random variables introduced
in Section 2.3. Based on the calculation of the CDF, we then develop a method for generating
random sample values. Generating a random sample is a simple simulation of a experiment
that produces the corresponding random variable. In subsequent chapters, we will see that
Matlab functions that generate random samples are building blocks for the simulation of
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more complex systems. TheMatlab functions described in this section can be downloaded
from the companion Web site.

PMFs and CDFs

For the most part, the PMF and CDF functions are straightforward. We start with a simple
finite discrete random variable X defined by the set of sample values SX = {s1, . . . , sn}
and corresponding probabilities pi = PX (si ) = P[X = si ]. In Matlab, we represent the
sample space of X by the vector s = [

s1 · · · sn
]′ and the corresponding probabilities by

the vector p = [
p1 · · · pn

]′.2 The function y=finitepmf(sx,px,x)generates the

probabilities of the elements of the m-dimensional vector x = [
x1 · · · xm

]′
. The output

is y = [
y1 · · · ym

]′ where yi = PX (xi ). That is, for each requested xi , finitepmf
returns the value PX (xi ). If xi is not in the sample space of X , yi = 0.

Example 2.42 In Example 2.29, the random variable X , the number of pages in a fax, has PMF

PX (x) =
⎧⎨
⎩

0.15 x = 1, 2, 3, 4,

0.1 x = 5, 6, 7, 8,

0 otherwise.

(2.127)

Write a Matlab function that calculates PX (x). Calculate the probability of xi pages
for x1 = 2, x2 = 2.5, and x3 = 6.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Matlab function fax3pmf(x) implements PX (x). We can then use fax3pmf
to calculate the desired probabilities:

function y=fax3pmf(x)
s=(1:8)’;
p=[0.15*ones(4,1); 0.1*ones(4,1)];
y=finitepmf(s,p,x);

» fax3pmf([2 2.5 6])’
ans =

0.1500 0 0.1000

We also can use Matlab to calculate PMFs for common random variables. Although a
PMF PX (x) is a scalar function of one variable, the easy way that Matlab handles vectors
makes it desirable to extend our Matlab PMF functions to allow vector input. That is, if
y=xpmf(x) implements PX (x), then for a vector input x, we produce a vector output y
such that y(i)=xpmf(x(i)). That is, for vector input x, the output vector y is defined
by yi = PX (xi ).

Example 2.43 Write a Matlab function geometricpmf(p,x) to calculate PX (x) for a geometric
(p) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2Although column vectors are supposed to appear as columns, we generally write a column vector x in the form
of a transposed row vector

[
x1 · · · xm

]′ to save space.
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function pmf=geometricpmf(p,x)
%geometric(p) rv X
%out: pmf(i)=Prob[X=x(i)]
x=x(:);
pmf= p*((1-p).ˆ(x-1));
pmf= (x>0).*(x==floor(x)).*pmf;

In geometricpmf.m, the last line
ensures that values xi �∈ SX are
assigned zero probability. Because
x=x(:) reshapes x to be a column
vector, the output pmf is always a
column vector.

Example 2.44 Write a Matlab function that calculates the PMF of a Poisson (α) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For an integer x, we could calculate PX (x) by the direct calculation

px= ((alphaˆx)*exp(-alpha*x))/factorial(x)

This will yield the right answer as long as the argument x for the factorial function is not
too large. In Matlab version 6, factorial(171) causes an overflow. In addition,
for a > 1, calculating the ratio ax/x! for large x can cause numerical problems because
both ax and x! will be very large numbers, possibly with a small quotient. Another
shortcoming of the direct calculation is apparent if you want to calculate PX (x) for
the set of possible values x = [0, 1, . . . , n]. Calculating factorials is a lot of work
for a computer and the direct approach fails to exploit the fact that if we have already
calculated (x −1)!, we can easily compute x! = x ·(x −1)!. A more efficient calculation
makes use of the observation

PX (x) = ax e−a

x! = a

x
PX (x − 1) . (2.128)

The poissonpmf.m function uses Equation (2.128) to calculate PX (x). Even this
code is not perfect because Matlab has limited range.

function pmf=poissonpmf(alpha,x)
%output: pmf(i)=P[X=x(i)]
x=x(:); k=(1:max(x))’;
ip=[1;((alpha*ones(size(k)))./k)];
pb=exp(-alpha)*cumprod(ip);
%pb= [P(X=0)...P(X=n)]

pmf=pb(x+1); %pb(1)=P[X=0]
pmf=(x>=0).*(x==floor(x)).*pmf;
%pmf(i)=0 for zero-prob x(i)

Note that exp(-alpha)=0 for
alpha > 745.13. For these

large values of alpha,
poissonpmf(alpha,x)

will return zero for all x. Prob-
lem 2.10.8 outlines a solution
that is used in the version of
poissonpmf.m on the com-
panion website.

For the Poisson CDF, there is no simple way to avoid summing the PMF. The following
example shows an implementation of the Poisson CDF. The code for a CDF tends to be
more complicated than that for a PMF because if x is not an integer, FX (x) may still be
nonzero. Other CDFs are easily developed following the same approach.

Example 2.45 Write a Matlab function that calculates the CDF of a Poisson random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Matlab Functions
PMF CDF Random Sample
finitepmf(sx,p,x) finitecdf(sx,p,x) finiterv(sx,p,m)
bernoullipmf(p,x) bernoullicdf(p,x) bernoullirv(p,m)
binomialpmf(n,p,x) binomialcdf(n,p,x) binomialrv(n,p,m)
geometricpmf(p,x) geometriccdf(p,x) geometricrv(p,m)
pascalpmf(k,p,x) pascalcdf(k,p,x) pascalrv(k,p,m)
poissonpmf(alpha,x) poissoncdf(alpha,x) poissonrv(alpha,m)
duniformpmf(k,l,x) duniformcdf(k,l,x) duniformrv(k,l,m)

Table 2.1 Matlab functions for discrete random variables.

function cdf=poissoncdf(alpha,x)
%output cdf(i)=Prob[X<=x(i)]
x=floor(x(:));
sx=0:max(x);
cdf=cumsum(poissonpmf(alpha,sx));
%cdf from 0 to max(x)

okx=(x>=0);%x(i)<0 -> cdf=0
x=(okx.*x);%set negative x(i)=0
cdf= okx.*cdf(x+1);
%cdf=0 for x(i)<0

Here we present the Matlab
code for the Poisson CDF. Since a
Poisson random variable X is al-
ways integer valued, we observe
that FX (x) = FX (�x
) where �x
,
equivalent to floor(x) in Mat-
lab, denotes the largest integer
less than or equal to x.

Example 2.46 Recall in Example 2.19 that a website has on average λ = 2 hits per second. What
is the probability of no more than 130 hits in one minute? What is the probability of
more than 110 hits in one minute?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let M equal the number of hits in one minute (60 seconds). Note that M is a Poisson
(α) random variable with α = 2 × 60 = 120 hits. The PMF of M is

PM (m) =
{

(120)m e−120/m! m = 0, 1, 2, . . .

0 otherwise.
(2.129)

» poissoncdf(120,130)
ans =

0.8315
» 1-poissoncdf(120,110)
ans =

0.8061

The Matlab solution shown on the left exe-
cutes the following math calculations:

P [M ≤ 130] =
130∑

m=0

PM (m) (2.130)

P [M > 110] = 1 − P [M ≤ 110] (2.131)

= 1 −
110∑

m=0

PM (m) (2.132)
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Generating Random Samples

So far, we have generated distribution functions, PMFs or CDFs, for families of random
variables. Now we tackle the more difficult task of generating sample values of random vari-
ables. As in Chapter 1, we use rand() as a source of randomness. Let R = rand(1).
Recall that rand(1) simulates an experiment that is equally likely to produce any real
number in the interval [0, 1]. We will learn in Chapter 3 that to express this idea in mathe-
matics, we say that for any interval [a, b] ⊂ [0, 1],

P [a < R ≤ b] = b − a. (2.133)

For example, P[0.4 < R ≤ 0.53] = 0.13. Now suppose we wish to generate samples of
discrete random variable K with SK = {0, 1, . . .}. Since 0 ≤ FK (k − 1) ≤ FK (k) ≤ 1,
for all k, we observe that

P [FK (k − 1) < R ≤ FK (k)] = FK (k) − FK (k − 1) = PK (k) (2.134)

This fact leads to the following approach (as shown in pseudocode) to using
rand() to produce a sample of random variable K :

Random Sample of random variable K
Generate R = rand(1)
Find k∗ such that FK (k∗ − 1) < R ≤ FK (k∗)

Set K = k∗

A Matlab function that uses rand() in this way simulates an experiment that pro-
duces samples of random variable K . Generally, this implies that before we can produce a
sample of random variable K , we need to generate the CDF of K . We can reuse the work
of this computation by defining our Matlab functions such as geometricrv(p,m) to
generate m sample values each time. We now present the details associated with generating
binomial random variables.

Example 2.47 Write a Matlab function that generates m samples of a binomial (n, p) random var-
iable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function x=binomialrv(n,p,m)
% m binomial(n,p) samples
r=rand(m,1);
cdf=binomialcdf(n,p,0:n);
x=count(cdf,r);

For vectors x and y, the function
c=count(x,y) returns a vector c such
that c(i) is the number of elements of
x that are less than or equal to y(i).

In terms of our earlier pseudocode, k∗ = count(cdf,r). If count(cdf,r) =
0, then r ≤ PX (0) and k∗ = 0.

Generating binomial random variables is easy because the range is simply {0, . . . , n} and
the minimum value is zero. You will see that the Matlab code for geometricrv(),
poissonrv(), and pascalrv() is slightly more complicated because we need to
generate enough terms of the CDF to ensure that we find k∗.

Table 2.1 summarizes a collection of functions for the families of random variables
introduced in Section 2.3. For each family, there is the pmf function for calculating values
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Figure 2.2 The PMF of Y and the relative frequencies found in two sample runs of
voltpower(100). Note that in each run, the relative frequencies are close to (but not exactly
equal to) the corresponding PMF.

of the PMF, the cdf function for calculating values of the CDF, and the rv function
for generating random samples. In each function description, x denotes a column vector
x = [

x1 · · · xm
]′. The pmf function output is a vector y such that yi = PX (xi ). The

cdf function output is a vector y such that yi = FX (xi ). The rv function output is a
vector X = [

X1 · · · Xm
]′ such that each Xi is a sample value of the random variable

X . If m = 1, then the output is a single sample value of random variable X .
We present an additional example, partly because it demonstrates some useful Matlab

functions, and also because it shows how to generate relative frequency data for our random
variable generators.

Example 2.48 Simulate n = 1000 trials of the experiment producing the power measurement Y in
Example 2.30. Compare the relative frequency of each y ∈ SY to PY (y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In voltpower.m, we first generate n samples of the voltage V . For each sample,
we calculate Y = V 2/2.

function voltpower(n)
v=duniformrv(-3,3,n);
y=(v.ˆ2)/2;
yrange=0:max(y);
yfreq=(hist(y,yrange)/n)’;
pmfplot(yrange,yfreq);

As in Example 1.47, the function
hist(y,yrange) produces a vector
with j th element equal to the number of
occurences of yrange(j) in the vector
y. The function pmfplot.m is a utility for
producing PMF bar plots in the style of this
text.

Figure 2.2 shows the corresponding PMF along with the output of two runs of
voltpower(100).

Derived Random Variables

Matlab can also calculate PMFs and CDFs of derived random variables. For this section,
we assume X is a finite random variable with sample space SX = {x1, . . . , xn} such that
PX (xi ) = pi . We represent the properties of X by the vectors sX = [

x1 · · · xn
]′

and

pX = [
p1 · · · pn

]′. In Matlab notation, sx and px represent the vectors sX and pX .
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For derived random variables, we exploit a feature of finitepmf(sx,px,x) that
allows the elements of sx to be repeated. Essentially, we use ( sx, px), or equivalently
(s, p), to represent a random variable X described by the following experimental procedure:

Finite PMF
Roll an n-sided die such that side i has probability pi.
If side j appears, set X = x j.

A consequence of this approach is that if x2 = 3 and x5 = 3, then the probability of
observing X = 3 is PX (3) = p2 + p5.

Example 2.49
» sx=[1 3 5 7 3];
» px=[0.1 0.2 0.2 0.3 0.2];
» pmfx=finitepmf(sx,px,1:7);
» pmfx’
ans =

0.10 0 0.40 0 0.20 0 0.30

The function finitepmf() accounts
for multiple occurrences of a sample
value. In particular,

pmfx(3)=px(2)+px(5)=0.4.

It may seem unnecessary and perhaps even bizarre to allow these repeated values. How-
ever, we see in the next example that it is quite convenient for derived random variables
Y = g(X) with the property that g(xi) is the same for multiple xi . Although the next
example was simple enough to solve by hand, it is instructive to use Matlab to do the
work.

Example 2.50 Recall that in Example 2.29 that the number of pages X in a fax and the cost Y = g(X)

of sending a fax were described by

PX (x) =
⎧⎨
⎩

0.15 x = 1, 2, 3, 4,

0.1 x = 5, 6, 7, 8,

0 otherwise,

Y =
{

10.5X − 0.5X2 1 ≤ X ≤ 5,

50 6 ≤ X ≤ 10.

Use Matlab to calculate the PMF of Y .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

%fax3y.m
sx=(1:8)’;
px=[0.15*ones(4,1); ...

0.1*ones(4,1)];
gx=(sx<=5).* ...

(10.5*sx-0.5*(sx.ˆ2))...
+ ((sx>5).*50);

sy=unique(gx);
py=finitepmf(gx,px,sy);

The vector gx is the mapping g(x)

for each x ∈ SX . In gx, the el-
ement 50 appears three times, corre-
sponding to x = 6, x = 7, and x =
8. The function sy=unique(gx) ex-
tracts the unique elements of gx while
finitepmf(gx,px,sy) calculates the
probability of each element of sy.

Conditioning

Matlab also provides the find function to identify conditions. We use the find
function to calculate conditional PMFs for finite random variables.
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Example 2.51 Repeating Example 2.39, find the conditional PMF for the length X of a fax given event
L that the fax is long with X ≥ 5 pages.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sx=(1:8)’;
px=[0.15*ones(4,1);...

0.1*ones(4,1)];
sxL=unique(find(sx>=5));
pL=sum(finitepmf(sx,px,sxL));
pxL=finitepmf(sx,px,sxL)/pL;

With random variable X defined by sx
and px as in Example 2.50, this code
solves this problem. The vector sxL
identifies the event L , pL is the prob-
ability P[L], and pxL is the vector of
probabilities PX |L (xi ) for each xi ∈ L .

Quiz 2.10 In Section 2.5, it was argued that the average

mn = 1

n

n∑
i=1

x(i)

of samples x(1), x(2), . . . , x(n) of a random variable X will converge to E[X] as n becomes
large. For a discrete uniform (0, 10) random variable X, we will use Matlab to examine
this convergence.

(1) For 100 sample values of X, plot the sequence m1, m2, . . . , m100. Repeat this exper-
iment five times, plotting all five mn curves on common axes.

(2) Repeat part (a) for 1000 sample values of X.

Chapter Summary

With all of the concepts and formulas introduced in this chapter, there is a high probability
that the beginning student will be confused at this point. Part of the problem is that we are
dealing with several different mathematical entities including random variables, probability
functions, and parameters. Before plugging numbers or symbols into a formula, it is good
to know what the entities are.

• The random variable X transforms outcomes of an experiment to real numbers. Note
that X is the name of the random variable. A possible observation is x , which is a
number. SX is the range of X , the set of all possible observations x .

• The PMF PX (x) is a function that contains the probability model of the random variable
X . The PMF gives the probability of observing any x . PX (·) contains our information
about the randomness of X .

• The expected value E[X] = μX and the variance Var[X] are numbers that describe the
entire probability model. Mathematically, each is a property of the PMF PX (·). The
expected value is a typical value of the random variable. The variance describes the
dispersion of sample values about the expected value.
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• A function of a random variable Y = g(X) transforms the random variable X into a
different random variable Y . For each observation X = x , g(·) is a rule that tells you
how to calculate y = g(x), a sample value of Y .

Although PX (·) and g(·) are both mathematical functions, they serve different purposes
here. PX (·) describes the randomness in an experiment. On the other hand, g(·) is a rule
for obtaining a new random variable from a random variable you have observed.

• The Conditional PMF PX |B(x) is the probability model that we obtain when we gain
partial knowledge of the outcome of an experiment. The partial knowledge is that the
outcome x ∈ B ⊂ SX . The conditional probability model has its own expected value,
E[X |B], and its own variance, Var[X |B].

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

2.2.1• The random variable N has PMF

PN (n) =
{

c(1/2)n n = 0, 1, 2,

0 otherwise.

(a) What is the value of the constant c?

(b) What is P[N ≤ 1]?
2.2.2• For random variables X and R defined in Exam-

ple 2.5, find PX (x) and PR(r). In addition, find the
following probabilities:

(a) P[X = 0]
(b) P[X < 3]
(c) P[R > 1]

2.2.3• The random variable V has PMF

PV (v) =
{

cv2 v = 1, 2, 3, 4,

0 otherwise.

(a) Find the value of the constant c.

(b) Find P[V ∈ {u2|u = 1, 2, 3, · · ·}].
(c) Find the probability that V is an even number.

(d) Find P[V > 2].
2.2.4• The random variable X has PMF

PX (x) =
{

c/x x = 2, 4, 8,

0 otherwise.

(a) What is the value of the constant c?

(b) What is P[X = 4]?
(c) What is P[X < 4]?
(d) What is P[3 ≤ X ≤ 9]?

2.2.5
�

In college basketball, when a player is fouled while
not in the act of shooting and the opposing team is
“in the penalty,” the player is awarded a “1 and 1.”
In the 1 and 1, the player is awarded one free throw
and if that free throw goes in the player is awarded
a second free throw. Find the PMF of Y , the num-
ber of points scored in a 1 and 1 given that any free
throw goes in with probability p, independent of
any other free throw.

2.2.6
�

You are manager of a ticket agency that sells concert
tickets. You assume that people will call three times
in an attempt to buy tickets and then give up. You
want to make sure that you are able to serve at least
95% of the people who want tickets. Let p be the
probability that a caller gets through to your ticket
agency. What is the minimum value of p necessary
to meet your goal.

2.2.7
�

In the ticket agency of Problem 2.2.6, each tele-
phone ticket agent is available to receive a call with
probability 0.2. If all agents are busy when some-
one calls, the caller hears a busy signal. What is the
minimum number of agents that you have to hire
to meet your goal of serving 95% of the customers
who want tickets?

2.2.8
�

Suppose when a baseball player gets a hit, a single
is twice as likely as a double which is twice as likely
as a triple which is twice as likely as a home run.
Also, the player’s batting average, i.e., the proba-
bility the player gets a hit, is 0.300. Let B denote
the number of bases touched safely during an at-bat.
For example, B = 0 when the player makes an out,
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B = 1 on a single, and so on. What is the PMF of
B?

2.2.9
�

When someone presses “SEND” on a cellular
phone, the phone attempts to set up a call by trans-
mitting a “SETUP” message to a nearby base sta-
tion. The phone waits for a response and if none ar-
rives within 0.5 seconds it tries again. If it doesn’t
get a response after n = 6 tries the phone stops
transmitting messages and generates a busy signal.

(a) Draw a tree diagram that describes the call setup
procedure.

(b) If all transmissions are independent and the
probability is p that a “SETUP” message will
get through, what is the PMF of K , the number
of messages transmitted in a call attempt?

(c) What is the probability that the phone will gen-
erate a busy signal?

(d) As manager of a cellular phone system, you want
the probability of a busy signal to be less than
0.02 If p = 0.9, what is the minimum value of
n necessary to achieve your goal?

2.3.1• In a package of M&Ms, Y , the number of yellow
M&Ms, is uniformly distributed between 5 and 15.

(a) What is the PMF of Y ?

(b) What is P[Y < 10]?
(c) What is P[Y > 12]?
(d) What is P[8 ≤ Y ≤ 12]?

2.3.2• When a conventional paging system transmits a
message, the probability that the message will be
received by the pager it is sent to is p. To be con-
fident that a message is received at least once, a
system transmits the message n times.

(a) Assuming all transmissions are independent,
what is the PMF of K , the number of times the
pager receives the same message?

(b) Assume p = 0.8. What is the minimum value of
n that produces a probability of 0.95 of receiving
the message at least once?

2.3.3• When you go fishing, you attach m hooks to your
line. Each time you cast your line, each hook will
be swallowed by a fish with probability h, indepen-
dent of whether any other hook is swallowed. What
is the PMF of K , the number of fish that are hooked
on a single cast of the line?

2.3.4• Anytime a child throws a Frisbee, the child’s dog
catches the Frisbee with probability p, independent

of whether the Frisbee is caught on any previous
throw. When the dog catches the Frisbee, it runs
away with the Frisbee, never to be seen again. The
child continues to throw the Frisbee until the dog
catches it. Let X denote the number of times the
Frisbee is thrown.

(a) What is the PMF PX (x)?

(b) If p = 0.2, what is the probability that the child
will throw the Frisbee more than four times?

2.3.5• When a two-way paging system transmits a mes-
sage, the probability that the message will be re-
ceived by the pager it is sent to is p. When the
pager receives the message, it transmits an acknowl-
edgment signal (ACK) to the paging system. If the
paging system does not receive the ACK, it sends
the message again.

(a) What is the PMF of N , the number of times the
system sends the same message?

(b) The paging company wants to limit the number
of times it has to send the same message. It has
a goal of P[N ≤ 3] ≥ 0.95. What is the mini-
mum value of p necessary to achieve the goal?

2.3.6• The number of bits B in a fax transmission is a ge-
ometric (p = 2.5 · 10−5) random variable. What is
the probability P[B > 500,000] that a fax has over
500,000 bits?

2.3.7• The number of buses that arrive at a bus stop in T
minutes is a Poisson random variable B with ex-
pected value T/5.

(a) What is the PMF of B, the number of buses that
arrive in T minutes?

(b) What is the probability that in a two-minute in-
terval, three buses will arrive?

(c) What is the probability of no buses arriving in a
10-minute interval?

(d) How much time should you allow so that with
probability 0.99 at least one bus arrives?

2.3.8• In a wireless automatic meter reading system, a base
station sends out a wake-up signal to nearby elec-
tric meters. On hearing the wake-up signal, a meter
transmits a message indicating the electric usage.
Each message is repeated eight times.

(a) If a single transmission of a message is success-
ful with probability p, what is the PMF of N , the
number of successful message transmissions?
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(b) I is an indicator random variable such that I = 1
if at least one message is transmitted success-
fully; otherwise I = 0. Find the PMF of I .

2.3.9• A Zipf (n, α = 1) random variable X has PMF

PX (x) =
{

cn/x x = 1, 2, . . . , n
0 otherwise

The constant c(n) is set so that
∑n

x=1 PX (x) = 1.
Calculate c(n) for n = 1, 2, . . . , 6.

2.3.10
�

A radio station gives a pair of concert tickets to
the sixth caller who knows the birthday of the per-
former. For each person who calls, the probability
is 0.75 of knowing the performer’s birthday. All
calls are independent.

(a) What is the PMF of L , the number of calls nec-
essary to find the winner?

(b) What is the probability of finding the winner on
the tenth call?

(c) What is the probability that the station will need
nine or more calls to find a winner?

2.3.11
�

In a packet voice communications system, a source
transmits packets containing digitized speech to a
receiver. Because transmission errors occasionally
occur, an acknowledgment (ACK) or a nonacknowl-
edgment (NAK) is transmitted back to the source to
indicate the status of each received packet. When
the transmitter gets a NAK, the packet is retrans-
mitted. Voice packets are delay sensitive and a
packet can be transmitted a maximum of d times. If
a packet transmission is an independent Bernoulli
trial with success probability p, what is the PMF of
T , the number of times a packet is transmitted?

2.3.12
�

Suppose each day (starting on day 1) you buy one
lottery ticket with probability 1/2; otherwise, you
buy no tickets. A ticket is a winner with probability
p independent of the outcome of all other tickets.
Let Ni be the event that on day i you do not buy a
ticket. Let Wi be the event that on day i , you buy
a winning ticket. Let Li be the event that on day i
you buy a losing ticket.

(a) What are P[W33], P[L87], and P[N99]?
(b) Let K be the number of the day on which you buy

your first lottery ticket. Find the PMF PK (k).

(c) Find the PMF of R, the number of losing lottery
tickets you have purchased in m days.

(d) Let D be the number of the day on which you buy
your j th losing ticket. What is PD(d)? Hint: If

you buy your j th losing ticket on day d , how
many losers did you have after d − 1 days?

2.3.13
�

The Sixers and the Celtics play a best out of five
playoff series. The series ends as soon as one of
the teams has won three games. Assume that either
team is equally likely to win any game indepen-
dently of any other game played. Find

(a) The PMF PN (n) for the total number N of games
played in the series;

(b) The PMF PW (w) for the number W of Celtic
wins in the series;

(c) The PMF PL (l) for the number L of Celtic losses
in the series.

2.3.14
�

For a binomial random variable K representing the
number of successes in n trials,

∑n
k=0 PK (k) = 1.

Use this fact to prove the binomial theorem for any
a > 0 and b > 0. That is, show that

(a + b)n =
n∑

k=0

(
n

k

)
ak bn−k .

2.4.1• Discrete random variable Y has the CDF FY (y) as
shown:

0 1 2 3 4 5
0

0.25
0.5

0.75
1

y

F
Y
(y

)

Use the CDF to find the following probabilities:

(a) P[Y < 1]
(b) P[Y ≤ 1]
(c) P[Y > 2]
(d) P[Y ≥ 2]
(e) P[Y = 1]
(f) P[Y = 3]
(g) PY (y)

2.4.2• The random variable X has CDF

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −1,

0.2 −1 ≤ x < 0,

0.7 0 ≤ x < 1,

1 x ≥ 1.

(a) Draw a graph of the CDF.
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(b) Write PX (x), the PMF of X . Be sure to write
the value of PX (x) for all x from −∞ to ∞.

2.4.3• The random variable X has CDF

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −3,

0.4 −3 ≤ x < 5,

0.8 5 ≤ x < 7,

1 x ≥ 7.

(a) Draw a graph of the CDF.

(b) Write PX (x), the PMF of X .

2.4.4• Following Example 2.24, show that a geometric (p)

random variable K has CDF

FK (k) =
{

0 k < 1,

1 − (1 − p)�k
 k ≥ 1.

2.4.5
�

At the One Top Pizza Shop, a pizza sold has mush-
rooms with probability p = 2/3. On a day in which
100 pizzas are sold, let N equal the number of piz-
zas sold before the first pizza with mushrooms is
sold. What is the PMF of N? What is the CDF of
N?

2.4.6
�

In Problem 2.2.8, find and sketch the CDF of B, the
number of bases touched safely during an at-bat.

2.4.7
�

In Problem 2.2.5, find and sketch the CDF of Y , the
number of points scored in a 1 and 1 for p = 1/4,
p = 1/2, and p = 3/4.

2.4.8
�

In Problem 2.2.9, find and sketch the CDF of N , the
number of attempts made by the cellular phone for
p = 1/2.

2.5.1• Let X have the uniform PMF

PX (x) =
{

0.01 x = 1, 2, . . . , 100,

0 otherwise.

(a) Find a mode xmod of X . If the mode is not
unique, find the set Xmod of all modes of X .

(b) Find a median xmed of X . If the median is not
unique, find the set Xmed of all numbers x that
are medians of X .

2.5.2• Voice calls cost 20 cents each and data calls cost 30
cents each. C is the cost of one telephone call. The
probability that a call is a voice call is P[V ] = 0.6.
The probability of a data call is P[D] = 0.4.

(a) Find PC (c), the PMF of C .

(b) What is E[C], the expected value of C?

2.5.3• Find the expected value of the random variable Y in
Problem 2.4.1.

2.5.4• Find the expected value of the random variable X
in Problem 2.4.2.

2.5.5• Find the expected value of the random variable X
in Problem 2.4.3.

2.5.6• Find the expected value of a binomial (n = 4, p =
1/2) random variable X .

2.5.7• Find the expected value of a binomial (n = 5, p =
1/2) random variable X .

2.5.8• Give examples of practical applications of proba-
bility theory that can be modeled by the following
PMFs. In each case, state an experiment, the sample
space, the range of the random variable, the PMF of
the random variable, and the expected value:

(a) Bernoulli

(b) Binomial

(c) Pascal

(d) Poisson

Make up your own examples. (Don’t copy exam-
ples from the text.)

2.5.9
�

Suppose you go to a casino with exactly $63. At this
casino, the only game is roulette and the only bets
allowed are red and green. In addition, the wheel
is fair so that P[red] = P[green] = 1/2. You have
the following strategy: First, you bet $1. If you win
the bet, you quit and leave the casino with $64. If
you lose, you then bet $2. If you win, you quit and
go home. If you lose, you bet $4. In fact, whenever
you lose, you double your bet until either you win
a bet or you lose all of your money. However, as
soon as you win a bet, you quit and go home. Let
Y equal the amount of money that you take home.
Find PY (y) and E[Y ]. Would you like to play this
game every day?

2.5.10
�

Let binomial random variable Xn denote the num-
ber of successes in n Bernoulli trials with success
probability p. Prove that E[Xn] = np. Hint: Use
the fact that

∑n−1
x=0 PXn−1(x) = 1.

2.5.11
�

Prove that if X is a nonnegative integer-valued
random variable, then

E [X] =
∞∑

k=0

P [X > k] .

2.6.1• Given the random variable Y in Problem 2.4.1, let
U = g(Y ) = Y 2.

(a) Find PU (u).
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(b) Find FU (u).

(c) Find E[U ].
2.6.2• Given the random variable X in Problem 2.4.2, let

V = g(X) = |X |.
(a) Find PV (v).

(b) Find FV (v).

(c) Find E[V ].
2.6.3• Given the random variable X in Problem 2.4.3, let

W = g(X) = −X .

(a) Find PW (w).

(b) Find FW (w).

(c) Find E[W ].
2.6.4• At a discount brokerage, a stock purchase or sale

worth less than $10,000 incurs a brokerage fee of
1% of the value of the transaction. A transaction
worth more than $10,000 incurs a fee of $100 plus
0.5% of the amount exceeding $10,000. Note that
for a fraction of a cent, the brokerage always charges
the customer a full penny. You wish to buy 100
shares of a stock whose price D in dollars has PMF

PD (d) =
{

1/3 d = 99.75, 100, 100.25,

0 otherwise.

What is the PMF of C , the cost of buying the stock
(including the brokerage fee).

2.6.5
�

A source wishes to transmit data packets to a re-
ceiver over a radio link. The receiver uses error de-
tection to identify packets that have been corrupted
by radio noise. When a packet is received error-free,
the receiver sends an acknowledgment (ACK) back
to the source. When the receiver gets a packet with
errors, a negative acknowledgment (NAK) message
is sent back to the source. Each time the source
receives a NAK, the packet is retransmitted. We as-
sume that each packet transmission is independently
corrupted by errors with probability q.

(a) Find the PMF of X , the number of times that a
packet is transmitted by the source.

(b) Suppose each packet takes 1 millisecond to
transmit and that the source waits an additional
millisecond to receive the acknowledgment mes-
sage (ACK or NAK) before retransmitting. Let
T equal the time required until the packet is suc-
cessfully received. What is the relationship be-
tween T and X? What is the PMF of T ?

2.6.6
�

Suppose that a cellular phone costs $20 per month
with 30 minutes of use included and that each addi-
tional minute of use costs $0.50. If the number of
minutes you use in a month is a geometric random
variable M with expected value of E[M] = 1/p =
30 minutes, what is the PMF of C , the cost of the
phone for one month?

2.7.1• For random variable T in Quiz 2.6, first find the ex-
pected value E[T ] using Theorem 2.10. Next, find
E[T ] using Definition 2.14.

2.7.2• In a certain lottery game, the chance of getting a win-
ning ticket is exactly one in a thousand. Suppose a
person buys one ticket each day (except on the leap
year day February 29) over a period of fifty years.
What is the expected number E[T ] of winning tick-
ets in fifty years? If each winning ticket is worth
$1000, what is the expected amount E[R] collected
on these winning tickets? Lastly, if each ticket costs
$2, what is your expected net profit E[Q]?

2.7.3• Suppose an NBA basketball player shooting an un-
contested 2-point shot will make the basket with
probability 0.6. However, if you foul the shooter,
the shot will be missed, but two free throws will
be awarded. Each free throw is an independent
Bernoulli trial with success probability p. Based
on the expected number of points the shooter will
score, for what values of p may it be desirable to
foul the shooter?

2.7.4• It can take up to four days after you call for ser-
vice to get your computer repaired. The computer
company charges for repairs according to how long
you have to wait. The number of days D until the
service technician arrives and the service charge C ,
in dollars, are described by

PD (d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.2 d = 1,

0.4 d = 2,

0.3 d = 3,

0.1 d = 4,

0 otherwise,

and

C =

⎧⎪⎪⎨
⎪⎪⎩

90 for 1-day service,
70 for 2-day service,
40 for 3-day service,
40 for 4-day service.

(a) What is the expected waiting time μD = E[D]?
(b) What is the expected deviation E[D − μD]?
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(c) Express C as a function of D.

(d) What is the expected value E[C]?
2.7.5
�

For the cellular phone in Problem 2.6.6, express the
monthly cost C as a function of M , the number of
minutes used. What is the expected monthly cost
E[C]?

2.7.6
�

A new cellular phone billing plan costs $15 per
month plus $1 for each minute of use. If the num-
ber of minutes you use the phone in a month is a
geometric random variable with mean 1/p, what is
the expected monthly cost E[C] of the phone? For
what values of p is this billing plan preferable to the
billing plan of Problem 2.6.6 and Problem 2.7.5?

2.7.7
�

A particular circuit works if all 10 of its component
devices work. Each circuit is tested before leav-
ing the factory. Each working circuit can be sold
for k dollars, but each nonworking circuit is worth-
less and must be thrown away. Each circuit can be
built with either ordinary devices or ultrareliable de-
vices. An ordinary device has a failure probability
of q = 0.1 while an ultrareliable device has a fail-
ure probability of q/2, independent of any other de-
vice. However, each ordinary device costs $1 while
an ultrareliable device costs $3. Should you build
your circuit with ordinary devices or ultrareliable
devices in order to maximize your expected profit
E[R]? Keep in mind that your answer will depend
on k.

2.7.8
��

In the New Jersey state lottery, each $1 ticket has
six randomly marked numbers out of 1, . . . , 46. A
ticket is a winner if the six marked numbers match
six numbers drawn at random at the end of a week.
For each ticket sold, 50 cents is added to the pot for
the winners. If there are k winning tickets, the pot
is divided equally among the k winners. Suppose
you bought a winning ticket in a week in which 2n
tickets are sold and the pot is n dollars.

(a) What is the probability q that a random ticket
will be a winner?

(b) What is the PMF of Kn , the number of other
(besides your own) winning tickets?

(c) What is the expected value of Wn , the prize you
collect for your winning ticket?

2.7.9
��

If there is no winner for the lottery described in
Problem 2.7.8, then the pot is carried over to the
next week. Suppose that in a given week, an r dol-
lar pot is carried over from the previous week and
2n tickets sold. Answer the following questions.

(a) What is the probability q that a random ticket
will be a winner?

(b) If you own one of the 2n tickets sold, what is the
mean of V , the value (i.e., the amount you win)
of that ticket? Is it ever possible that E[V ] > 1?

(c) Suppose that in the instant before the ticket sales
are stopped, you are given the opportunity to buy
one of each possible ticket. For what values (if
any) of n and r should you do it?

2.8.1• In an experiment to monitor two calls, the PMF of
N , the number of voice calls, is

PN (n) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 n = 0,

0.7 n = 1,

0.1 n = 2,

0 otherwise.

(a) Find E[N], the expected number of voice calls.

(b) Find E[N2], the second moment of N .

(c) Find Var[N], the variance of N .

(d) Find σN , the standard deviation of N .

2.8.2• Find the variance of the random variable Y in Prob-
lem 2.4.1.

2.8.3• Find the variance of the random variable X in Prob-
lem 2.4.2.

2.8.4• Find the variance of the random variable X in Prob-
lem 2.4.3.

2.8.5
�

Let X have the binomial PMF

PX (x) =
(

4

x

)
(1/2)4.

(a) Find the standard deviation of the random var-
iable X .

(b) What is P[μX − σX ≤ X ≤ μX + σX ], the
probability that X is within one standard devia-
tion of the expected value?

2.8.6
�

The binomial random variable X has PMF

PX (x) =
(

5

x

)
(1/2)5.

(a) Find the standard deviation of X .

(b) Find P[μX − σX ≤ X ≤ μX + σX ], the prob-
ability that X is within one standard deviation of
the expected value.

2.8.7
�

Show that the variance of Y = aX + b is Var[Y ] =
a2 Var[X].
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2.8.8
�

Given a random variable X with mean μX and vari-
ance σ 2

X , find the mean and variance of the stan-
dardized random variable

Y = 1

σX
(X − μX ) .

2.8.9
�

In packet data transmission, the time between suc-
cessfully received packets is called the interarrival
time, and randomness in packet interarrival times
is called jitter. In real-time packet data communi-
cations, jitter is undesirable. One measure of jitter
is the standard deviation of the packet interarrival
time. From Problem 2.6.5, calculate the jitter σT .
How large must the successful transmission prob-
ability q be to ensure that the jitter is less than 2
milliseconds?

2.8.10
�

Let random variable X have PMF PX (x). We wish
to guess the value of X before performing the ac-
tual experiment. If we call our guess x̂ , the expected
square of the error in our guess is

e(x̂) = E
[
(X − x̂)2

]

Show that e(x̂) is minimized by x̂ = E[X].
2.8.11
�

Random variable K has a Poisson (α) distribution.
Derive the properties E[K ] = Var[K ] = α. Hint:
E[K 2] = E[K (K − 1)] + E[K ].

2.8.12• For the delay D in Problem 2.7.4, what is the stan-
dard deviation σD of the waiting time?

2.9.1• In Problem 2.4.1, find PY |B (y), where the condition
B = {Y < 3}. What are E[Y |B] and Var[Y |B]?

2.9.2• In Problem 2.4.2, find PX |B (x), where the condition
B = {|X | > 0}. What are E[X |B] and Var[X |B]?

2.9.3• In Problem 2.4.3, find PX |B (x), where the condition
B = {X > 0}. What are E[X |B] and Var[X |B]?

2.9.4• In Problem 2.8.5, find PX |B (x), where the condition
B = {X �= 0}. What are E[X |B] and Var[X |B]?

2.9.5• In Problem 2.8.6, find PX |B (x), where the condition
B = {X ≥ μX }. What are E[X |B] and Var[X |B]?

2.9.6
�

Select integrated circuits, test them in sequence un-
til you find the first failure, and then stop. Let N
be the number of tests. All tests are independent
with probability of failure p = 0.1. Consider the
condition B = {N ≥ 20}.
(a) Find the PMF PN (n).

(b) Find PN |B (n), the conditional PMF of N given
that there have been 20 consecutive tests without
a failure.

(c) What is E[N |B], the expected number of tests
given that there have been 20 consecutive tests
without a failure?

2.9.7
�

Every day you consider going jogging. Before each
mile, including the first, you will quit with probabil-
ity q, independent of the number of miles you have
already run. However, you are sufficiently decisive
that you never run a fraction of a mile. Also, we say
you have run a marathon whenever you run at least
26 miles.

(a) Let M equal the number of miles that you run
on an arbitrary day. What is P[M > 0]? Find
the PMF PM (m).

(b) Let r be the probability that you run a marathon
on an arbitrary day. Find r .

(c) Let J be the number of days in one year (not a
leap year) in which you run a marathon. Find
the PMF PJ ( j). This answer may be expressed
in terms of r found in part (b).

(d) Define K = M − 26. Let A be the event that
you have run a marathon. Find PK |A(k).

2.9.8
�

In the situation described in Example 2.29, the firm
sends all faxes with an even number of pages to
fax machine A and all faxes with an odd number of
pages to fax machine B.

(a) Find the conditional PMF of the length X of a
fax, given the fax was sent to A. What are the
conditional expected length and standard devia-
tion?

(b) Find the conditional PMF of the length X of
a fax, given the fax was sent to B and had no
more than six pages. What are the conditional
expected length and standard deviation?

2.10.1• Let X be a binomial (n, p) random variable with
n = 100 and p = 0.5. Let E2 denote the event that
X is a perfect square. Calculate P[E2].

2.10.2• Write a Matlab function x=faxlength8(m)
that produces m random sample values of the fax
length X with PMF given in Example 2.29.

2.10.3• For m = 10, m = 100, and m = 1000, use Mat-
lab to find the average cost of sending m faxes
using the model of Example 2.29. Your program
input should have the number of trials m as the in-
put. The output should be Y = 1

m
∑m

i=1 Yi where
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Yi is the cost of the i th fax. As m becomes large,
what do you observe?

2.10.4• The Zipf (n, α = 1) random variable X introduced
in Problem 2.3.9 is often used to model the “pop-
ularity” of a collection of n objects. For example,
a Web server can deliver one of n Web pages. The
pages are numbered such that the page 1 is the most
requested page, page 2 is the second most requested
page, and so on. If page k is requested, then X = k.

To reduce external network traffic, an ISP gate-
way caches copies of the k most popular pages. Cal-
culate, as a function of n for 1 ≤ n ≤ 106, how large
k must be to ensure that the cache can deliver a page
with probability 0.75.

2.10.5
�

Generate n independent samples of a Poisson (α =
5) random variable Y . For each y ∈ SY , let n(y) de-
note the number of times that y was observed. Thus∑

y∈SY
n(y) = n and the relative frequency of y is

R(y) = n(y)/n. Compare the relative frequency of
y against PY (y) by plotting R(y) and PY (y) on the
same graph as functions of y for n = 100, n = 1000

and n = 10,000. How large should n be to have rea-
sonable agreement?

2.10.6
�

Test the convergence of Theorem 2.8. For α = 10,
plot the PMF of Kn for (n, p) = (10, 1), (n, p) =
(100, 0.1), and (n, p) = (1000, 0.01) and compare
against the Poisson (α) PMF.

2.10.7
�

Use the result of Problem 2.4.4 and the Random
Sample Algorithm on Page 89 to write a Matlab
function k=geometricrv(p,m) that generates
m samples of a geometric (p) random variable.

2.10.8
�

Find n∗, the smallest value of n for which
the function poissonpmf(n,n) shown in
Example 2.44 reports an error. What is the
source of the error? Write a Matlab func-
tion bigpoissonpmf(alpha,n) that calcu-
lates poissonpmf(n,n) for values of n much
larger than n∗. Hint: For a Poisson (α) random
variable K ,

PK (k) = exp

⎛
⎝−α + k ln(α) −

k∑
j=1

ln( j)

⎞
⎠ .

 



3
Continuous

Random Variables

Continuous Sample Space

Until now, we have studied discrete random variables. By definition the range of a discrete
random variable is a countable set of numbers. This chapter analyzes random variables that
range over continuous sets of numbers. A continuous set of numbers, sometimes referred
to as an interval, contains all of the real numbers between two limits. For the limits x1 and
x2 with x1 < x2, there are four different intervals distinguished by which of the limits are
contained in the interval. Thus we have definitions and notation for the four continuous
sets bounded by the lower limit x1 and upper limit x2.

• (x1, x2) is the open interval defined as all numbers between x1 and x2 but not including
either x1 or x2. Formally, (x1, x2) = {x |x1 < x < x2}.

• [x1, x2] is the closed interval defined as all numbers between x1 and x2 including
both x1 and x2. Formally [x1, x2] = {x |x1 ≤ x ≤ x2}.

• [x1, x2) is the interval defined as all numbers between x1 and x2 including x1 but not
including x2. Formally, [x1, x2) = {x |x1 ≤ x < x2}.

• (x1, x2] is the interval defined as all numbers between x1 and x2 including x2 but not
including x1. Formally, (x1, x2] = {x |x1 < x ≤ x2}.

Many experiments lead to random variables with a range that is a continuous interval.
Examples include measuring T , the arrival time of a particle (ST = {t|0 ≤ t < ∞}); mea-
suring V , the voltage across a resistor (SV = {v| − ∞ < v < ∞}); and measuring the
phase angle A of a sinusoidal radio wave (SA = {a|0 ≤ a < 2π}). We will call T , V , and
A continuous random variables although we will defer a formal definition until Section 3.1.

Consistent with the axioms of probability, we assign numbers between zero and one to
all events (sets of elements) in the sample space. A distinguishing feature of the models of
continuous random variables is that the probability of each individual outcome is zero! To
understand this intuitively, consider an experiment in which the observation is the arrival
time of the professor at a class. Assume this professor always arrives between 8:55 and
9:05. We model the arrival time as a random variable T minutes relative to 9:00 o’clock.
Therefore, ST = {t| − 5 ≤ t ≤ 5}. Think about predicting the professor’s arrival time.
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The more precise the prediction, the lower the chance it will be correct. For example, you
might guess the interval −1 ≤ T ≤ 1 minute (8:59 to 9:01). Your probability of being
correct is higher than if you guess −0.5 ≤ T ≤ 0.5 minute (8:59:30 to 9:00:30). As
your prediction becomes more and more precise, the probability that it will be correct gets
smaller and smaller. The chance that the professor will arrive within a femtosecond of 9:00
is microscopically small (on the order of 10−15), and the probability of a precise 9:00 arrival
is zero.

One way to think about continuous random variables is that the amount of probability in
an interval gets smaller and smaller as the interval shrinks. This is like the mass in a con-
tinuous volume. Even though any finite volume has some mass, there is no mass at a single
point. In physics, we analyze this situation by referring to densities of matter. Similarly, we
refer to probability density functions to describe probabilities related to continuous random
variables. The next section introduces these ideas formally by describing an experiment in
which the sample space contains all numbers between zero and one.

In many practical applications of probability, we encounter uniform random variables.
The sample space of a uniform random variable is an interval with finite limits. The
probability model of a uniform random variable states that any two intervals of equal size
within the sample space have equal probability. To introduce many concepts of continuous
random variables, we will refer frequently to a uniform random variable with limits 0 and
1. Most computer languages include a random number generator. In Matlab, this is
the rand function introduced in Chapter 1. These random number generators produce
pseudo-random numbers that approximate sample values of a uniform random variable.

In the following example, we examine this random variable by defining an experiment in
which the procedure is to spin a pointer in a circle of circumference one meter. This model is
very similar to the model of the phase angle of the signal that arrives at the radio receiver of
a cellular telephone. Instead of a pointer with stopping points that can be anywhere between
0 and 1 meter, the phase angle can have any value between 0 and 2π radians. By referring to
the spinning pointer in the examples in this chapter, we arrive at mathematical expressions
that illustrate the main properties of continuous random variables. The formulas that arise
from analyzing phase angles in communications engineering models have factors of 2π

that do not appear in the examples in this chapter. Example 3.1 defines the sample space
of the pointer experiment and demonstrates that all outcomes have probability zero.

Example 3.1 Suppose we have a wheel of circumference one meter and we mark a point on the
perimeter at the top of the wheel. In the center of the wheel is a radial pointer that
we spin. After spinning the pointer, we measure the distance, X meters, around
the circumference of the wheel going clockwise from the marked point to the pointer
position as shown in Figure 3.1. Clearly, 0 ≤ X < 1. Also, it is reasonable to believe
that if the spin is hard enough, the pointer is just as likely to arrive at any part of the
circle as at any other. For a given x, what is the probability P[X = x]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This problem is surprisingly difficult. However, given that we have developed methods
for discrete random variables in Chapter 2, a reasonable approach is to find a discrete
approximation to X . As shown on the right side of Figure 3.1, we can mark the
perimeter with n equal-length arcs numbered 1 to n and let Y denote the number
of the arc in which the pointer stops. Y is a discrete random variable with range
SY = {1, 2, . . . , n}. Since all parts of the wheel are equally likely, all arcs have the
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X X
Y=1

Y=2

Y=n

Y=3

Figure 3.1 The random pointer on disk of circumference 1.

same probability. Thus the PMF of Y is

PY (y) =
{

1/n y = 1, 2, . . . , n,

0 otherwise.
(3.1)

From the wheel on the right side of Figure 3.1, we can deduce that if X = x, then
Y = �nx�, where the notation �a� is defined as the smallest integer greater than or
equal to a. Note that the event {X = x} ⊂ {Y = �nx�}, which implies that

P [X = x] ≤ P [Y = �nx�] = 1

n
. (3.2)

We observe this is true no matter how finely we divide up the wheel. To find P[X = x],
we consider larger and larger values of n. As n increases, the arcs on the circle
decrease in size, approaching a single point. The probability of the pointer arriving in
any particular arc decreases until we have in the limit,

P [X = x] ≤ lim
n→∞ P [Y = �nx�] = lim

n→∞
1

n
= 0. (3.3)

This demonstrates that P[X = x] ≤ 0. The first axiom of probability states that
P[X = x] ≥ 0. Therefore, P[X = x] = 0. This is true regardless of the outcome,
x. It follows that every outcome has probability zero.

Just as in the discussion of the professor arriving in class, similar reasoning can be applied
to other experiments to show that for any continuous random variable, the probability of
any individual outcome is zero. This is a fundamentally different situation than the one we
encountered in our study of discrete random variables. Clearly a probability mass function
defined in terms of probabilities of individual outcomes has no meaning in this context. For
a continuous random variable, the interesting probabilities apply to intervals.
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3.1 The Cumulative Distribution Function

Example 3.1 shows that when X is a continuous random variable, P[X = x] = 0 for x ∈ SX .
This implies that when X is continuous, it is impossible to define a probability mass function
PX (x). On the other hand, we will see that the cumulative distribution function, FX (x) in
Definition 2.11, is a very useful probability model for a continuous random variable. We
repeat the definition here.

Definition 3.1 Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of random variable X is

FX (x) = P [X ≤ x] .

The key properties of the CDF, described in Theorem 2.2 and Theorem 2.3, apply to all
random variables. Graphs of all cumulative distribution functions start at zero on the left
and end at one on the right. All are nondecreasing, and, most importantly, the probability
that the random variable is in an interval is the difference in the CDF evaluated at the ends
of the interval.

Theorem 3.1 For any random variable X,

(a) FX (−∞) = 0

(b) FX (∞) = 1

(c) P[x1 < X ≤ x2] = FX (x2) − FX (x1)

Although these properties apply to any CDF, there is one important difference between the
CDF of a discrete random variable and the CDF of a continuous random variable. Recall
that for a discrete random variable X , FX (x) has zero slope everywhere except at values
of x with nonzero probability. At these points, the function has a discontinuity in the form
of a jump of magnitude PX (x). By contrast, the defining property of a continuous random
variable X is that FX (x) is a continuous function of X .

Definition 3.2 Continuous Random Variable
X is a continuous random variable if the CDF FX (x) is a continuous function.

Example 3.2 In the wheel-spinning experiment of Example 3.1, find the CDF of X .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We begin by observing that any outcome x ∈ SX = [0, 1). This implies that FX (x) = 0
for x < 0, and FX (x) = 1 for x ≥ 1. To find the CDF for x between 0 and 1 we consider
the event {X ≤ x} with x growing from 0 to 1. Each event corresponds to an arc on the
circle in Figure 3.1. The arc is small when x ≈ 0 and it includes nearly the whole circle
when x ≈ 1. FX (x) = P[X ≤ x] is the probability that the pointer stops somewhere in
the arc. This probability grows from 0 to 1 as the arc increases to include the whole
circle. Given our assumption that the pointer has no preferred stopping places, it is
reasonable to expect the probability to grow in proportion to the fraction of the circle
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occupied by the arc X ≤ x. This fraction is simply x. To be more formal, we can refer
to Figure 3.1 and note that with the circle divided into n arcs,

{Y ≤ �nx� − 1} ⊂ {X ≤ x} ⊂ {Y ≤ �nx�} . (3.4)

Therefore, the probabilities of the three events satisfy

FY (�nx� − 1) ≤ FX (x) ≤ FY (�nx�) . (3.5)

Note that Y is a discrete random variable with CDF

FY (y) =
⎧⎨
⎩

0 y < 0,

k/n (k − 1)/n < y ≤ k/n, k = 1, 2, . . . , n,

1 y > 1.

(3.6)

Thus for x ∈ [0, 1) and for all n, we have

�nx� − 1

n
≤ FX (x) ≤ �nx�

n
. (3.7)

In Problem 3.1.4, we ask the reader to verify that limn→∞�nx�/n = x. This implies
that as n → ∞, both fractions approach x. The CDF of X is

0 0.5 1
0

0.5

1

x

F
X
(x

)

FX (x) =
⎧⎨
⎩

0 x < 0,

x 0 ≤ x < 1,

1 x ≥ 1.

(3.8)

Quiz 3.1 The cumulative distribution function of the random variable Y is

FY (y) =
⎧⎨
⎩

0 y < 0,

y/4 0 ≤ y ≤ 4,

1 y > 4.

(3.9)

Sketch the CDF of Y and calculate the following probabilities:
(1) P[Y ≤ −1] (2) P[Y ≤ 1]
(3) P[2 < Y ≤ 3] (4) P[Y > 1.5]

3.2 Probability Density Function

The slope of the CDF contains the most interesting information about a continuous random
variable. The slope at any point x indicates the probability that X is near x . To understand
this intuitively, consider the graph of a CDF FX (x) given in Figure 3.2. Theorem 3.1(c)
states that the probability that X is in the interval of width � to the right of x1 is

p1 = P [x1 < X ≤ x1 + �] = FX (x1 + �) − FX (x1) . (3.10)
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x

x1
x2

��

F xX ( )

p
2

p
1

Figure 3.2 The graph of an arbitrary CDF FX (x).

Note in Figure 3.2 that this is less than the probability of the interval of width � to the right
of x2,

p2 = P [x2 < X ≤ x2 + �] = FX (x2 + �) − FX (x2) . (3.11)

The comparison makes sense because both intervals have the same length. If we reduce �

to focus our attention on outcomes nearer and nearer to x1 and x2, both probabilities get
smaller. However, their relative values still depend on the average slope of FX (x) at the
two points. This is apparent if we rewrite Equation (3.10) in the form

P [x1 < X ≤ x1 + �] = FX (x1 + �) − FX (x1)

�
�. (3.12)

Here the fraction on the right side is the average slope, and Equation (3.12) states that the
probability that a random variable is in an interval near x1 is the average slope over the
interval times the length of the interval. By definition, the limit of the average slope as
� → 0 is the derivative of FX (x) evaluated at x1.

We conclude from the discussion leading to Equation (3.12) that the slope of the CDF
in a region near any number x is an indicator of the probability of observing the random
variable X near x . Just as the amount of matter in a small volume is the density of the
matter times the size of volume, the amount of probability in a small region is the slope of
the CDF times the size of the region. This leads to the term probability density, defined as
the slope of the CDF.

Definition 3.3 Probability Density Function (PDF)
The probability density function (PDF) of a continuous random variable X is

fX (x) = d FX (x)

dx
.

This definition displays the conventional notation for a PDF. The name of the function is
a lowercase f with a subscript that is the name of the random variable. As with the PMF
and the CDF, the argument is a dummy variable: fX (x), fX (u), and fX (·) are all the same
PDF.
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5-5

(volts)

f xX ( )

x

Figure 3.3 The PDF of the modem receiver voltage X .

The PDF is a complete probability model of a continuous random variable. While there
are other functions that also provide complete models (the CDF and the moment generating
function that we study in Chapter 6), the PDF is the most useful. One reason for this is that
the graph of the PDF provides a good indication of the likely values of observations.

Example 3.3 Figure 3.3 depicts the PDF of a random variable X that describes the voltage at the
receiver in a modem. What are probable values of X?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note that there are two places where the PDF has high values and that it is low
elsewhere. The PDF indicates that the random variable is likely to be near −5 V
(corresponding to the symbol 0 transmitted) and near +5 V (corresponding to a 1
transmitted). Values far from ±5 V (due to strong distortion) are possible but much
less likely.

Another reason why the PDF is the most useful probability model is that it plays a key
role in calculating the expected value of a random variable, the subject of the next section.
Important properties of the PDF follow directly from Definition 3.3 and the properties of
the CDF.

Theorem 3.2 For a continuous random variable X with PDF fX (x),

(a) fX (x) ≥ 0 for all x ,

(b) FX (x) =
∫ x

−∞
fX (u) du,

(c)
∫ ∞

−∞
fX (x) dx = 1.

Proof The first statement is true because FX (x) is a nondecreasing function of x and therefore its
derivative, fX (x), is nonnegative. The second fact follows directly from the definition of fX (x) and
the fact that FX (−∞) = 0. The third statement follows from the second one and Theorem 3.1(b).

Given these properties of the PDF, we can prove the next theorem, which relates the PDF
to the probabilities of events.
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f xX ( )

F x - F xX 2 X 1( ) ( )

x
x1 x2

Figure 3.4 The PDF and CDF of X .

Theorem 3.3

P [x1 < X ≤ x2] =
∫ x2

x1

fX (x) dx .

Proof From Theorem 3.2(b) and Theorem 3.1,

P
[
x1 < X ≤ x2

] = P
[
X ≤ x2

] − P
[
X ≤ x1

] = FX (x2) − FX (x1) =
∫ x2

x1

fX (x) dx. (3.13)

Theorem 3.3 states that the probability of observing X in an interval is the area under the
PDF graph between the two end points of the interval. This property of the PDF is depicted
in Figure 3.4. Theorem 3.2(c) states that the area under the entire PDF graph is one. Note
that the value of the PDF can be any nonnegative number. It is not a probability and need not
be between zero and one. To gain further insight into the PDF, it is instructive to reconsider
Equation (3.12). For very small values of �, the right side of Equation (3.12) approximately
equals fX (x1)�. When � becomes the infinitesimal dx , we have

P [x < X ≤ x + dx] = fX (x) dx . (3.14)

Equation (3.14) is useful because it permits us to interpret the integral of Theorem 3.3 as
the limiting case of a sum of probabilities of events {x < X ≤ x + dx}.

Example 3.4 For the experiment in Examples 3.1 and 3.2, find the PDF of X and the probability of
the event {1/4 < X ≤ 3/4}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Taking the derivative of the CDF in Equation (3.8), fX (x) = 0, when x < 0 or x ≥ 1.
For x between 0 and 1 we have fX (x) = d FX (x)/dx = 1. Thus the PDF of X is

0 0.5 1
0

0.5

1

x

f X
(x

)

fX (x) =
{

1 0 ≤ x < 1,

0 otherwise.
(3.15)

The fact that the PDF is constant over the range of possible values of X reflects the
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fact that the pointer has no favorite stopping places on the circumference of the circle.
To find the probability that X is between 1/4 and 3/4, we can use either Theorem 3.1
or Theorem 3.3. Thus

P [1/4 < X ≤ 3/4] = FX (3/4) − FX (1/4) = 1/2, (3.16)

and equivalently,

P [1/4 < X ≤ 3/4] =
∫ 3/4

1/4
fX (x) dx =

∫ 3/4

1/4
dx = 1/2. (3.17)

When the PDF and CDF are both known it is easier to use the CDF to find the probability
of an interval. However, in many cases we begin with the PDF, in which case it is usually
easiest to use Theorem 3.3 directly. The alternative is to find the CDF explicitly by means
of Theorem 3.2(b) and then to use Theorem 3.1.

Example 3.5 Consider an experiment that consists of spinning the pointer in Example 3.1 three
times and observing Y meters, the maximum value of X in the three spins. In Exam-
ple 5.8, we show that the CDF of Y is

0 0.5 1
0

0.5

1

y

F
Y
(y

)

FY (y) =
⎧⎨
⎩

0 y < 0,

y3 0 ≤ y ≤ 1,

1 y > 1.

(3.18)

Find the PDF of Y and the probability that Y is between 1/4 and 3/4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Definition 3.3,

0 0.5 1
0

1

2

3

y

f Y
(y

)

fY (y) =
{

d fY (y) /dy = 3y2 0 < y ≤ 1,

0 otherwise.
(3.19)

Note that the PDF has values between 0 and 3. Its integral between any pair of
numbers is less than or equal to 1. The graph of fY (y) shows that there is a higher
probability of finding Y at the right side of the range of possible values than at the left
side. This reflects the fact that the maximum of three spins produces higher numbers
than individual spins. Either Theorem 3.1 or Theorem 3.3 can be used to calculate
the probability of observing Y between 1/4 and 3/4:

P [1/4 < Y ≤ 3/4] = FY (3/4) − FY (1/4) = (3/4)3 − (1/4)3 = 13/32, (3.20)

and equivalently,

P [1/4 < Y ≤ 3/4] =
∫ 3/4

1/4
fY (y) dy =

∫ 3/4

1/4
3y2 dy = 13/32. (3.21)
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Note that this probability is less than 1/2, which is the probability of 1/4 < X ≤ 3/4
calculated in Example 3.4 for the uniform random variable.

When we work with continuous random variables, it is usually not necessary to be precise
about specifying whether or not a range of numbers includes the endpoints. This is because
individual numbers have probability zero. In Example 3.2, there are four different sets of
numbers defined by the words X is between 1/4 and 3/4:

A = (1/4, 3/4), B = (1/4, 3/4], C = [1/4, 3/4), D = [1/4, 3/4]. (3.22)

While they are all different events, they all have the same probability because they differ
only in whether they include {X = 1/4}, {X = 3/4}, or both. Since these two sets have
zero probability, their inclusion or exclusion does not affect the probability of the range
of numbers. This is quite different from the situation we encounter with discrete random
variables. Consider random variable Y with PMF

PY (y) =
⎧⎨
⎩

1/6 y = 1/4, y = 1/2,

2/3 y = 3/4,

0 otherwise.
(3.23)

For this random variable Y , the probabilities of the four sets are

P [A] = 1/6, P [B] = 5/6, P [C] = 1/3, P [D] = 1. (3.24)

So we see that the nature of an inequality in the definition of an event does not affect the
probability when we examine continuous random variables. With discrete random variables,
it is critically important to examine the inequality carefully.

If we compare other characteristics of discrete and continuous random variables, we find
that with discrete random variables, many facts are expressed as sums. With continuous
random variables, the corresponding facts are expressed as integrals. For example, when
X is discrete,

P[B] =
∑
x∈B

PX (x). (Theorem 2.1(c))

When X is continuous and B = [x1, x2],

P[x1 < X ≤ x2] =
∫ x2

x1

fX (x) dx . (Theorem 3.3)

Quiz 3.2 Random variable X has probability density function

fX (x) =
{

cxe−x/2 x ≥ 0,

0 otherwise.
(3.25)

Sketch the PDF and find the following:
(1) the constant c (2) the CDF FX (x)

(3) P[0 ≤ X ≤ 4] (4) P[−2 ≤ X ≤ 2]

 



3.3 EXPECTED VALUES 111

3.3 Expected Values

The primary reason that random variables are useful is that they permit us to compute
averages. For a discrete random variable Y , the expected value,

E [Y ] =
∑

yi ∈SY

yi PY (yi ) , (3.26)

is a sum of the possible values yi , each multiplied by its probability. For a continuous random
variable X , this definition is inadequate because all possible values of X have probability
zero. However, we can develop a definition for the expected value of the continuous random
variable X by examining a discrete approximation of X . For a small �, let

Y = �

⌊
X

�

⌋
, (3.27)

where the notation �a� denotes the largest integer less than or equal to a. Y is an approx-
imation to X in that Y = k� if and only if k� ≤ X < k� + �. Since the range of Y is
SY = {. . . ,−�, 0,�, 2�, . . .}, the expected value is

E [Y ] =
∞∑

k=−∞
k�P [Y = k�] =

∞∑
k=−∞

k�P [k� ≤ X < k� + �] . (3.28)

As � approaches zero and the intervals under consideration grow smaller, Y more closely
approximates X . Furthermore, P[k� ≤ X < k� + �] approaches fX (k�)� so that for
small �,

E [X] ≈
∞∑

k=−∞
k� fX (k�) �. (3.29)

In the limit as � goes to zero, the sum converges to the integral in Definition 3.4.

Definition 3.4 Expected Value
The expected value of a continuous random variable X is

E [X] =
∫ ∞

−∞
x fX (x) dx .

When we consider Y , the discrete approximation of X , the intuition developed in Section 2.5
suggests that E[Y ] is what we will observe if we add up a very large number n of independent
observations of Y and divide by n. This same intuition holds for the continuous random
variable X . As n → ∞, the average of n independent samples of X will approach E[X]. In
probability theory, this observation is known as the Law of Large Numbers, Theorem 7.8.

Example 3.6 In Example 3.4, we found that the stopping point X of the spinning wheel experiment
was a uniform random variable with PDF

fX (x) =
{

1 0 ≤ x < 1,

0 otherwise.
(3.30)
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Find the expected stopping point E[X] of the pointer.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E [X] =
∫ ∞
−∞

x fX (x) dx =
∫ 1

0
x dx = 1/2 meter. (3.31)

With no preferred stopping points on the circle, the average stopping point of the
pointer is exactly half way around the circle.

Example 3.7 In Example 3.5, find the expected value of the maximum stopping point Y of the three
spins:

E [Y ] =
∫ ∞
−∞

y fY (y) dy =
∫ 1

0
y(3y2) dy = 3/4 meter. (3.32)

Corresponding to functions of discrete random variables described in Section 2.6, we
have functions g(X) of a continuous random variable X . A function of a continuous
random variable is also a random variable; however, this random variable is not necessarily
continuous!

Example 3.8 Let X be a uniform random variable with PDF

fX (x) =
{

1 0 ≤ x < 1,

0 otherwise.
(3.33)

Let W = g(X) = 0 if X ≤ 1/2, and W = g(X) = 1 if X > 1/2. W is a discrete random
variable with range SW = {0, 1}.

Regardless of the nature of the random variable W = g(X), its expected value can be
calculated by an integral that is analogous to the sum in Theorem 2.10 for discrete random
variables.

Theorem 3.4 The expected value of a function, g(X), of random variable X is

E [g(X)] =
∫ ∞

−∞
g(x) fX (x) dx .

Many of the properties of expected values of discrete random variables also apply to con-
tinuous random variables. Definition 2.16 and Theorems 2.11, 2.12, 2.13, and 2.14 apply
to all random variables. All of these relationships are written in terms of expected values.
We can summarize these relationships in the following theorem.

Theorem 3.5 For any random variable X,

(a) E[X − μX ] = 0,

(b) E[a X + b] = a E[X] + b,

(c) Var[X] = E[X2] − μ2
X ,

(d) Var[a X + b] = a2 Var[X].
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The method of calculating expected values depends on the type of random variable,
discrete or continuous. Theorem 3.4 states that E[X2], the second moment of X , and
Var[X] are the integrals

E
[

X2
]

=
∫ ∞

−∞
x2 fX (x) dx, Var[X] =

∫ ∞

−∞
(x − μX )2 fX (x) dx . (3.34)

Our interpretation of expected values of discrete random variables carries over to continuous
random variables. E[X] represents a typical value of X , and the variance describes the
dispersion of outcomes relative to the expected value. Furthermore, if we view the PDF
fX (x) as the density of a mass distributed on a line, then E[X] is the center of mass.

Example 3.9 Find the variance and standard deviation of the pointer position in Example 3.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To compute Var[X], we use Theorem 3.5(c): Var[X] = E[X2] − μ2

X . We calculate
E[X2] directly from Theorem 3.4 with g(X) = X2:

E
[

X2
]

=
∫ ∞
−∞

x2 fX (x) dx =
∫ 1

0
x2 dx = 1/3. (3.35)

In Example 3.6, we have E[X] = 1/2. Thus Var[X] = 1/3 − (1/2)2 = 1/12, and the
standard deviation is σX = √

Var[X] = 1/
√

12 = 0.289 meters.

Example 3.10 Find the variance and standard deviation of Y , the maximum pointer position after
three spins, in Example 3.5.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We proceed as in Example 3.9. We have fY (y) from Example 3.5 and E[Y ] = 3/4
from Example 3.7:

E
[
Y 2

]
=

∫ ∞
−∞

y2 fY (y) dy =
∫ 1

0
y2

(
3y2

)
dy = 3/5. (3.36)

Thus the variance is
Var [Y ] = 3/5 − (3/4)2 = 3/80 m2, (3.37)

and the standard deviation is σY = 0.194 meters.

Quiz 3.3 The probability density function of the random variable Y is

fY (y) =
{

3y2/2 −1 ≤ y ≤ 1,

0 otherwise.
(3.38)

Sketch the PDF and find the following:
(1) the expected value E[Y ] (2) the second moment E[Y 2]
(3) the variance Var[Y ] (4) the standard deviation σY
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3.4 Families of Continuous Random Variables

Section 2.3 introduces several families of discrete random variables that arise in a wide
variety of practical applications. In this section, we introduce three important families of
continuous random variables: uniform, exponential, and Erlang. We devote all of Sec-
tion 3.5 to Gaussian random variables. Like the families of discrete random variables, the
PDFs of the members of each family all have the same mathematical form. They differ
only in the values of one or two parameters. We have already encountered an example
of a continuous uniform random variable in the wheel-spinning experiment. The general
definition is

Definition 3.5 Uniform Random Variable
X is a uniform (a, b) random variable if the PDF of X is

fX (x) =
{

1/(b − a) a ≤ x < b,

0 otherwise,

where the two parameters are b > a.

Expressions that are synonymous with X is a uniform random variable are X is uniformly
distributed and X has a uniform distribution.

If X is a uniform random variable there is an equal probability of finding an outcome
x in any interval of length � < b − a within SX = [a, b). We can use Theorem 3.2(b),
Theorem 3.4, and Theorem 3.5 to derive the following properties of a uniform random
variable.

Theorem 3.6 If X is a uniform (a, b) random variable,

(a) The CDF of X is

FX (x) =
⎧⎨
⎩

0 x ≤ a,

(x − a)/(b − a) a < x ≤ b,

1 x > b.

(b) The expected value of X is E[X] = (b + a)/2.

(c) The variance of X is Var[X] = (b − a)2/12.

Example 3.11 The phase angle, �, of the signal at the input to a modem is uniformly distributed
between 0 and 2π radians. Find the CDF, the expected value, and the variance of �.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the problem statement, we identify the parameters of the uniform (a, b) random
variable as a = 0 and b = 2π . Therefore the PDF of � is

f� (θ) =
{

1/(2π) 0 ≤ θ < 2π,

0 otherwise.
(3.39)

The CDF is

F� (θ) =
⎧⎨
⎩

0 θ ≤ 0,

θ/(2π) 0 < x ≤ 2π,

1 x > 2π.

(3.40)
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The expected value is E[�] = b/2 = π radians, and the variance is Var[�] =
(2π)2/12 = π2/3 rad2.

The relationship between the family of discrete uniform random variables and the family
of continuous uniform random variables is fairly direct. The following theorem expresses
the relationship formally.

Theorem 3.7 Let X be a uniform (a, b) random variable, where a and b are both integers. Let K = �X�.
Then K is a discrete uniform (a + 1, b) random variable.

Proof Recall that for any x , �x� is the smallest integer greater than or equal to x . It follows that the
event {K = k} = {k − 1 < x ≤ k}. Therefore,

P [K = k] = PK (k) =
∫ k

k−1
PX (x) dx =

{
1/(b − a) k = a + 1, a + 2, . . . , b,

0 otherwise.
(3.41)

This expression for PK (k) conforms to Definition 2.9 of a discrete uniform (a + 1, b) PMF.

The continuous relatives of the family of geometric random variables, Definition 2.6,
are the members of the family of exponential random variables.

Definition 3.6 Exponential Random Variable
X is an exponential (λ) random variable if the PDF of X is

fX (x) =
{

λe−λx x ≥ 0,

0 otherwise,

where the parameter λ > 0.

Example 3.12 The probability that a telephone call lasts no more than t minutes is often modeled as
an exponential CDF.

0 5 10
0

0.5

1

t

F
T
(t

)

FT (t) =
{

1 − e−t/3 t ≥ 0,

0 otherwise.
(3.42)

What is the PDF of the duration in minutes of a telephone conversation? What is the
probability that a conversation will last between 2 and 4 minutes?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We find the PDF of T by taking the derivative of the CDF:

0 5 10
0

0.2

0.4

t

f T
(t

)

fT (t) = d FT (t)

dt
=

{
(1/3)e−t/3 t ≥ 0
0 otherwise

(3.43)
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Therefore, observing Definition 3.6, we recognize that T is an exponential (λ = 1/3)

random variable. The probability that a call lasts between 2 and 4 minutes is

P [2 ≤ T ≤ 4] = F4 (4) − F2 (2) = e−2/3 − e−4/3 = 0.250. (3.44)

Example 3.13 In Example 3.12, what is E[T ], the expected duration of a telephone call? What are
the variance and standard deviation of T ? What is the probability that a call duration
is within ±1 standard deviation of the expected call duration?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using the PDF fT (t) in Example 3.12, we calculate the expected duration of a call:

E [T ] =
∫ ∞
−∞

t fT (t) dt =
∫ ∞

0
t

1

3
e−t/3 dt . (3.45)

Integration by parts (Appendix B, Math Fact B.10) yields

E [T ] = −te−t/3
∣∣∣∞
0

+
∫ ∞

0
e−t/3 dt = 3 minutes. (3.46)

To calculate the variance, we begin with the second moment of T :

E
[
T 2

]
=

∫ ∞
−∞

t2 fT (t) dt =
∫ ∞

0
t2 1

3
e−t/3 dt . (3.47)

Again integrating by parts, we have

E
[
T 2

]
= −t2e−t/3

∣∣∣∞
0

+
∫ ∞

0
(2t)e−t/3 dt = 2

∫ ∞
0

te−t/3 dt . (3.48)

With the knowledge that E[T ] = 3, we observe that
∫ ∞

0 te−t/3 dt = 3E[T ] = 9. Thus
E[T 2] = 6E[T ] = 18 and

Var [T ] = E
[
T 2

]
− (E [T ])2 = 18 − 32 = 9. (3.49)

The standard deviation is σT = √
Var[T ] = 3 minutes. The probability that the call

duration is within 1 standard deviation of the expected value is

P [0 ≤ T ≤ 6] = FT (6) − FT (0) = 1 − e−2 = 0.865 (3.50)

To derive general expressions for the CDF, the expected value, and the variance of an
exponential random variable, we apply Theorem 3.2(b), Theorem 3.4, and Theorem 3.5 to
the exponential PDF in Definition 3.6.
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Theorem 3.8 If X is an exponential (λ) random variable,

(a) FX (x) =
{

1 − e−λx x ≥ 0,

0 otherwise.

(b) E[X] = 1/λ.

(c) Var[X] = 1/λ2.

The following theorem shows the relationship between the family of exponential random
variables and the family of geometric random variables.

Theorem 3.9 If X is an exponential (λ) random variable, then K = �X� is a geometric (p) random
variable with p = 1 − e−λ.

Proof As in the proof of Theorem 3.7, the definition of K implies PK (k) = P[k − 1 < X ≤ k].
Referring to the CDF of X in Theorem 3.8, we observe

PK (k) = Fx (k) − Fx (k − 1) = e−a(k−1) − e−ak = (e−a)k−1(1 − e−a). (3.51)

If we let p = 1 − e−λ, we have PK (k) = p(1 − p)k−1, which conforms to Definition 2.6 of a
geometric (p) random variable with p = 1 − e−λ.

Example 3.14 Phone company A charges $0.15 per minute for telephone calls. For any fraction of
a minute at the end of a call, they charge for a full minute. Phone Company B also
charges $0.15 per minute. However, Phone Company B calculates its charge based
on the exact duration of a call. If T , the duration of a call in minutes, is an exponential
(λ = 1/3) random variable, what are the expected revenues per call E[RA] and E[RB]
for companies A and B?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Because T is an exponential random variable, we have in Theorem 3.8 (and in Exam-
ple 3.13), E[T ] = 1/λ = 3 minutes per call. Therefore, for phone company B, which
charges for the exact duration of a call,

E [RB ] = 0.15E [T ] = $0.45 per call. (3.52)

Company A, by contrast, collects $0.15�T� for a call of duration T minutes. The-
orem 3.9 states that K = �T � is a geometric random variable with parameter p =
1 − e−1/3. Therefore, the expected revenue for Company A is

E [RA] = 0.15E [K ] = 0.15/p = (0.15)(3.53) = $0.529 per call. (3.53)

In Theorem 6.11, we show that the sum of a set of independent identically distributed
exponential random variables is an Erlang random variable.
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Definition 3.7 Erlang Random Variable
X is an Erlang (n, λ) random variable if the PDF of X is

fX (x) =
⎧⎨
⎩

λn xn−1e−λx

(n − 1)! x ≥ 0,

0 otherwise.

where the parameter λ > 0, and the parameter n ≥ 1 is an integer.

The parameter n is often called the order of an Erlang random variable. Problem 3.4.10
outlines a procedure to verify that the integral of the Erlang PDF over all x is 1. The
Erlang (n = 1, λ) random variable is identical to the exponential (λ) random variable.
Just as exponential random variables are related to geometric random variables, the family
of Erlang continuous random variables is related to the family of Pascal discrete random
variables.

Theorem 3.10 If X is an Erlang (n, λ) random variable, then

E [X] = n

λ
, Var [X] = n

λ2
.

By comparing Theorem 3.8 and Theorem 3.10, we see for X , an Erlang (n, λ) random
variable, and Y , an exponential (λ) random variable, that E[X] = nE[Y ] and Var[X] =
n Var[Y ]. In the following theorem, we can also connect Erlang and Poisson random
variables.

Theorem 3.11 Let Kα denote a Poisson (α) random variable. For any x > 0, the CDF of an Erlang (n, λ)

random variable X satisfies

FX (x) = 1 − FKλx (n − 1) = 1 −
n−1∑
k=0

(λx)ke−λx

k! .

Problem 3.4.12 outlines a proof of Theorem 3.11.

Quiz 3.4 Continuous random variable X has E[X] = 3 and Var[X] = 9. Find the PDF, fX (x), if
(1) X has an exponential PDF, (2) X has a uniform PDF.

3.5 Gaussian Random Variables

Bell-shaped curves appear in many applications of probability theory. The probability
models in these applications are members of the family of Gaussian random variables.
Chapter 6 contains a mathematical explanation for the prevalence of Gaussian random
variables in models of practical phenomena. Because they occur so frequently in practice,
Gaussian random variables are sometimes referred to as normal random variables.
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(a) μ = 2, σ = 1/2 (b) μ = 2, σ = 2

Figure 3.5 Two examples of a Gaussian random variable X with expected value μ and standard
deviation σ .

Definition 3.8 Gaussian Random Variable
X is a Gaussian (μ, σ ) random variable if the PDF of X is

fX (x) = 1√
2πσ 2

e−(x−μ)2/2σ 2
,

where the parameter μ can be any real number and the parameter σ > 0.

Many statistics texts use the notation X is N[μ, σ 2] as shorthand for X is a Gaussian (μ, σ )

random variable. In this notation, the N denotes normal. The graph of fX (x) has a bell
shape, where the center of the bell is x = μ and σ reflects the width of the bell. If σ is small,
the bell is narrow, with a high, pointy peak. If σ is large, the bell is wide, with a low, flat
peak. (The height of the peak is 1/σ

√
2π .) Figure 3.5 contains two examples of Gaussian

PDFs with μ = 2. In Figure 3.5(a), σ = 0.5, and in Figure 3.5(b), σ = 2. Of course, the
area under any Gaussian PDF is

∫ ∞
−∞ fX (x) dx = 1. Furthermore, the parameters of the

PDF are the expected value and the standard deviation of X .

Theorem 3.12 If X is a Gaussian (μ, σ ) random variable,

E [X] = μ Var [X] = σ 2.

The proof of Theorem 3.12, as well as the proof that the area under a Gaussian PDF is 1,
employs integration by parts and other calculus techniques. We leave them as an exercise
for the reader in Problem 3.5.9.

It is impossible to express the integral of a Gaussian PDF between noninfinite limits as
a function that appears on most scientific calculators. Instead, we usually find integrals
of the Gaussian PDF by referring to tables, such as Table 3.1, that have been obtained by
numerical integration. To learn how to use this table, we introduce the following important
property of Gaussian random variables.
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Theorem 3.13 If X is Gaussian (μ, σ ), Y = a X + b is Gaussian (aμ + b, aσ).

The theorem states that any linear transformation of a Gaussian random variable produces
another Gaussian random variable. This theorem allows us to relate the properties of an
arbitrary Gaussian random variable to the properties of a specific random variable.

Definition 3.9 Standard Normal Random Variable
The standard normal random variable Z is the Gaussian (0, 1) random variable.

Theorem 3.12 indicates that E[Z ] = 0 and Var[Z ] = 1. The tables that we use to find
integrals of Gaussian PDFs contain values of FZ (z), the CDF of Z . We introduce the special
notation 	(z) for this function.

Definition 3.10 Standard Normal CDF
The CDF of the standard normal random variable Z is

	(z) = 1√
2π

∫ z

−∞
e−u2/2 du.

Given a table of values of 	(z), we use the following theorem to find probabilities of a
Gaussian random variable with parameters μ and σ .

Theorem 3.14 If X is a Gaussian (μ, σ ) random variable, the CDF of X is

FX (x) = 	

(
x − μ

σ

)
.

The probability that X is in the interval (a, b] is

P [a < X ≤ b] = 	

(
b − μ

σ

)
− 	

(
a − μ

σ

)
.

In using this theorem, we transform values of a Gaussian random variable, X , to equivalent
values of the standard normal random variable, Z . For a sample value x of the random
variable X , the corresponding sample value of Z is

z = x − μ

σ
(3.54)

Note that z is dimensionless. It represents x as a number of standard deviations relative
to the expected value of X . Table 3.1 presents 	(z) for 0 ≤ z ≤ 2.99. People working
with probability and statistics spend a lot of time referring to tables like Table 3.1. It seems
strange to us that 	(z) isn’t included in every scientific calculator. For many people, it is
far more useful than many of the functions included in ordinary scientific calculators.

Example 3.15 Suppose your score on a test is x = 46, a sample value of the Gaussian (61, 10)

random variable. Express your test score as a sample value of the standard normal
random variable, Z .
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Figure 3.6 Symmetry properties of Gaussian(0,1) PDF.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Equation (3.54) indicates that z = (46 − 61)/10 = −1.5. Therefore your score is 1.5
standard deviations less than the expected value.

To find probabilities of Gaussian random variables, we use the values of 	(z) presented in
Table 3.1. Note that this table contains entries only for z ≥ 0. For negative values of z, we
apply the following property of 	(z).

Theorem 3.15
	(−z) = 1 − 	(z).

Figure 3.6 displays the symmetry properties of 	(z). Both graphs contain the standard
normal PDF. In Figure 3.6(a), the shaded area under the PDF is 	(z). Since the area under
the PDF equals 1, the unshaded area under the PDF is 1 − 	(z). In Figure 3.6(b), the
shaded area on the right is 1 − 	(z) and the shaded area on the left is 	(−z). This graph
demonstrates that 	(−z) = 1 − 	(z).

Example 3.16 If X is the Gaussian (61, 10) random variable, what is P[X ≤ 46]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Theorem 3.14, Theorem 3.15 and the result of Example 3.15, we have

P [X ≤ 46] = FX (46) = 	(−1.5) = 1 − 	(1.5) = 1 − 0.933 = 0.067. (3.55)

This suggests that if your test score is 1.5 standard deviations below the expected
value, you are in the lowest 6.7% of the population of test takers.

Example 3.17 If X is a Gaussian random variable with μ = 61 and σ = 10, what is P[51 < X ≤ 71]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Equation (3.54), we find that the event {51 < X ≤ 71} corresponds to {−1 < Z ≤ 1}.
The probability of this event is

	(1) − 	(−1) = 	(1) − [1 − 	(1)] = 2	(1) − 1 = 0.683. (3.56)
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The solution to Example 3.17 reflects the fact that in an experiment with a Gaussian prob-
ability model, 68.3% (about two-thirds) of the outcomes are within ±1 standard deviation
of the expected value. About 95% (2	(2) − 1) of the outcomes are within two standard
deviations of the expected value.

Tables of 	(z) are useful for obtaining numerical values of integrals of a Gaussian PDF
over intervals near the expected value. Regions further than three standard deviations from
the expected value (corresponding to |z| ≥ 3) are in the tails of the PDF. When |z| > 3, 	(z)
is very close to one; for example, 	(3) = 0.9987 and 	(4) = 0.9999768. The properties
of 	(z) for extreme values of z are apparent in the standard normal complementary CDF.

Definition 3.11 Standard Normal Complementary CDF
The standard normal complementary CDF is

Q(z) = P [Z > z] = 1√
2π

∫ ∞

z
e−u2/2 du = 1 − 	(z).

Although we may regard both 	(3) = 0.9987 and 	(4) = 0.9999768 as being very close
to one, we see in Table 3.2 that Q(3) = 1.35 ·10−3 is almost two orders of magnitude larger
than Q(4) = 3.17 · 10−5.

Example 3.18 In an optical fiber transmission system, the probability of a binary error is Q(
√

γ /2),
where γ is the signal-to-noise ratio. What is the minimum value of γ that produces a
binary error rate not exceeding 10−6?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Referring to Table 3.1, we find that Q(z) < 10−6 when z ≥ 4.75. Therefore, if

√
γ /2 ≥

4.75, or γ ≥ 45, the probability of error is less than 10−6.

Keep in mind that Q(z) is the probability that a Gaussian random variable exceeds
its expected value by more than z standard deviations. We can observe from Table 3.2,
Q(3) = 0.0013. This means that the probability that a Gaussian random variable is more
than three standard deviations above its expected value is approximately one in a thousand.
In conversation we refer to the event {X − μX > 3σX } as a three-sigma event. It is unlikely
to occur. Table 3.2 indicates that the probability of a 5σ event is on the order of 10−7.

Quiz 3.5 X is the Gaussian (0, 1) random variable and Y is the Gaussian (0, 2) random variable.
(1) Sketch the PDFs f X(x) and fY (y) on

the same axes.
(2) What is P[−1 < X ≤ 1]?

(3) What is P[−1 < Y ≤ 1]? (4) What is P[X > 3.5]?
(5) What is P[Y > 3.5]?

3.6 Delta Functions, Mixed Random Variables

Thus far, our analysis of continuous random variables parallels our analysis of discrete
random variables in Chapter 2. Because of the different nature of discrete and continuous
random variables, we represent the probability model of a discrete random variable as a
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z 	(z) z 	(z) z 	(z) z 	(z) z 	(z) z 	(z)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.97725 2.50 0.99379
0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.01 0.97778 2.51 0.99396
0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.02 0.97831 2.52 0.99413
0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.03 0.97882 2.53 0.99430
0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.04 0.97932 2.54 0.99446
0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.05 0.97982 2.55 0.99461
0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.06 0.98030 2.56 0.99477
0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.07 0.98077 2.57 0.99492
0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.08 0.98124 2.58 0.99506
0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.09 0.98169 2.59 0.99520
0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 2.10 0.98214 2.60 0.99534
0.11 0.5438 0.61 0.7291 1.11 0.8665 1.61 0.9463 2.11 0.98257 2.61 0.99547
0.12 0.5478 0.62 0.7324 1.12 0.8686 1.62 0.9474 2.12 0.98300 2.62 0.99560
0.13 0.5517 0.63 0.7357 1.13 0.8708 1.63 0.9484 2.13 0.98341 2.63 0.99573
0.14 0.5557 0.64 0.7389 1.14 0.8729 1.64 0.9495 2.14 0.98382 2.64 0.99585
0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 2.15 0.98422 2.65 0.99598
0.16 0.5636 0.66 0.7454 1.16 0.8770 1.66 0.9515 2.16 0.98461 2.66 0.99609
0.17 0.5675 0.67 0.7486 1.17 0.8790 1.67 0.9525 2.17 0.98500 2.67 0.99621
0.18 0.5714 0.68 0.7517 1.18 0.8810 1.68 0.9535 2.18 0.98537 2.68 0.99632
0.19 0.5753 0.69 0.7549 1.19 0.8830 1.69 0.9545 2.19 0.98574 2.69 0.99643
0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 2.20 0.98610 2.70 0.99653
0.21 0.5832 0.71 0.7611 1.21 0.8869 1.71 0.9564 2.21 0.98645 2.71 0.99664
0.22 0.5871 0.72 0.7642 1.22 0.8888 1.72 0.9573 2.22 0.98679 2.72 0.99674
0.23 0.5910 0.73 0.7673 1.23 0.8907 1.73 0.9582 2.23 0.98713 2.73 0.99683
0.24 0.5948 0.74 0.7704 1.24 0.8925 1.74 0.9591 2.24 0.98745 2.74 0.99693
0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 2.25 0.98778 2.75 0.99702
0.26 0.6026 0.76 0.7764 1.26 0.8962 1.76 0.9608 2.26 0.98809 2.76 0.99711
0.27 0.6064 0.77 0.7794 1.27 0.8980 1.77 0.9616 2.27 0.98840 2.77 0.99720
0.28 0.6103 0.78 0.7823 1.28 0.8997 1.78 0.9625 2.28 0.98870 2.78 0.99728
0.29 0.6141 0.79 0.7852 1.29 0.9015 1.79 0.9633 2.29 0.98899 2.79 0.99736
0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.30 0.98928 2.80 0.99744
0.31 0.6217 0.81 0.7910 1.31 0.9049 1.81 0.9649 2.31 0.98956 2.81 0.99752
0.32 0.6255 0.82 0.7939 1.32 0.9066 1.82 0.9656 2.32 0.98983 2.82 0.99760
0.33 0.6293 0.83 0.7967 1.33 0.9082 1.83 0.9664 2.33 0.99010 2.83 0.99767
0.34 0.6331 0.84 0.7995 1.34 0.9099 1.84 0.9671 2.34 0.99036 2.84 0.99774
0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678 2.35 0.99061 2.85 0.99781
0.36 0.6406 0.86 0.8051 1.36 0.9131 1.86 0.9686 2.36 0.99086 2.86 0.99788
0.37 0.6443 0.87 0.8078 1.37 0.9147 1.87 0.9693 2.37 0.99111 2.87 0.99795
0.38 0.6480 0.88 0.8106 1.38 0.9162 1.88 0.9699 2.38 0.99134 2.88 0.99801
0.39 0.6517 0.89 0.8133 1.39 0.9177 1.89 0.9706 2.39 0.99158 2.89 0.99807
0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713 2.40 0.99180 2.90 0.99813
0.41 0.6591 0.91 0.8186 1.41 0.9207 1.91 0.9719 2.41 0.99202 2.91 0.99819
0.42 0.6628 0.92 0.8212 1.42 0.9222 1.92 0.9726 2.42 0.99224 2.92 0.99825
0.43 0.6664 0.93 0.8238 1.43 0.9236 1.93 0.9732 2.43 0.99245 2.93 0.99831
0.44 0.6700 0.94 0.8264 1.44 0.9251 1.94 0.9738 2.44 0.99266 2.94 0.99836
0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744 2.45 0.99286 2.95 0.99841
0.46 0.6772 0.96 0.8315 1.46 0.9279 1.96 0.9750 2.46 0.99305 2.96 0.99846
0.47 0.6808 0.97 0.8340 1.47 0.9292 1.97 0.9756 2.47 0.99324 2.97 0.99851
0.48 0.6844 0.98 0.8365 1.48 0.9306 1.98 0.9761 2.48 0.99343 2.98 0.99856
0.49 0.6879 0.99 0.8389 1.49 0.9319 1.99 0.9767 2.49 0.99361 2.99 0.99861

Table 3.1 The standard normal CDF 	(y).
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z Q(z) z Q(z) z Q(z) z Q(z) z Q(z)

3.00 1.35·10−3 3.40 3.37·10−4 3.80 7.23·10−5 4.20 1.33·10−5 4.60 2.11·10−6

3.01 1.31·10−3 3.41 3.25·10−4 3.81 6.95·10−5 4.21 1.28·10−5 4.61 2.01·10−6

3.02 1.26·10−3 3.42 3.13·10−4 3.82 6.67·10−5 4.22 1.22·10−5 4.62 1.92·10−6

3.03 1.22·10−3 3.43 3.02·10−4 3.83 6.41·10−5 4.23 1.17·10−5 4.63 1.83·10−6

3.04 1.18·10−3 3.44 2.91·10−4 3.84 6.15·10−5 4.24 1.12·10−5 4.64 1.74·10−6

3.05 1.14·10−3 3.45 2.80·10−4 3.85 5.91·10−5 4.25 1.07·10−5 4.65 1.66·10−6

3.06 1.11·10−3 3.46 2.70·10−4 3.86 5.67·10−5 4.26 1.02·10−5 4.66 1.58·10−6

3.07 1.07·10−3 3.47 2.60·10−4 3.87 5.44·10−5 4.27 9.77·10−6 4.67 1.51·10−6

3.08 1.04·10−3 3.48 2.51·10−4 3.88 5.22·10−5 4.28 9.34·10−6 4.68 1.43·10−6

3.09 1.00·10−3 3.49 2.42·10−4 3.89 5.01·10−5 4.29 8.93·10−6 4.69 1.37·10−6

3.10 9.68·10−4 3.50 2.33·10−4 3.90 4.81·10−5 4.30 8.54·10−6 4.70 1.30·10−6

3.11 9.35·10−4 3.51 2.24·10−4 3.91 4.61·10−5 4.31 8.16·10−6 4.71 1.24·10−6

3.12 9.04·10−4 3.52 2.16·10−4 3.92 4.43·10−5 4.32 7.80·10−6 4.72 1.18·10−6

3.13 8.74·10−4 3.53 2.08·10−4 3.93 4.25·10−5 4.33 7.46·10−6 4.73 1.12·10−6

3.14 8.45·10−4 3.54 2.00·10−4 3.94 4.07·10−5 4.34 7.12·10−6 4.74 1.07·10−6

3.15 8.16·10−4 3.55 1.93·10−4 3.95 3.91·10−5 4.35 6.81·10−6 4.75 1.02·10−6

3.16 7.89·10−4 3.56 1.85·10−4 3.96 3.75·10−5 4.36 6.50·10−6 4.76 9.68·10−7

3.17 7.62·10−4 3.57 1.78·10−4 3.97 3.59·10−5 4.37 6.21·10−6 4.77 9.21·10−7

3.18 7.36·10−4 3.58 1.72·10−4 3.98 3.45·10−5 4.38 5.93·10−6 4.78 8.76·10−7

3.19 7.11·10−4 3.59 1.65·10−4 3.99 3.30·10−5 4.39 5.67·10−6 4.79 8.34·10−7

3.20 6.87·10−4 3.60 1.59·10−4 4.00 3.17·10−5 4.40 5.41·10−6 4.80 7.93·10−7

3.21 6.64·10−4 3.61 1.53·10−4 4.01 3.04·10−5 4.41 5.17·10−6 4.81 7.55·10−7

3.22 6.41·10−4 3.62 1.47·10−4 4.02 2.91·10−5 4.42 4.94·10−6 4.82 7.18·10−7

3.23 6.19·10−4 3.63 1.42·10−4 4.03 2.79·10−5 4.43 4.71·10−6 4.83 6.83·10−7

3.24 5.98·10−4 3.64 1.36·10−4 4.04 2.67·10−5 4.44 4.50·10−6 4.84 6.49·10−7

3.25 5.77·10−4 3.65 1.31·10−4 4.05 2.56·10−5 4.45 4.29·10−6 4.85 6.17·10−7

3.26 5.57·10−4 3.66 1.26·10−4 4.06 2.45·10−5 4.46 4.10·10−6 4.86 5.87·10−7

3.27 5.38·10−4 3.67 1.21·10−4 4.07 2.35·10−5 4.47 3.91·10−6 4.87 5.58·10−7

3.28 5.19·10−4 3.68 1.17·10−4 4.08 2.25·10−5 4.48 3.73·10−6 4.88 5.30·10−7

3.29 5.01·10−4 3.69 1.12·10−4 4.09 2.16·10−5 4.49 3.56·10−6 4.89 5.04·10−7

3.30 4.83·10−4 3.70 1.08·10−4 4.10 2.07·10−5 4.50 3.40·10−6 4.90 4.79·10−7

3.31 4.66·10−4 3.71 1.04·10−4 4.11 1.98·10−5 4.51 3.24·10−6 4.91 4.55·10−7

3.32 4.50·10−4 3.72 9.96·10−5 4.12 1.89·10−5 4.52 3.09·10−6 4.92 4.33·10−7

3.33 4.34·10−4 3.73 9.57·10−5 4.13 1.81·10−5 4.53 2.95·10−6 4.93 4.11·10−7

3.34 4.19·10−4 3.74 9.20·10−5 4.14 1.74·10−5 4.54 2.81·10−6 4.94 3.91·10−7

3.35 4.04·10−4 3.75 8.84·10−5 4.15 1.66·10−5 4.55 2.68·10−6 4.95 3.71·10−7

3.36 3.90·10−4 3.76 8.50·10−5 4.16 1.59·10−5 4.56 2.56·10−6 4.96 3.52·10−7

3.37 3.76·10−4 3.77 8.16·10−5 4.17 1.52·10−5 4.57 2.44·10−6 4.97 3.35·10−7

3.38 3.62·10−4 3.78 7.84·10−5 4.18 1.46·10−5 4.58 2.32·10−6 4.98 3.18·10−7

3.39 3.49·10−4 3.79 7.53·10−5 4.19 1.39·10−5 4.59 2.22·10−6 4.99 3.02·10−7

Table 3.2 The standard normal complementary CDF Q(z).
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PMF and we represent the probability model of a continuous random variable as a PDF.
These functions are important because they enable us to calculate conveniently parameters
of probability models (such as the expected value and the variance) and probabilities of
events. Calculations containing a PMF involve sums. The corresponding calculations for
a PDF contain integrals.

In this section, we introduce the unit impulse function δ(x) as a mathematical tool that
unites the analyses of discrete and continuous random variables. The unit impulse, often
called the delta function, allows us to use the same formulas to describe calculations with
both types of random variables. It does not alter the calculations, it just provides a new
notation for describing them. This is especially convenient when we refer to a mixed random
variable, which has properties of both continuous and discrete random variables.

The delta function is not completely respectable mathematically because it is zero every-
where except at one point, and there it is infinite. Thus at its most interesting point it has no
numerical value at all. While δ(x) is somewhat disreputable, it is extremely useful. There
are various definitions of the delta function. All of them share the key property presented
in Theorem 3.16. Here is the definition adopted in this book.

Definition 3.12 Unit Impulse (Delta) Function
Let

dε(x) =
{

1/ε −ε/2 ≤ x ≤ ε/2,

0 otherwise.

The unit impulse function is
δ(x) = lim

ε→0
dε(x).

The mathematical problem with Definition 3.12 is that dε(x) has no limit at x = 0. As
indicated in Figure 3.7, dε(0) just gets bigger and bigger as ε → 0. Although this makes
Definition 3.12 somewhat unsatisfactory, the useful properties of the delta function are
readily demonstrated when δ(x) is approximated by dε(x) for very small ε. We now present
some properties of the delta function. We state these properties as theorems even though
they are not theorems in the usual sense of this text because we cannot prove them. Instead
of theorem proofs, we refer to dε(x) for small values of ε to indicate why the properties
hold.

Although, dε(0) blows up as ε → 0, the area under dε(x) is the integral

∫ ∞

−∞
dε(x) dx =

∫ ε/2

−ε/2

1

ε
dx = 1. (3.57)

That is, the area under dε(x) is always 1, no matter how small the value of ε. We conclude
that the area under δ(x) is also 1:

∫ ∞

−∞
δ(x) dx = 1. (3.58)

This result is a special case of the following property of the delta function.
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Figure 3.7 As ε → 0, dε(x) approaches the delta function δ(x). For each ε, the area under the
curve of dε (x) equals 1.

Theorem 3.16 For any continuous function g(x),

∫ ∞

−∞
g(x)δ(x − x0) dx = g(x0).

Theorem 3.16 is often called the sifting property of the delta function. We can see that
Equation (3.58) is a special case of the sifting property for g(x) = 1 and x0 = 0. To
understand Theorem 3.16, consider the integral

∫ ∞

−∞
g(x)dε(x − x0) dx = 1

ε

∫ x0+ε/2

x0−ε/2
g(x) dx . (3.59)

On the right side, we have the average value of g(x) over the interval [x0 − ε/2, x0 + ε/2].
As ε → 0, this average value must converge to g(x0).

The delta function has a close connection to the unit step function.

Definition 3.13 Unit Step Function
The unit step function is

u(x) =
{

0 x < 0,

1 x ≥ 0.

Theorem 3.17 ∫ x

−∞
δ(v) dv = u(x).

To understand Theorem 3.17, we observe that for any x > 0, we can choose ε ≤ 2x so that

∫ −x

−∞
dε(v) dv = 0,

∫ x

−∞
dε(v) dv = 1. (3.60)
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Thus for any x �= 0, in the limit as ε → 0,
∫ x
−∞ dε(v) dv = u(x). Note that we have not yet

considered x = 0. In fact, it is not completely clear what the value of
∫ 0
−∞ δ(v) dv should

be. Reasonable arguments can be made for 0, 1/2, or 1. We have adopted the convention
that

∫ 0
−∞ δ(x) dx = 1. We will see that this is a particularly convenient choice when we

reexamine discrete random variables.
Theorem 3.17 allows us to write

δ(x) = d u(x)

dx
. (3.61)

Equation (3.61) embodies a certain kind of consistency in its inconsistency. That is, δ(x)

does not really exist at x = 0. Similarly, the derivative of u(x) does not really exist at
x = 0. However, Equation (3.61) allows us to use δ(x) to define a generalized PDF that
applies to discrete random variables as well as to continuous random variables.

Consider the CDF of a discrete random variable, X . Recall that it is constant everywhere
except at points xi ∈ SX , where it has jumps of height PX (xi ). Using the definition of the
unit step function, we can write the CDF of X as

FX (x) =
∑

xi ∈SX

PX (xi) u(x − xi ). (3.62)

From Definition 3.3, we take the derivative of FX (x) to find the PDF fX (x). Referring to
Equation (3.61), the PDF of the discrete random variable X is

fX (x) =
∑

xi∈SX

PX (xi ) δ(x − xi ). (3.63)

When the PDF includes delta functions of the form δ(x − xi), we say there is an impulse
at xi . When we graph a PDF fX (x) that contains an impulse at xi , we draw a vertical
arrow labeled by the constant that multiplies the impulse. We draw each arrow representing
an impulse at the same height because the PDF is always infinite at each such point. For
example, the graph of fX (x) from Equation (3.63) is

x

...

x1 x2

P (x )X 1 P (x )X 2

x3

P (x )X 3

x4

P (x )X 4

f (x)X

Using delta functions in the PDF, we can apply the formulas in this chapter to all random
variables. In the case of discrete random variables, these formulas will be equivalent to the
ones presented in Chapter 2. For example, if X is a discrete random variable, Definition 3.4
becomes

E [X] =
∫ ∞

−∞
x

∑
xi∈SX

PX (xi ) δ(x − xi ) dx . (3.64)
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Figure 3.8 The PMF, CDF, and PDF of the mixed random variable Y .

By writing the integral of the sum as a sum of integrals, and using the sifting property of
the delta function,

E [X] =
∑

xi∈SX

∫ ∞

−∞
x PX (xi ) δ(x − xi ) dx =

∑
xi∈SX

xi PX (xi ) , (3.65)

which is Definition 2.14.

Example 3.19 Suppose Y takes on the values 1, 2, 3 with equal probability. The PMF and the corre-
sponding CDF of Y are

PY (y) =
{

1/3 y = 1, 2, 3,

0 otherwise,
FY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 y < 1,

1/3 1 ≤ y < 2,

2/3 2 ≤ y < 3,

1 y ≥ 3.

(3.66)

Using the unit step function u(y), we can write FY (y) more compactly as

FY (y) = 1

3
u(y − 1) + 1

3
u(y − 2) + 1

3
u(y − 3). (3.67)

The PDF of Y is

fY (y) = d FY (y)

dy
= 1

3
δ(y − 1) + 1

3
δ(y − 2) + 1

3
δ(y − 3). (3.68)

We see that the discrete random variable Y can be represented graphically either by
a PMF PY (y) with bars at y = 1, 2, 3, by a CDF with jumps at y = 1, 2, 3, or by a
PDF fY (y) with impulses at y = 1, 2, 3. These three representations are shown in
Figure 3.8. The expected value of Y can be calculated either by summing over the
PMF PY (y) or integrating over the PDF fY (y). Using the PDF, we have

E [Y ] =
∫ ∞
−∞

y fY (y) dy (3.69)

=
∫ ∞
−∞

y

3
δ(y − 1) dy +

∫ ∞
−∞

y

3
δ(y − 2) dy +

∫ ∞
−∞

y

3
δ(y − 3) dy (3.70)

= 1/3 + 2/3 + 1 = 2. (3.71)
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When FX (x) has a discontinuity at x , we will use FX (x+) and FX (x−) to denote the
upper and lower limits at x . That is,

FX
(
x−) = lim

h→0+ FX (x − h) , FX
(
x+) = lim

h→0+ FX (x + h) . (3.72)

Using this notation, we can say that if the CDF FX (x) has a jump at x0, then fX (x) has an
impulse at x0 weighted by the height of the discontinuity FX (x+

0 ) − FX (x−
0 ).

Example 3.20 For the random variable Y of Example 3.19,

FY
(
2−) = 1/3, FY

(
2+) = 2/3. (3.73)

Theorem 3.18 For a random variable X, we have the following equivalent statements:

(a) P[X = x0] = q

(b) PX (x0) = q

(c) FX (x+
0 ) − FX (x−

0 ) = q

(d) fX (x0) = qδ(0)

In Example 3.19, we saw that fY (y) consists of a series of impulses. The value of fY (y)

is either 0 or ∞. By contrast, the PDF of a continuous random variable has nonzero, finite
values over intervals of x . In the next example, we encounter a random variable that has
continuous parts and impulses.

Definition 3.14 Mixed Random Variable
X is a mixed random variable if and only if fX (x) contains both impulses and nonzero,
finite values.

Example 3.21 Observe someone dialing a telephone and record the duration of the call. In a simple
model of the experiment, 1/3 of the calls never begin either because no one answers
or the line is busy. The duration of these calls is 0 minutes. Otherwise, with probability
2/3, a call duration is uniformly distributed between 0 and 3 minutes. Let Y denote
the call duration. Find the CDF FY (y), the PDF fY (y), and the expected value E[Y ].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let A denote the event that the phone was answered. Since Y ≥ 0, we know that for
y < 0, FY (y) = 0. Similarly, we know that for y > 3, FY (y) = 1. For 0 ≤ y ≤ 3, we
apply the law of total probability to write

FY (y) = P [Y ≤ y] = P
[
Y ≤ y|Ac] P

[
Ac] + P [Y ≤ y|A] P [A] . (3.74)

When Ac occurs, Y = 0, so that for 0 ≤ y ≤ 3, P[Y ≤ y|Ac] = 1. When A occurs, the
call duration is uniformlydistributedover [0, 3], so that for 0 ≤ y ≤ 3, P[Y ≤ y|A] = y/3.
So, for 0 ≤ y ≤ 3,

FY (y) = (1/3)(1) + (2/3)(y/3) = 1/3 + 2y/9. (3.75)
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Finally, the complete CDF of Y is

0 1 2 3
0

1/3

1

y

 F
Y
(y

)

FY (y) =
⎧⎨
⎩

0 y < 0,

1/3 + 2y/9 0 ≤ y < 3,

1 y ≥ 3.

(3.76)

Consequently, the corresponding PDF fY (y) is

0 1 2 3
0

2/9

y

 f Y
(y

)
1/3

fY (y) =
{

δ(y)/3 + 2/9 0 ≤ y ≤ 3,

0 otherwise.
(3.77)

For the mixed random variable Y , it is easiest to calculate E[Y ] using the PDF:

E [Y ] =
∫ ∞
−∞

y
1

3
δ(y) dy +

∫ 3

0

2

9
y dy = 0 + 2

9

y2

2

∣∣∣∣∣
3

0

= 1. (3.78)

In Example 3.21, we see that with probability 1/3, Y resembles a discrete random
variable; otherwise, Y behaves like a continuous random variable. This behavior is reflected
in the impulse in the PDF of Y . In many practical applications of probability, mixed random
variables arise as functions of continuous random variables. Electronic circuits perform
many of these functions. Example 3.25 in Section 3.7 gives one example.

Before going any further, we review what we have learned about random variables. For
any random variable X ,

• X always has a CDF FX (x) = P[X ≤ x].
• If FX (x) is piecewise flat with discontinuous jumps, then X is discrete.

• If FX (x) is a continuous function, then X is continuous.

• If FX (x) is a piecewise continuous function with discontinuities, then X is mixed.

• When X is discrete or mixed, the PDF fX (x) contains one or more delta functions.

Quiz 3.6 The cumulative distribution function of random variable X is

FX (x) =
⎧⎨
⎩

0 x < −1,

(x + 1)/4 −1 ≤ x < 1,

1 x ≥ 1.

(3.79)

Sketch the CDF and find the following:
(1) P[X ≤ 1] (2) P[X < 1]
(3) P[X = 1] (4) the PDF fX (x)
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3.7 Probability Models of Derived Random Variables

Here we return to derived random variables. If Y = g(X), we discuss methods of deter-
mining fY (y) from g(X) and fX (x). The approach is considerably different from the task
of determining a derived PMF of a discrete random variable. In the discrete case we derive
the new PMF directly from the original one. For continuous random variables we follow a
two-step procedure.

1. Find the CDF FY (y) = P[Y ≤ y].
2. Compute the PDF by calculating the derivative fY (y) = d FY (y)/dy.

This procedure always works and is very easy to remember. The method is best demon-
strated by examples. However, as we shall see in the examples, following the procedure,
in particular finding FY (y), can be tricky. Before proceeding to the examples, we add one
reminder. If you have to find E[g(X)], it is easier to calculate E[g(X)] directly using
Theorem 3.4 than it is to derive the PDF of Y = g(X) and then use the definition of ex-
pected value, Definition 3.4. The material in this section applies to situations in which it is
necessary to find a complete probability model of Y = g(X).

Example 3.22 In Example 3.2, Y centimeters is the location of the pointer on the 1-meter circumfer-
ence of the circle. Use the solution of Example 3.2 to derive fY (y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The function Y = 100X , where X in Example 3.2 is the location of the pointer mea-
sured in meters. To find the PDF of Y , we first find the CDF FY (y). Example 3.2
derives the CDF of X ,

FX (x) =
⎧⎨
⎩

0 x < 0,

x 0 ≤ x < 1,

1 x ≥ 1.

(3.80)

We use this result to find the CDF FY (y) = P[100X ≤ y]. Equivalently,

FY (y) = P [X ≤ y/100] = FX (y/100) =
⎧⎨
⎩

0 y/100 < 0,

y/100 0 ≤ y/100 < 1,

1 y/100 ≥ 1.

(3.81)

We take the derivative of the CDF of Y over each of the three intervals to find the PDF:

fY (y) = d FY (y)

dy
=

{
1/100 0 ≤ y < 100,

0 otherwise.
(3.82)

We see that Y is the uniform (0, 100) random variable.

We use this two-step procedure in the following theorem to generalize Example 3.22 by
deriving the CDF and PDF for any scale change and any continuous random variable.

Theorem 3.19 If Y = a X, where a > 0, then Y has CDF and PDF

FY (y) = FX (y/a) , fY (y) = 1

a
fX (y/a) .

Proof First, we find the CDF of Y ,
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FY (y) = P [aX ≤ y] = P [X ≤ y/a] = FX (y/a) . (3.83)

We take the derivative of FY (y) to find the PDF:

fY (y) = d FY (y)

dy
= 1

a
fX (y/a) . (3.84)

Theorem 3.19 states that multiplying a random variable by a positive constant stretches
(a > 1) or shrinks (a < 1) the original PDF.

Example 3.23 Let X have the triangular PDF

fX (x) =
{

2x 0 ≤ x ≤ 1,

0 otherwise.
(3.85)

Find the PDF of Y = aX . Sketch the PDF of Y for a = 1/2, 1, 2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For any a > 0, we use Theorem 3.19 to find the PDF:

0 1 2 3
0

1

2

3

4

 y

f Y
(y

)

 a=1/2

 a=1

 a=2

fY (y) = 1

a
fX (y/a) (3.86)

=
{

2y/a2 0 ≤ y ≤ a,

0 otherwise.
(3.87)

As a increases, the PDF stretches horizontally.

For the families of continuous random variables in Sections 3.4 and 3.5, we can use
Theorem 3.19 to show that multiplying a random variable by a constant produces a new
family member with transformed parameters.

Theorem 3.20 Y = a X, where a > 0.

(a) If X is uniform (b, c), then Y is uniform (ab, ac).

(b) If X is exponential (λ), then Y is exponential (λ/a).

(c) If X is Erlang (n, λ), then Y is Erlang (n, λ/a).

(d) If X is Gaussian (μ, σ ), then Y is Gaussian (aμ, aσ).

The next theorem shows that adding a constant to a random variable simply shifts the
CDF and the PDF by that constant.

Theorem 3.21 If Y = X + b,
FY (y) = FX (y − b) , fY (y) = fX (y − b) .
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Proof First, we find the CDF of V ,

FY (y) = P [X + b ≤ y] = P [X ≤ y − b] = FX (y − b) . (3.88)

We take the derivative of FY (y) to find the PDF:

fY (y) = d FY (y)

dy
= fX (y − b) . (3.89)

Thus far, the examples and theorems in this section relate to a continuous random variable
derived from another continuous random variable. By contrast, in the following example,
the function g(x) transforms a continuous random variable to a discrete random variable.

Example 3.24 Let X be a random variable with CDF FX (x). Let Y be the output of a clipping circuit
with the characteristic Y = g(X) where

−5 0 5
0

2

4

 x

 g
(x

)

g(x) =
{

1 x ≤ 0,

3 x > 0.
(3.90)

Express FY (y) and fY (y) in terms of FX (x) and fX (x).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Before going deeply into the math, it is helpful to think about the nature of the derived
random variable Y . The definition of g(x) tells us that Y has only two possible values,
Y = 1 and Y = 3. Thus Y is a discrete random variable. Furthermore, the CDF, FY (y),
has jumps at y = 1 and y = 3; it is zero for y < 1 and it is one for y ≥ 3. Our job is to
find the heights of the jumps at y = 1 and y = 3. In particular,

FY (1) = P [Y ≤ 1] = P [X ≤ 0] = FX (0) . (3.91)

This tells us that the CDF jumps by FX (0) at y = 1. We also know that the CDF has
to jump to one at y = 3. Therefore, the entire story is

0 1 2 3 4
0

1

y

   
F

Y
(y

)

F
X
(0) FY (y) =

⎧⎨
⎩

0 y < 1,

FX (0) 1 ≤ y < 3,

1 y ≥ 3.

(3.92)

The PDF consists of impulses at y = 1 and y = 3. The weights of the impulses are
the sizes of the two jumps in the CDF: FX (0) and 1 − FX (0), respectively.

0 1 2 3 4

F
X
(0) 1−F

X
(0)

y

 f Y
(y

)

fY (y) = FX (0) δ(y − 1) + [1 − FX (0)]δ(y − 3). (3.93)
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The next two examples contain functions that transform continuous random variables to
mixed random variables.

Example 3.25 The output voltage of a microphone is a Gaussian random variable V with expected
value μV = 0 and standard deviation σV = 5 V. The microphone signal is the input
to a limiter circuit with cutoff value ±10 V. The random variable W is the output of the
limiter:

−10 0 10

−10

0

10

 V

 g
(V

)

W = g(V ) =
⎧⎨
⎩

−10 V < −10,

V −10 ≤ V ≤ 10,

10 V > 10.

(3.94)

What are the CDF and PDF of W?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To find the CDF, we first observe that the minimum value of W is −10 and the maximum
value is 10. Therefore,

FW (w) = P [W ≤ w] =
{

0 w < −10,

1 w > 10.
(3.95)

For −10 ≤ v ≤ 10, W = V and

FW (w) = P [W ≤ w] = P [V ≤ w] = FV (w) . (3.96)

Because V is Gaussian (0, 5), Theorem 3.14 states that FV (v) = 	(v/5). Therefore,

FW (w) =
⎧⎨
⎩

0 w < −10,

	(w/5) −10 ≤ w ≤ 10,

1 w > 10.

(3.97)

Note that the CDF jumps from 0 to 	(−10/5) = 0.023 at w = −10 and that it jumps
from 	(10/5) = 0.977 to 1 at w = 10. Therefore,

fW (w) = d FW (w)

dw
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.023δ(w + 10) w = −10,
1

5
√

2π
e−w2/50 −10 < w < 10,

0.023δ(w − 10) w = 10,

0 otherwise.

(3.98)

Derived density problems like the ones in the previous three examples are difficult
because there are no simple cookbook procedures for finding the CDF. The following
example is tricky because g(X) transforms more than one value of X to the same Y .

Example 3.26 Suppose X is uniformly distributed over [−1, 3] and Y = X2. Find the CDF FY (y) and
the PDF fY (y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the problem statement and Definition 3.5, the PDF of X is

fX (x) =
{

1/4 −1 ≤ x ≤ 3,

0 otherwise.
(3.99)
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Following the two-step procedure, we first observe that 0 ≤ Y ≤ 9, so FY (y) = 0 for
y < 0, and FY (y) = 1 for y > 9. To find the entire CDF,

FY (y) = P
[

X2 ≤ y
]

= P
[−√

y ≤ X ≤ √
y
] =

∫ √
y

−√
y

fX (x) dx. (3.100)

This is somewhat tricky because the calculation of the integral depends on the exact
value of y. For 0 ≤ y ≤ 1, −√

y ≤ x ≤ √
y and

3

1/2

f (x)X

x

yy-

FY (y) =
∫ √

y

−√
y

1

4
dx =

√
y

2
. (3.101)

For 1 ≤ y ≤ 9, −1 ≤ x ≤ √
y and

3-1

1/2

f (x)X

x

y

FY (y) =
∫ √

y

−1

1

4
dx =

√
y + 1

4
. (3.102)

By combining the separate pieces, we can write a complete expression for FY (y). To
find fY (y), we take the derivative of FY (y) over each interval.

0 5 10
0

0.5

1

y

F
Y
(y

)

FY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 y < 0,√
y/2 0 ≤ y ≤ 1,

(
√

y + 1)/4 1 ≤ y ≤ 9,

1 y ≥ 9.

(3.103)

0 5 10
0

0.5

y

f Y
(y

)

fY (y) =
⎧⎨
⎩

1/4
√

y 0 ≤ y ≤ 1,

1/8
√

y 1 ≤ y ≤ 9,

0 otherwise.

(3.104)

We end this section with a useful application of derived random variables. The following
theorem shows how to derive various types of random variables from the transformation
X = g(U) where U is a uniform (0, 1) random variable. In Section 3.9, we use this
technique with the Matlab rand function approximating U to generate sample values
of a random variable X .
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Theorem 3.22 Let U be a uniform (0, 1) random variable and let F(x) denote a cumulative distribution
function with an inverse F−1(u) defined for 0 < u < 1. The random variable X = F−1(U)
has CDF FX (x) = F(x).

Proof First, we verify that F−1(u) is a nondecreasing function. To show this, suppose that for
u ≥ u′, x = F−1(u) and x ′ = F−1(u′). In this case, u = F(x) and u′ = F(x ′). Since F(x) is
nondecreasing, F(x) ≥ F(x ′) implies that x ≥ x ′. Hence, for the random variable X = F−1(U),
we can write

FX (x) = P
[

F−1(U) ≤ x
]

= P [U ≤ F(x)] = F(x). (3.105)

We observe that the requirement that FX (u) have an inverse for 0 < u < 1 is quite strict.
For example, this requirement is not met by the mixed random variables of Section 3.6.
A generalizaton of the theorem that does hold for mixed random variables is given in
Problem 3.7.18. The following examples demonstrate the utility of Theorem 3.22.

Example 3.27 U is the uniform (0, 1) random variable and X = g(U). Derive g(U) such that X is the
exponential (1) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The CDF of X is simply

FX (x) =
{

0 x < 0,

1 − e−x x ≥ 0.
(3.106)

Note that if u = FX (x) = 1 − e−x , then x = − ln(1 − u). That is, for any u ≥ 0,
F−1

X (u) = − ln(1 − u). Thus, by Theorem 3.22,

X = g(U) = − ln(1 − U) (3.107)

is an exponential random variable with parameter λ = 1. Problem 3.7.5 asks the
reader to derive the PDF of X = − ln(1 − U) directly from first principles.

Example 3.28 For a uniform (0, 1) random variable U , find a function g(·) such that X = g(U) has a
uniform (a, b) distribution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The CDF of X is

FX (x) =
⎧⎨
⎩

0 x < a,

(x − a)/(b − a) a ≤ x ≤ b,

1 x > b.

(3.108)

For any u satisfying 0 ≤ u ≤ 1, u = FX (x) = (x − a)/(b − a) if and only if

x = F−1
X (u) = a + (b − a)u. (3.109)

Thus by Theorem 3.22, X = a + (b − a)U is a uniform (a, b) random variable. Note
that we could have reached the same conclusion by observing that Theorem 3.20
implies (b − a)U has a uniform (0, b − a) distribution and that Theorem 3.21 implies
a + (b − a)U has a uniform (a, (b − a) + a) distribution. Another approach, as taken
in Problem 3.7.13, is to derive the CDF and PDF of a + (b − a)U .

The technique of Theorem 3.22 is particularly useful when the CDF is an easily invertible
function. Unfortunately, there are many cases, including Gaussian and Erlang random
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variables, when the CDF is difficult to compute much less to invert. In these cases, we will
need to develop other methods.

Quiz 3.7 Random variable X has probability density function

fX (x) =
{

1 − x/2 0 ≤ x ≤ 2,

0 otherwise.
(3.110)

A hard limiter produces

Y =
{

X X ≤ 1,

1 X > 1.
(3.111)

(1) What is the CDF FX (x)? (2) What is P[Y = 1]?
(3) What is FY (y)? (4) What is fY (y)?

3.8 Conditioning a Continuous Random Variable

In an experiment that produces a random variable X , there are occasions in which we cannot
observe X . Instead, we obtain information about X without learning its precise value.

Example 3.29 Recall the experiment in which you wait for the professor to arrive for the probability
lecture. Let X denote the arrival time in minutes either before (X < 0) or after (X > 0)
the scheduled lecture time. When you observe that the professor is already two
minutes late but has not yet arrived, you have learned that X > 2 but you have not
learned the precise value of X .

In general, we learn that an event B has occurred, where B is defined in terms of the
random variable X . For example, B could be the event {X ≤ 33} or {|X | > 1}. Given the
occurrence of the conditioning event B , we define a conditional probability model for the
random variable X .

Definition 3.15 Conditional PDF given an Event
For a random variable X with PDF fX (x) and an event B ⊂ SX with P[B] > 0, the
conditional PDF of X given B is

fX |B (x) =
⎧⎨
⎩

fX (x)

P [B]
x ∈ B,

0 otherwise.

The function fX |B(x) is a probability model for a new random variable related to X . Thus
it has the same properties as any PDF fX (x). For example, the integral of the conditional
PDF over all x is 1 (Theorem 3.2(c)) and the conditional probability of any interval is the
integral of the conditional PDF over the interval (Theorem 3.3).

The definition of the conditional PDF follows naturally from the formula for conditional
probability P[A|B] = P[AB]/P[B] for the infinitesimal event A = {x < X ≤ x + dx}.

 



138 CHAPTER 3 CONTINUOUS RANDOM VARIABLES
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Figure 3.9 The b-bit uniform quantizer shown for b = 3 bits.

Since fX |B(x) is a probability density function, the conditional probability formula yields

fX |B (x) dx = P [x < X ≤ x + dx |B] = P [x < X ≤ x + dx, B]

P [B]
. (3.112)

Example 3.30 For the wheel-spinning experiment of Example 3.1, find the conditional PDF of the
pointer position for spins in which the pointer stops on the left side of the circle. What
are the conditional expected value and the conditional standard deviation?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let L denote the left side of the circle. In terms of the stopping position, L = [1/2, 1).
Recalling from Example 3.4 that the pointer position X has a uniform PDF over [0, 1),

P [L] =
∫ 1

1/2
fX (x) dx =

∫ 1

1/2
dx = 1/2. (3.113)

Therefore,

fX |L (x) =
{

2 1/2 ≤ x < 1,

0 otherwise.
(3.114)

Example 3.31 The uniform (−r/2, r/2) random variable X is processed by a b-bit uniform quantizer
to produce the quantized output Y . Random variable X is rounded to the nearest
quantizer level. With a b-bit quantizer, there are n = 2b quantization levels. The
quantization step size is � = r/n, and Y takes on values in the set

QY = {yi = �/2 + i�|i = −n/2,−n/2 + 1, . . . , n/2 − 1} . (3.115)

This relationship is shown for b = 3 in Figure 3.9. Given the event Bi that Y = yi , find
the conditional PDF of X given Bi .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In terms of X , we observe that Bi = {i� ≤ X < (i + 1)�}. Thus,

P
[
Bi

] =
∫ (i+1)�

i�
fX (x) dx = �

r
= 1

n
. (3.116)
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By Definition 3.15,

fX |Bi (x) =
⎧⎨
⎩

fX (x)

P
[
Bi

] x ∈ Bi ,

0 otherwise,

=
{

1/� i� ≤ x < (i + 1)�,

0 otherwise.
(3.117)

Given Bi , the conditional PDF of X is uniform over the i th quantization interval.

We observe in Example 3.31 that {Bi} is an event space. The following theorem shows
how we can can reconstruct the PDF of X given the conditional PDFs fX |Bi (x).

Theorem 3.23 Given an event space {Bi } and the conditional PDFs fX |Bi (x),

fX (x) =
∑

i

fX |Bi (x) P [Bi ] .

Although we initially defined the event Bi as a subset of SX , Theorem 3.23 extends
naturally to arbitrary event spaces {Bi} for which we know the conditional PDFs fX |Bi (x).

Example 3.32 Continuing Example 3.3, when symbol “0” is transmitted (event B0), X is the Gaussian
(−5, 2) random variable. When symbol “1” is transmitted (event B1), X is the Gaussian
(5, 2) random variable. Given that symbols “0” and “1” are equally likely to be sent,
what is the PDF of X?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The problem statement implies that P[B0] = P[B1] = 1/2 and

fX |B0 (x) = 1

2
√

2π
e−(x+5)2/8, fX |B1 (x) = 1

2
√

2π
e−(x−5)2/8. (3.118)

By Theorem 3.23,

fX (x) = fX |B0 (x) P
[
B0

] + fX |B1 (x) P
[
B1

]
(3.119)

= 1

4
√

2π

(
e−(x+5)2/8 + e−(x−5)2/8

)
. (3.120)

Problem 3.9.2 asks the reader to graph fX (x) to show its similarity to Figure 3.3.

Conditional probability models have parameters corresponding to the parameters of
unconditional probability models.

Definition 3.16 Conditional Expected Value Given an Event
If {x ∈ B}, the conditional expected value of X is

E [X |B] =
∫ ∞

−∞
x fX |B (x) dx .
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The conditional expected value of g(X) is

E [g(X)|B] =
∫ ∞

−∞
g(x) fX |B (x) dx . (3.121)

The conditional variance is

Var [X |B] = E
[(

X − μX |B
)2 |B

]
= E

[
X2|B

]
− μ2

X |B . (3.122)

The conditional standard deviation is σX |B = √
Var[X |B]. The conditional variance and

conditional standard deviation are useful because they measure the spread of the random
variable after we learn the conditioning information B . If the conditional standard deviation
σX |B is much smaller than σX , then we can say that learning the occurrence of B reduces
our uncertainty about X because it shrinks the range of typical values of X .

Example 3.33 Continuing the wheel spinning of Example 3.30, find the conditional expected value
and the conditional standard deviation of the pointer position X given the event L that
the pointer stops on the left side of the circle.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The conditional expected value and the conditional variance are

E [X |L] =
∫ ∞
−∞

x fX |L (x) dx =
∫ 1

1/2
2x dx = 3/4 meters. (3.123)

Var [X |L] = E
[

X2|L
]

− (E [X |L])2 = 7

12
−

(
3

4

)2
= 1/48 m2. (3.124)

The conditional standard deviation is σX |L = √
Var[X |L] = 0.144 meters. Example 3.9

derives σX = 0.289 meters. That is, σX = 2σX |L . It follows that learning that the
pointer is on the left side of the circle leads to a set of typical values that are within
0.144 meters of 0.75 meters. Prior to learning which half of the circle the pointer is in,
we had a set of typical values within 0.289 of 0.5 meters.

Example 3.34 Suppose the duration T (in minutes) of a telephone call is an exponential (1/3) random
variable:

0 5 10
0

0.2

0.4

t

f T
(t

)

fT (t) =
{

(1/3)e−t/3 t ≥ 0,

0 otherwise.
(3.125)

For calls that last at least 2 minutes, what is the conditional PDF of the call duration?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this case, the conditioning event is T > 2. The probability of the event is

P [T > 2] =
∫ ∞

2
fT (t) dt = e−2/3. (3.126)
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The conditional PDF of T given T > 2 is

0 5 10
0

0.2

0.4

t

f T
|T

>
2(t

)

fT |T >2 (t) =
{

fT (t)
P[T >2] t > 2,

0 otherwise,
(3.127)

=
{ 1

3 e−(t−2)/3 t > 2,

0 otherwise.
(3.128)

Note that fT |T >2(t) is a time-shifted version of fT (t). In particular, fT |T >2(t) =
fT (t − 2). An interpretation of this result is that if the call is in progress after 2 minutes,
the duration of the call is 2 minutes plus an exponential time equal to the duration of
a new call.

The conditional expected value is

E [T |T > 2] =
∫ ∞

2
t

1

3
e−(t−2)/3 dt . (3.129)

Integration by parts (Appendix B, Math Fact B.10) yields

E [T |T > 2] = −te−(t−2)/3
∣∣∣∞
2

+
∫ ∞

2
e−(t−2)/3 dt = 2 + 3 = 5 minutes. (3.130)

Recall in Example 3.13 that the expected duration of the call is E[T ] = 3 minutes. We
interpret E[T |T > 2] by saying that if the call is still in progress after 2 minutes, the
additional duration is 3 minutes (the same as the expected time of a new call) and the
expected total time is 5 minutes.

Quiz 3.8 The probability density function of random variable Y is

fY (y) =
{

1/10 0 ≤ y < 10,

0 otherwise.
(3.131)

Find the following:
(1) P[Y ≤ 6] (2) the conditional PDF fY |Y≤6(y)

(3) P[Y > 8] (4) the conditional PDF fY |Y>8(y)

(5) E[Y |Y ≤ 6] (6) E[Y |Y > 8]

3.9 Matlab

Probability Functions

Now that we have introduced continuous random variables, we can say that the built-in
function y=rand(m,n) is Matlab’s approximation to a uniform (0, 1) random variable.
It is an approximation for two reasons. First, rand produces pseudorandom numbers; the
numbers seem random but are actually the output of a deterministic algorithm. Second,
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rand produces a double precision floating point number, represented in the computer by
64 bits. Thus Matlab distinguishes no more than 264 unique double precision floating
point numbers. By comparision, there are uncountably infinite real numbers in [0, 1). Even
though rand is not random and does not have a continuous range, we can for all practical
purposes use it as a source of independent sample values of the uniform (0, 1) random
variable.

Table 3.3 describes Matlab functions related to four families of continuous random
variables introduced in this’ chapter: uniform, exponential, Erlang, and Gaussian. The
functions calculate directly the CDFs and PDFs of uniform and exponential random vari-
ables. The corresponding pdf and cdf functions are simply defined for our convenience.
For Erlang and Gaussian random variables, the PDFs can be calculated directly but the CDFs
require numerical integration. For Erlang random variables, we can use Theorem 3.11 in
Matlab:

function F=erlangcdf(n,lambda,x)
F=1.0-poissoncdf(lambda*x,n-1);

For the Gaussian CDF, we use the standard Matlab error function

erf(x) = 2√
π

∫ x

0
e−u2

du. (3.132)

It is related to the Gaussian CDF by

	(x) = 1

2
+ 1

2
erf

(
x√
2

)
, (3.133)

which is how we implement the Matlab function phi(x). In each function description
in Table 3.3, x denotes a vector x = [

x1 · · · xm
]′. The pdf function output is a vector

y such that yi = fX (xi ). The cdf function output is a vector y such that yi = FX (xi). The
rv function output is a vector X = [

X1 · · · Xm
]′

such that each Xi is a sample value
of the random variable X . If m = 1, then the output is a single sample value of random
variable X .

Random Samples

We have already employed the rand function to generate random samples of uniform (0, 1)

random variables. Conveniently, Matlab also includes the built-in function randn to
generate random samples of standard normal random variables. Thus we generate Gaussian
(μ, σ ) random variables by stretching and shifting standard normal random variables

function x=gaussrv(mu,sigma,m)
x=mu +(sigma*randn(m,1));

For other continuous random variables, we use Theorem 3.22 to transform a uniform (0, 1)
random variable U into other types of random variables.

Example 3.35 Use Example 3.27 to write a Matlab program that generates m samples of an expo-
nential (λ) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Random Variable Matlab Function Function Output

X Uniform (a, b) y=uniformpdf(a,b,x) yi = fX (xi )

y=uniformcdf(a,b,x) yi = FX (xi )

x=uniformrv(a,b,m) X = [
X1 · · · Xm

]′
X Exponential (λ) y=exponentialpdf(lambda,x) yi = fX (xi )

y=exponentialcdf(lambda,x) yi = FX (xi )

x=exponentialrv(lambda,m) X = [
X1 · · · Xm

]′
X Erlang (n, λ) y=erlangpdf(n,lambda,x) yi = fX (xi )

y=erlangcdf(n,lambda,x) yi = FX (xi )

x=erlangrv(n,lambda,m) X = [
X1 · · · Xm

]′
X Gaussian (μ, σ 2) y=gausspdf(mu,sigma,x) yi = fX (xi )

y=gausscdf(mu,sigma,x) yi = FX (xi )

x=gaussrv(mu,sigma,m) X = [
X1 · · · Xm

]′
Table 3.3 Matlab functions for continuous random variables.

In Example 3.27, we found that if U is a uniform (0, 1) random variable, then

Y = − ln(1 − U) (3.134)

is an exponential (λ = 1) random variable. By Theorem 3.20(b), X = Y/λ is an
exponential (λ) random variable. Using rand to approximate U , we have the following
Matlab code:

function x=exponentialrv(lambda,m)
x=-(1/lambda)*log(1-rand(m,1));

Example 3.36 Use Example 3.28 to write a Matlab function that generates m samples of a uniform
(a, b) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 3.28 says that Y = a + (b − a)U is a uniform (a, b) random variable. Thus
we use the following code:

function x=uniformrv(a,b,m)
x=a+(b-a)*rand(m,1);

Theorem 6.11 will demonstrate that the sum of n independent exponential (λ) random
variables is an Erlang random variable. The following code generates m sample values of
the Erlang (n, λ) random variable.

function x=erlangrv(n,lambda,m)
y=exponentialrv(lambda,m*n);
x=sum(reshape(y,m,n),2);

Note that we first generate nm exponential random variables. The reshape function
arranges these samples in an m × n array. Summing across the rows yields m Erlang
samples.

Finally, for a random variable X with an arbitrary CDF FX(x), we implement the function
icdfrv.m which uses Theorem 3.22 for generating random samples. The key is that
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we need to define a Matlab function x=icdfx(u) that calculates x = F−1
X (u). The

function icdfx(u) is then passed as an argument to icdfrv.mwhich generates samples
of X . Note that Matlab passes a function as an argument to another function using a
function handle, which is a kind of pointer. Here is the code for icdfrv.m:

function x=icdfrv(icdfhandle,m)
%usage: x=icdfrv(@icdf,m)
%returns m samples of rv X with inverse CDF icdf.m
u=rand(m,1);
x=feval(icdfhandle,u);

The following example shows how to use icdfrv.m.

Example 3.37 Write a Matlab function that uses icdfrv.m to generatesamples of Y , the maximum
of three pointer spins, in Example 3.5.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Equation (3.18), we see that for 0 ≤ y ≤ 1, FY (y) = y3. If u = FY (y) = y3, then
y = F−1

Y (u) = u1/3. So we define (and save to disk) icdf3spin.m:

function y = icdf3spin(u);
y=u.ˆ(1/3);

Now, y=icdfrv(@icdf3spin,1000) generates a vector holding 1000 samples of
random variable Y . The notation @icdf3spin is the function handle for the function
icdf3spin.m.

Keep in mind that for the Matlab code to run quickly, it is best for the inverse CDF
function, icdf3spin.m in the case of the last example, to process the vector u without
using a for loop to find the inverse CDF for each element u(i). We also note that this
same technique can be extended to cases where the inverse CDF F−1

X (u) does not exist for
all 0 ≤ u ≤ 1. For example, the inverse CDF does not exist if X is a mixed random variable
or if fX (x) is constant over an interval (a, b). How to use icdfrv.m in these cases is
addressed in Problems 3.7.18 and 3.9.9.

Quiz 3.9 Write a Matlab function t=t2rv(m) that generates m samples of a random variable
with the PDF fT |T >2(t) as given in Example 3.34.

Chapter Summary

This chapter introduces continuous random variables. Most of the chapter parallels Chap-
ter 2 on discrete random variables. In the case of a continuous random variable,probabilities
and expected values are integrals. For a discrete random variable, they are sums.

• A random variable X is continuous if the range SX consists of one or more intervals.
Each possible value of X has probability zero.

• The PDF fX (x) is a probability model for a continuous random variable X . The PDF
fX (x) is proportional to the probability that X is close to x .
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• The expected value E[X] of a continuous random variable has the same interpretation
as the expected value of a discrete random variable. E[X] is a typical value of X .

• A random variable X is mixed if it has at least one sample value with nonzero probability
(like a discrete random variable) but also has sample values that cover an interval (like
a continuous random variable.) The PDF of a mixed random variable contains finite
nonzero values and delta functions.

• A function of a random variable transforms a random variable X into a new random
variable Y = g(X). If X is continuous, we find the probability model of Y by deriving
the CDF, FY (y), from FX (x) and g(x).

• The conditional PDF fX |B(x) is a probability model of X that uses the information that
X ∈ B .

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

3.1.1• The cumulative distribution function of random var-
iable X is

FX (x) =
⎧⎨
⎩

0 x < −1,

(x + 1)/2 −1 ≤ x < 1,

1 x ≥ 1.

(a) What is P[X > 1/2]?
(b) What is P[−1/2 < X ≤ 3/4]?
(c) What is P[|X | ≤ 1/2]?
(d) What is the value of a such that P[X ≤ a] =

0.8?

3.1.2• The cumulative distribution function of the contin-
uous random variable V is

FV (v) =
⎧⎨
⎩

0 v < −5,

c(v + 5)2 −5 ≤ v < 7,

1 v ≥ 7.

(a) What is c?

(b) What is P[V > 4]?
(c) P[−3 < V ≤ 0]?
(d) What is the value of a such that P[V > a] =

2/3?

3.1.3• The CDF of random variable W is

FW (w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 w < −5,

(w + 5)/8 −5 ≤ w < −3,

1/4 −3 ≤ w < 3,

1/4 + 3(w − 3)/8 3 ≤ w < 5,

1 w ≥ 5.

(a) What is P[W ≤ 4]?
(b) What is P[−2 < W ≤ 2]?
(c) What is P[W > 0]?
(d) What is the value of a such that P[W ≤ a] =

1/2?

3.1.4• In this problem, we verify that limn→∞�nx�/n =
x .

(a) Verify that nx ≤ �nx� ≤ nx + 1.

(b) Use part (a) to show that limn→∞�nx�/n = x .

(c) Use a similar argument to show that
limn→∞�nx�/n = x .

3.2.1• The random variable X has probability density func-
tion

fX (x) =
{

cx 0 ≤ x ≤ 2,

0 otherwise.

Use the PDF to find

(a) the constant c,

(b) P[0 ≤ X ≤ 1],
(c) P[−1/2 ≤ X ≤ 1/2],
(d) the CDF FX (x).

3.2.2• The cumulative distribution function of random var-
iable X is

FX (x) =
⎧⎨
⎩

0 x < −1,

(x + 1)/2 −1 ≤ x < 1,

1 x ≥ 1.

Find the PDF fX (x) of X .
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3.2.3• Find the PDF fU (u) of the random variable U in
Problem 3.1.3.

3.2.4
�

For a constant parameter a > 0, a Rayleigh random
variable X has PDF

fX (x) =
{

a2xe−a2 x2/2 x > 0,

0 otherwise.

What is the CDF of X?

3.2.5
��

For constants a and b, random variable X has PDF

fX (x) =
{

ax2 + bx 0 ≤ x ≤ 1,

0 otherwise.

What conditions on a and b are necessary and suf-
ficient to guarantee that fX (x) is a valid PDF?

3.3.1• Continuous random variable X has PDF

fX (x) =
{

1/4 −1 ≤ x ≤ 3,

0 otherwise.

Define the random variable Y by Y = h(X) = X2.

(a) Find E[X] and Var[X].
(b) Find h(E[X]) and E[h(X)].
(c) Find E[Y ] and Var[Y ].

3.3.2• Let X be a continuous random variable with PDF

fX (x) =
{

1/8 1 ≤ x ≤ 9,

0 otherwise.

Let Y = h(X) = 1/
√

X .

(a) Find E[X] and Var[X].
(b) Find h(E[X]) and E[h(X)].
(c) Find E[Y ] and Var[Y ].

3.3.3• Random variable X has CDF

FX (x) =
⎧⎨
⎩

0 x < 0,

x/2 0 ≤ x ≤ 2,

1 x > 2.

(a) What is E[X]?
(b) What is Var[X]?

3.3.4• The probability density function of random variable
Y is

fY (y) =
{

y/2 0 ≤ y < 2,

0 otherwise.

What are E[Y ] and Var[Y ]?

3.3.5• The cumulative distribution function of the random
variable Y is

FY (y) =
⎧⎨
⎩

0 y < −1,

(y + 1)/2 −1 ≤ y ≤ 1,

1 y > 1.

(a) What is E[Y ]?
(b) What is Var[Y ]?

3.3.6
�

The cumulative distribution function of random var-
iable V is

FV (v) =
⎧⎨
⎩

0 v < −5,

(v + 5)2/144 −5 ≤ v < 7,

1 v ≥ 7.

(a) What is E[V ]?
(b) What is Var[V ]?
(c) What is E[V 3]?

3.3.7
�

The cumulative distribution function of random var-
iable U is

FU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 u < −5,

(u + 5)/8 −5 ≤ u < −3,

1/4 −3 ≤ u < 3,

1/4 + 3(u − 3)/8 3 ≤ u < 5,

1 u ≥ 5.

(a) What is E[U ]?
(b) What is Var[U ]?
(c) What is E[2U ]?

3.3.8
�

X is a Pareto (α, μ) random variable, as defined
in Appendix A. What is the largest value of n for
which the nth moment E[Xn] exists? For all feasi-
ble values of n, find E[Xn].

3.4.1• Radars detect flying objects by measuring the power
reflected from them. The reflected power of an air-
craft can be modeled as a random variable Y with
PDF

fY (y) =
{

1
P0

e−y/P0 y ≥ 0
0 otherwise

where P0 > 0 is some constant. The aircraft is cor-
rectly identified by the radar if the reflected power
of the aircraft is larger than its average value. What
is the probability P[C] that an aircraft is correctly
identified?

3.4.2• Y is an exponential random variable with variance
Var[Y ] = 25.
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(a) What is the PDF of Y ?

(b) What is E[Y 2]?
(c) What is P[Y > 5]?

3.4.3• X is an Erlang (n, λ) random variable with param-
eter λ = 1/3 and expected value E[X] = 15.

(a) What is the value of the parameter n?

(b) What is the PDF of X?

(c) What is Var[X]?
3.4.4• Y is an Erlang (n = 2, λ = 2) random variable.

(a) What is E[Y ]?
(b) What is Var[Y ]?
(c) What is P[0.5 ≤ Y < 1.5]?

3.4.5
�

X is a continuous uniform (−5, 5) random variable.

(a) What is the PDF fX (x)?

(b) What is the CDF FX (x)?

(c) What is E[X]?
(d) What is E[X5]?
(e) What is E[eX ]?

3.4.6
�

X is a uniform random variable with expected value
μX = 7 and variance Var[X] = 3. What is the PDF
of X?

3.4.7
�

The probability density function of random variable
X is

fX (x) =
{

(1/2)e−x/2 x ≥ 0,

0 otherwise.

(a) What is P[1 ≤ X ≤ 2]?
(b) What is FX (x), the cumulative distribution func-

tion of X?

(c) What is E[X], the expected value of X?

(d) What is Var[X], the variance of X?

3.4.8
�

Verify parts (b) and (c) of Theorem 3.6 by directly
calculating the expected value and variance of a uni-
form random variable with parameters a < b.

3.4.9
�

Long-distance calling plan A offers flat rate service
at 10 cents per minute. Calling plan B charges 99
cents for every call under 20 minutes; for calls over
20 minutes, the charge is 99 cents for the first 20
minutes plus 10 cents for every additional minute.
(Note that these plans measure your call duration ex-
actly, without rounding to the next minute or even
second.) If your long-distance calls have expo-
nential distribution with expected value τ minutes,
which plan offers a lower expected cost per call?

3.4.10
�

In this problem we verify that an Erlang (n, λ) PDF
integrates to 1. Let the integral of the nth order
Erlang PDF be denoted by

In =
∫ ∞

0

λnxn−1e−λx

(n − 1)! dx.

First, show directly that the Erlang PDF with n = 1
integrates to 1 by verifying that I1 = 1. Second, use
integration by parts (Appendix B, Math Fact B.10)
to show that In = In−1.

3.4.11
�

Calculate the kth moment E[Xk ] of an Erlang
(n, λ) random variable X . Use your result to ver-
ify Theorem 3.10. Hint: Remember that the Erlang
(n + k, λ) PDF integrates to 1.

3.4.12
�

In this problem, we outline the proof of Theo-
rem 3.11.

(a) Let Xn denote an Erlang (n, λ) random variable.
Use the definition of the Erlang PDF to show that
for any x ≥ 0,

FXn (x) =
∫ x

0

λntn−1e−λt

(n − 1)! dt .

(b) Apply integration by parts (Appendix B, Math
Fact B.10) to this integral to show that for x ≥ 0,

FXn (x) = FXn−1 (x) − (λx)n−1e−λx

(n − 1)! .

(c) Use the fact that FX1(x) = 1 − e−λx for x ≥ 0
to verify the claim of Theorem 3.11.

3.4.13
�

Prove by induction that an exponential random var-
iable X with expected value 1/λ has nth moment

E
[
Xn] = n!

λn .

Hint: Use integration by parts (Appendix B, Math
Fact B.10).

3.4.14
��

This problem outlines the steps needed to show that
a nonnegative continuous random variable X has
expected value

E [X] =
∫ ∞

0
x fX (x) dx =

∫ ∞
0

[1 − FX (x)] dx.

(a) For any r ≥ 0, show that

r P [X > r ] ≤
∫ ∞

r
x fX (x) dx.
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(b) Use part (a) to argue that if E[X] < ∞, then

lim
r→∞ r P [X > r ] = 0.

(c) Now use integration by parts (Appendix B, Math
Fact B.10) to evaluate∫ ∞

0
[1 − FX (x)] dx.

3.5.1• The peak temperature T , as measured in de-
grees Fahrenheit, on a July day in New Jersey is
the Gaussian (85, 10) random variable. What is
P[T > 100], P[T < 60], and P[70 ≤ T ≤ 100]?

3.5.2• What is the PDF of Z , the standard normal random
variable?

3.5.3• X is a Gaussian random variable with E[X] = 0 and
P[|X | ≤ 10] = 0.1. What is the standard deviation
σX ?

3.5.4• A function commonly used in communications text-
books for the tail probabilities of Gaussian random
variables is the complementary error function, de-
fined as

erfc(z) = 2√
π

∫ ∞
z

e−x2
dx.

Show that

Q(z) = 1

2
erfc

(
z√
2

)
.

3.5.5
�

The peak temperature T , in degrees Fahrenheit, on
a July day in Antarctica is a Gaussian random var-
iable with a variance of 225. With probability 1/2,
the temperature T exceeds 10 degrees. What is
P[T > 32], the probability the temperature is above
freezing? What is P[T < 0]? What is P[T > 60]?

3.5.6
�

A professor pays 25 cents for each blackboard er-
ror made in lecture to the student who points out
the error. In a career of n years filled with black-
board errors, the total amount in dollars paid can
be approximated by a Gaussian random variable Yn
with expected value 40n and variance 100n. What
is the probability that Y20 exceeds 1000? How
many years n must the professor teach in order that
P[Yn > 1000] > 0.99?

3.5.7
�

Suppose that out of 100 million men in the United
States, 23,000 are at least 7 feet tall. Suppose that
the heights of U.S. men are independent Gaussian
random variables with a expected value of 5′10′′.

Let N equal the number of men who are at least
7′6′′ tall.

(a) Calculate σX , the standard deviation of the
height of men in the United States.

(b) In terms of the 	(·) function, what is the prob-
ability that a randomly chosen man is at least 8
feet tall?

(c) What is the probability that there is no man alive
in the U.S. today that is at least 7′6′′ tall?

(d) What is E[N]?
3.5.8
�

In this problem, we verify that for x ≥ 0,

	(x) = 1

2
+ 1

2
erf

(
x√
2

)
.

(a) Let Y have a N(0, 1/2) distribution and show
that

FY (y) =
∫ y

−∞
fY (u) du = 1

2
+ erf(y).

(b) Observe that Z = √
2Y is N(0, 1) and show that

	(z) = FZ (z) = P
[
Y ≤ z/

√
2
]

= FY

(
z/

√
2
)

.

3.5.9
�

This problem outlines the steps needed to show that
the Gaussian PDF integrates to unity. For a Gaus-
sian (μ, σ ) random variable W , we will show that

I =
∫ ∞
−∞

fW (w) dw = 1.

(a) Use the substitution x = (w − μ)/σ to show
that

I = 1√
2π

∫ ∞
−∞

e−x2/2 dx.

(b) Show that

I 2 = 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dx dy.

(c) Change the integral for I 2 to polar coordinates
to show that it integrates to 1.

3.5.10
�

In mobile radio communications, the radio channel
can vary randomly. In particular, in communicat-
ing with a fixed transmitter power over a “Rayleigh
fading” channel, the receiver signal-to-noise ratio
Y is an exponential random variable with expected
value γ . Moreover, when Y = y, the proba-
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bility of an error in decoding a transmitted bit is
Pe(y) = Q(

√
2y) where Q(·) is the standard nor-

mal complementary CDF. The average probability
of bit error, also known as the bit error rate or BER,
is

Pe = E [Pe(Y )] =
∫ ∞
−∞

Q(
√

2y) fY (y) dy.

Find a simple formula for the BER Pe as a function
of the average SNR γ .

3.6.1• Let X be a random variable with CDF

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < −1,

x/3 + 1/3 −1 ≤ x < 0,

x/3 + 2/3 0 ≤ x < 1,

1 1 ≤ x.

Sketch the CDF and find

(a) P[X < −1] and P[X ≤ −1],
(b) P[X < 0] and P[X ≤ 0],
(c) P[0 < X ≤ 1] and P[0 ≤ X ≤ 1].

3.6.2• Let X be a random variable with CDF

FX (x) =
⎧⎨
⎩

0 x < −1,

x/4 + 1/2 −1 ≤ x < 1,

1 1 ≤ x.

Sketch the CDF and find

(a) P[X < −1] and P[X ≤ −1],
(b) P[X < 0] and P[X ≤ 0],
(c) P[X > 1] and P[X ≥ 1].

3.6.3• For random variable X of Problem 3.6.2, find

(a) fX (x)

(b) E[X]
(c) Var[X]

3.6.4• X is Bernoulli random variable with expected value
p. What is the PDF fX (x)?

3.6.5• X is a geometric random variable with expected
value 1/p. What is the PDF fX (x)?

3.6.6
�

When you make a phone call, the line is busy with
probability 0.2 and no one answers with probability
0.3. The random variable X describes the conver-
sation time (in minutes) of a phone call that is an-
swered. X is an exponential random variable with
E[X] = 3 minutes. Let the random variable W de-
note the conversation time (in seconds) of all calls
(W = 0 when the line is busy or there is no answer.)

(a) What is FW (w)?

(b) What is fW (w)?

(c) What are E[W ] and Var[W ]?
3.6.7
�

For 80% of lectures, Professor X arrives on time and
starts lecturing with delay T = 0. When Professor
X is late, the starting time delay T is uniformly dis-
tributed between 0 and 300 seconds. Find the CDF
and PDF of T .

3.6.8
�

With probability 0.7, the toss of an Olympic shot-
putter travels D = 60 + X feet, where X is an
exponential random variable with expected value
μ = 10. Otherwise, with probability 0.3, a foul is
committed by stepping outside of the shot-put circle
and we say D = 0. What are the CDF and PDF of
random variable D?

3.6.9
�

For 70% of lectures, Professor Y arrives on time.
When Professor Y is late, the arrival time delay is
a continuous random variable uniformly distributed
from 0 to 10 minutes. Yet, as soon as Professor Y is
5 minutes late, all the students get up and leave. (It
is unknown if Professor Y still conducts the lecture.)
If a lecture starts when Professor Y arrives and al-
ways ends 80 minutes after the scheduled starting
time, what is the PDF of T , the length of time that
the students observe a lecture.

3.7.1• The voltage X across a 1 � resistor is a uniform
random variable with parameters 0 and 1. The in-
stantaneous power is Y = X2. Find the CDF FY (y)

and the PDF fY (y) of Y .

3.7.2• Let X have an exponential (λ) PDF. Find the CDF
and PDF of Y = √

X . Show that Y is a Rayleigh
random variable (see Appendix A.2). Express the
Rayleigh parameter a in terms of the exponential
parameter λ.

3.7.3• If X has an exponential (λ) PDF, what is the PDF
of W = X2?

3.7.4
�

X is the random variable in Problem 3.6.1. Y =
g(X) where

g(X) =
{

0 X < 0,

100 X ≥ 0.

(a) What is FY (y)?

(b) What is fY (y)?

(c) What is E[Y ]?
3.7.5
�

U is a uniform (0, 1) random variable and X =
− ln(1 − U).
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(a) What is FX (x)?

(b) What is fX (x)?

(c) What is E[X]?
3.7.6
�

X is uniform random variable with parameters 0
and 1. Find a function g(x) such that the PDF of
Y = g(X) is

fY (y) =
{

3y2 0 ≤ y ≤ 1,

0 otherwise.

3.7.7
�

The voltage V at the output of a microphone is a
uniform random variable with limits −1 volt and
1 volt. The microphone voltage is processed by a
hard limiter with cutoff points −0.5 volt and 0.5
volt. The magnitude of the limiter output L is a
random variable such that

L =
{

V |V | ≤ 0.5,

0.5 otherwise.

(a) What is P[L = 0.5]?
(b) What is FL (l)?

(c) What is E[L]?
3.7.8
�

Let X denote the position of the pointer after a spin
on a wheel of circumference 1. For that same spin,
let Y denote the area within the arc defined by the
stopping position of the pointer:

X

Y

(a) What is the relationship between X and Y ?

(b) What is FY (y)?

(c) What is fY (y)?

(d) What is E[Y ]?
3.7.9
�

U is a uniform random variable with parameters 0
and 2. The random variable W is the output of the
clipper:

W = g(U) =
{

U U ≤ 1,

1 U > 1.

Find the CDF FW (w), the PDF fW (w), and the
expected value E[W ].

3.7.10
�

X is a random variable with CDF FX (x). Let
Y = g(X) where

g(x) =
{

10 x < 0,

−10 x ≥ 0.

Express FY (y) in terms of FX (x).

3.7.11
�

The input voltage to a rectifier is a random variable
U with a uniform distribution on [−1, 1]. The rec-
tifier output is a random variable W defined by

W = g(U) =
{

0 U < 0,

U U ≥ 0.

Find the CDF FW (w) and the expected value E[W ].
3.7.12
�

Use Theorem 3.19 to prove Theorem 3.20.

3.7.13
�

For a uniform (0, 1) random variable U , find the
CDF and PDF of Y = a + (b − a)U with a < b.
Show that Y is a uniform (a, b) random variable.

3.7.14
�

Theorem 3.22 required the inverse CDF F−1(u) to
exist for 0 < u < 1. Why was it not necessary that
F−1(u) exist at either u = 0 or u = 1.

3.7.15
�

Random variable X has PDF

fX (x) =
{

x/2 0 ≤ x ≤ 2,

0 otherwise.

X is processed by a clipping circuit with output Y .
The circuit is defined by:

Y =
{

0.5 0 ≤ X ≤ 1,

X X > 1.

(a) What is P[Y = 0.5]?
(b) Find the CDF FY (y).

3.7.16
�

X is a continuous random variable. Y = aX + b,
where a, b �= 0. Prove that

fY (y) = fX ((y − b)/a)

|a| .

Hint: Consider the cases a < 0 and a > 0 sepa-
rately.

3.7.17
�

Let continuous random variable X have a CDF
F(x) such that F−1(u) exists for all u in [0, 1].
Show that U = F(X) is uniformly distributed over
[0, 1]. Hint: U is a random variable such that when
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X = x ′, U = F(x ′). That is, we evaluate the CDF
of X at the observed value of X .

3.7.18
��

In this problem we prove a generalization of The-
orem 3.22. Given a random variable X with CDF
FX (x), define

F̃(u) = min {x|FX (x) ≥ u} .

This problem proves that for a continuous uniform
(0, 1) random variable U , X̂ = F̃(U) has CDF
FX̂ (x) = FX (x).

(a) Show that when FX (x) is a continuous, strictly
increasing function (i.e., X is not mixed, FX (x)

has no jump discontinuities, and FX (x) has no
“flat” intervals (a, b) where FX (x) = c for a ≤
x ≤ b), then F̃(u) = F−1

X (u) for 0 < u < 1.

(b) Show that if FX (x) has a jump at x = x0, then
F̃(u) = x0 for all u in the interval

FX

(
x−

0

)
≤ u ≤ FX

(
x+

0

)
.

(c) Prove that X̂ = F̃(U) has CDF FX̂ (x) =
FX (x).

3.8.1• X is a uniform random variable with parameters −5
and 5. Given the event B = {|X | ≤ 3},
(a) Find the conditional PDF, fX |B(x).

(b) Find the conditional expected value, E[X |B].
(c) What is the conditional variance, Var[X |B]?

3.8.2• Y is an exponential random variable with parameter
λ = 0.2. Given the event A = {Y < 2},
(a) What is the conditional PDF, fY |A(y)?

(b) Find the conditional expected value, E[Y |A].
3.8.3• For the experiment of spinning the pointer three

times and observing the maximum pointer position,
Example 3.5, find the conditional PDF given the
event R that the maximum position is on the right
side of the circle. What are the conditional expected
value and the conditional variance?

3.8.4
�

W is a Gaussian random variable with expected
value μ = 0, and variance σ 2 = 16. Given the
event C = {W > 0},
(a) What is the conditional PDF, fW |C (w)?

(b) Find the conditional expected value, E[W |C].
(c) Find the conditional variance, Var[W |C].

3.8.5
�

The time between telephone calls at a telephone
switch is an exponential random variable T with
expected value 0.01. Given T > 0.02,

(a) What is E[T |T > 0.02], the conditional ex-
pected value of T ?

(b) What is Var[T |T > 0.02], the conditional vari-
ance of T ?

3.8.6
�

For the distance D of a shot-put toss in Prob-
lem 3.6.8, find

(a) the conditional PDF of D given that D > 0,

(b) the conditional PDF of D given D ≤ 70.

3.8.7
�

A test for diabetes is a measurement X of a person’s
blood sugar level following an overnight fast. For a
healthy person, a blood sugar level X in the range
of 70 − 110 mg/dl is considered normal. When a
measurement X is used as a test for diabetes, the
result is called positive (event T +) if X ≥ 140; the
test is negative (event T −) if X ≤ 110, and the test
is ambiguous (event T 0) if 110 < X < 140.

Given that a person is healthy (event H ), a blood
sugar measurement X is a Gaussian (μ = 90, σ =
20) random variable. Given that a person has dia-
betes, (event D), X is a Gaussian (μ = 160, σ =
40) random variable. A randomly chosen person
is healthy with probability P[H ] = 0.9 or has dia-
betes with probability P[D] = 0.1.

(a) What is the conditional PDF fX |H (x)?

(b) In terms of the	(·) function, find the conditional
probabilities P[T +|H ], and P[T −|H ].

(c) Find the conditional conditional probability
P[H |T −] that a person is healthy given the event
of a negative test.

(d) When a person has an ambiguous test result,
(T 0) the test is repeated, possibly many times,
until either a positive T + or negative T − result
is obtained. Let N denote the number of times
the test is given. Assuming that for a given per-
son, the result of each test is independent of the
result of all other tests, find the condtional PMF
of N given event H that a person is healthy. Note
that N = 1 if the person has a positive T + or
negative result T − on the first test.

3.8.8
�

For the quantizer of Example 3.31, the difference
Z = X −Y is the quantization error or quantization
“noise.” As in Example 3.31, assume that X has a
uniform (−r/2, r/2) PDF.
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(a) Given event Bi that Y = yi = �/2 + i� and X
is in the i th quantization interval, find the con-
ditional PDF of Z .

(b) Show that Z is a uniform random variable. Find
the PDF, the expected value, and the variance of
Z .

3.8.9
�

For the quantizer of Example 3.31, we showed in
Problem 3.8.8 that the quantization noise Z is a uni-
form random variable. If X is not uniform, show
that Z is nonuniform by calculating the PDF of Z
for a simple example.

3.9.1• Write a Matlab function y=quiz31rv(m) that
produces m samples of random variable Y defined
in Quiz 3.1.

3.9.2• For the modem receiver voltage X with PDF given
in Example 3.32, use Matlab to plot the PDF and
CDF of random variable X . Write a Matlab func-
tion x=modemrv(m) that produces m samples of
the modem voltage X .

3.9.3• For the Gaussian (0, 1) complementary CDF Q(z),
a useful numerical approximation for z ≥ 0 is

Q̂(z) = (a1t + a2t2 + a3t3 + a4t4 + a5t5)e−z2/2,

where

t = 1

1 + 0.231641888z
a1 = 0.127414796

a2 = −0.142248368 a3 = 0.7107068705

a4 = −0.7265760135 a5 = 0.5307027145

To compare this approximation to Q(z), use Mat-
lab to graph

e(z) = Q(z) − Q̂(z)

Q(z)
.

3.9.4
�

Use Theorem 3.9 and exponentialrv.m to
write a Matlab function k=georv(p,m) that
generates m samples of a geometric (p) random
variable K . Compare the resulting algorithm to
the technique employed in Problem 2.10.7 for
geometricrv(p,m).

3.9.5
�

Use icdfrv.m to write a function w=wrv1(m)
that generates m samples of random variable W

from Problem 3.1.3. Note that F−1
W (u) does not

exist for u = 1/4; however, you must define
a function icdfw(u) that returns a value for
icdfw(0.25). Does it matter what value you
return for u=0.25?

3.9.6
�

Applying Equation (3.14) with x replaced by i�
and dx replaced by �, we obtain

P [i� < X ≤ i� + �] = fX (i�) �.

If we generate a large number n of samples of
random variable X , let ni denote the number of oc-
currences of the event

{i� < X ≤ (i + 1)�} .

We would expect that limn→∞ ni
n = fX (i�)�, or

equivalently,

lim
n→∞

ni

n�
= fX (i�) .

Use Matlab to confirm this with � = 0.01 for

(a) an exponential (λ = 1) random variable X and
for i = 0, . . . , 500,

(b) a Gaussian (3, 1) random variable X and for
i = 0, . . . , 600.

3.9.7
�

For the quantizer of Example 3.31, we showed
in Problem 3.8.9 that the quantization noise Z is
nonuniform if X is nonuniform. In this problem, we
examine whether it is a reasonable approximation to
model the quantization noise as uniform. Consider
the special case of a Gaussian (0, 1) random variable
X passed through a uniform b-bit quantizer over the
interval (−r/2, r/2) with r = 6. Does a uniform
approximation get better or worse as b increases?
Write a Matlab program to generate histograms
for Z to answer this question.

3.9.8
�

Write a Matlab function u=urv(m) that gen-
erates m samples of random variable U defined in
Problem 3.3.7.

3.9.9
�

Write a Matlab function y=quiz36rv(m) that
returns m samples of the random variable X de-
fined in Quiz 3.6. Since F−1

X (u) is not defined for
1/2 ≤ u < 1, you will need to use the result of
Problem 3.7.18.

 



4
Pairs of

Random Variables
Chapter 2 and Chapter 3 analyze experiments in which an outcome is one number. This
chapter and the next one analyze experiments in which an outcome is a collection of numbers.
Each number is a sample value of a random variable. The probability model for such an
experiment contains the properties of the individual random variables and it also contains
the relationships among the random variables. Chapter 2 considers only discrete random
variables and Chapter 3 considers only continuous random variables. The present chapter
considers all random variables because a high proportion of the definitions and theorems
apply to both discrete and continuous random variables. However, just as with individual
random variables, the details of numerical calculations depend on whether random variables
are discrete or continuous. Consequently we find that many formulas come in pairs. One
formula, for discrete random variables, contains sums, and the other formula, for continuous
random variables, contains integrals.

This chapter analyzes experiments that produce two random variables, X and Y . Chap-
ter 5 analyzes the general case of experiments that produce n random variables, where n can
be any integer. We begin with the definition of FX,Y (x, y), the joint cumulative distribution
function of two random variables, a generalization of the CDF introduced in Section 2.4
and again in Section 3.1. The joint CDF is a complete probability model for any experiment
that produces two random variables. However, it not very useful for analyzing practical
experiments. More useful models are PX,Y (x, y), the joint probability mass function for
two discrete random variables, presented in Sections 4.2 and 4.3, and fX,Y (x, y), the joint
probability density function of two continuous random variables, presented in Sections 4.4
and 4.5. Sections 4.6 and 4.7 consider functions of two random variables and expectations,
respectively. Sections 4.8, 4.9, and 4.10 go back to the concepts of conditional probability
and independence introduced in Chapter 1. We extend the definition of independent events
to define independent random variables. The subject of Section 4.11 is the special case in
which X and Y are Gaussian.

Pairs of random variables appear in a wide variety of practical situations. An example of
two random variables that we encounter all the time in our research is the signal (X), emitted
by a radio transmitter, and the corresponding signal (Y ) that eventually arrives at a receiver.
In practice we observe Y , but we really want to know X . Noise and distortion prevent

153
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X

Y

(x,y){X x, Y y}� �

Figure 4.1 The area of the (X, Y ) plane corresponding to the joint cumulative distribution function
FX,Y (x, y).

us from observing X directly and we use the probability model fX,Y (x, y) to estimate X .
Another example is the strength of the signal at a cellular telephone base station receiver (Y )

and the distance (X) of the telephone from the base station. There are many more electrical
engineering examples as well as examples throughout the physical sciences, biology, and
social sciences. This chapter establishes the mathematical models for studying multiple
continuous random variables.

4.1 Joint Cumulative Distribution Function

In an experiment that produces one random variable, events are points or intervals on a line.
In an experiment that leads to two random variables X and Y , each outcome (x, y) is a point
in a plane and events are points or areas in the plane.

Just as the CDF of one random variable, FX (x), is the probability of the interval to the
left of x , the joint CDF FX,Y (x, y) of two random variables is the probability of the area in
the plane below and to the left of (x, y). This is the infinite region that includes the shaded
area in Figure 4.1 and everything below and to the left of it.

Definition 4.1 Joint Cumulative Distribution Function (CDF)
The joint cumulative distribution function of random variables X and Y is

FX,Y (x, y) = P [X ≤ x, Y ≤ y] .

The joint CDF is a complete probability model. The notation is an extension of the
notation convention adopted in Chapter 2. The subscripts of F , separated by a comma, are
the names of the two random variables. Each name is an uppercase letter. We usually write
the arguments of the function as the lowercase letters associated with the random variable
names.

The joint CDF has properties that are direct consequences of the definition. For example,
we note that the event {X ≤ x} suggests that Y can have any value so long as the condition
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on X is met. This corresponds to the joint event {X ≤ x, Y < ∞}. Therefore,

FX (x) = P [X ≤ x] = P [X ≤ x, Y < ∞] = lim
y→∞ FX,Y (x, y) = FX,Y (x,∞) . (4.1)

We obtain a similar result when we consider the event {Y ≤ y}. The following theorem
summarizes some basic properties of the joint CDF.

Theorem 4.1 For any pair of random variables, X, Y ,

(a) 0 ≤ FX,Y (x, y) ≤ 1,

(b) FX (x) = FX,Y (x,∞),

(c) FY (y) = FX,Y (∞, y),

(d) FX,Y (−∞, y) = FX,Y (x,−∞) = 0,

(e) If x ≤ x1 and y ≤ y1, then FX,Y (x, y) ≤ FX,Y (x1, y1),

(f) FX,Y (∞,∞) = 1.

Although its definition is simple, we rarely use the joint CDF to study probability models.
It is easier to work with a probability mass function when the random variables are discrete,
or a probability density function if they are continuous.

Quiz 4.1 Express the following extreme values of the joint CDF FX,Y (x, y) as numbers or in terms
of the CDFs FX (x) and FY (y).
(1) FX,Y (−∞, 2) (2) FX,Y (∞,∞)

(3) FX,Y (∞, y) (4) FX,Y (∞,−∞)

4.2 Joint Probability Mass Function

Corresponding to the PMF of a single discrete random variable, we have a probability mass
function of two variables.

Definition 4.2 Joint Probability Mass Function (PMF)
The joint probability mass function of discrete random variables X and Y is

PX,Y (x, y) = P [X = x, Y = y] .

For a pair of discrete random variables, the joint PMF PX,Y (x, y) is a complete proba-
bility model. For any pair of real numbers, the PMF is the probability of observing these
numbers. The notation is consistent with that of the joint CDF. The uppercase subscripts
of P , separated by a comma, are the names of the two random variables. We usually write
the arguments of the function as the lowercase letters associated with the random variable
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names. Corresponding to SX , the range of a single discrete random variable, we use the
notation SX,Y to denote the set of possible values of the pair (X, Y ). That is,

SX,Y = {
(x, y)|PX,Y (x, y) > 0

}
. (4.2)

Keep in mind that {X = x, Y = y} is an event in an experiment. That is, for this exper-
iment, there is a set of observations that leads to both X = x and Y = y. For any x and
y, we find PX,Y (x, y) by summing the probabilities of all outcomes of the experiment for
which X = x and Y = y.

There are various ways to represent a joint PMF. We use three of them in the following
example: a list, a matrix, and a graph.

Example 4.1 Test two integrated circuits one after the other. On each test, the possible outcomes
are a (accept) and r (reject). Assume that all circuits are acceptable with probability
0.9 and that the outcomes of successive tests are independent. Count the number of
acceptable circuits X and count the number of successful tests Y before you observe
the first reject. (If both tests are successful, let Y = 2.) Draw a tree diagram for the
experiment and find the joint PMF of X and Y .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The experiment has the following tree diagram.

����� a0.9

����� r0.1

����� a0.9

����� r0.1

����� a0.9

����� r0.1

•aa 0.81 X=2,Y=2

•ar 0.09 X=1,Y=1

•ra 0.09 X=1,Y=0

•rr 0.01 X=0,Y=0

The sample space of the experiment is

S = {aa, ar, ra, rr} . (4.3)

Observing the tree diagram, we compute

P [aa] = 0.81, P [ar ] = P [ra] = 0.09, P [rr ] = 0.01. (4.4)

Each outcome specifies a pair of values X and Y . Let g(s) be the function that trans-
forms each outcome s in the sample space S into the pair of random variables (X, Y ).
Then

g(aa) = (2, 2), g(ar) = (1, 1), g(ra) = (1, 0), g(rr) = (0, 0). (4.5)

For each pair of values x, y, PX,Y (x, y) is the sum of the probabilities of the outcomes
for which X = x and Y = y. For example, PX,Y (1, 1) = P[ar ]. The joint PMF can be
given as a set of labeled points in the x, y plane where each point is a possible value
(probability > 0) of the pair (x, y), or as a simple list:
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X X

Y Y

B= X + Y 9{ }
2 2

�B= X+Y 3{ }�

Figure 4.2 Subsets B of the (X, Y ) plane. Points (X, Y ) ∈ SX,Y are marked by bullets.

�

�

y

x

PX,Y (x, y)

•.01 •.09

•.09

•.81

0 1 2
0

1

2 PX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.81 x = 2, y = 2,

0.09 x = 1, y = 1,

0.09 x = 1, y = 0,

0.01 x = 0, y = 0.

0 otherwise

(4.6)

A third representation of PX,Y (x, y) is the matrix:

PX,Y (x, y) y = 0 y = 1 y = 2
x = 0 0.01 0 0
x = 1 0.09 0.09 0
x = 2 0 0 0.81

(4.7)

Note that all of the probabilities add up to 1. This reflects the second axiom of probability
(Section 1.3) that states P[S] = 1. Using the notation of random variables, we write this as

∑
x∈SX

∑
y∈SY

PX,Y (x, y) = 1. (4.8)

As defined in Chapter 2, the range SX is the set of all values of X with nonzero probability
and similarly for SY . It is easy to see the role of the first axiom of probability in the PMF:
PX,Y (x, y) ≥ 0 for all pairs x, y. The third axiom, which has to do with the union of
disjoint events, takes us to another important property of the joint PMF.

We represent an event B as a region in the X, Y plane. Figure 4.2 shows two examples
of events. We would like to find the probability that the pair of random variables (X, Y ) is
in the set B . When (X, Y ) ∈ B , we say the event B occurs. Moreover, we write P[B] as a
shorthand for P[(X, Y ) ∈ B]. The next theorem says that we can find P[B] by adding the
probabilities of all points (x, y) with nonzero probability that are in B .
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Theorem 4.2 For discrete random variables X and Y and any set B in the X, Y plane, the probability of
the event {(X, Y ) ∈ B} is

P [B] =
∑

(x,y)∈B

PX,Y (x, y) .

The following example uses Theorem 4.2.

Example 4.2 Continuing Example 4.1, find the probability of the event B that X , the number of
acceptable circuits, equals Y , the number of tests before observing the first failure.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mathematically, B is the event {X = Y }. The elements of B with nonzero probability
are

B ∩ SX,Y = {(0, 0), (1, 1), (2, 2)} . (4.9)

Therefore,

P [B] = PX,Y (0, 0) + PX,Y (1, 1) + PX,Y (2, 2) (4.10)

= 0.01 + 0.09 + 0.81 = 0.91. (4.11)

If we view x, y as the outcome of an experiment, then Theorem 4.2 simply says that to
find the probability of an event, we sum over all the outcomes in that event. In essence,
Theorem 4.2 is a restatement of Theorem 1.5 in terms of random variables X and Y and
joint PMF PX,Y (x, y).

Quiz 4.2 The joint PMF PQ,G(q, g) for random variables Q and G is given in the following table:

PQ,G (q, g) g = 0 g = 1 g = 2 g = 3
q = 0 0.06 0.18 0.24 0.12
q = 1 0.04 0.12 0.16 0.08

(4.12)

Calculate the following probabilities:
(1) P[Q = 0] (2) P[Q = G]
(3) P[G > 1] (4) P[G > Q]

4.3 Marginal PMF

In an experiment that produces two random variables X and Y , it is always possible to
consider one of the random variables, Y , and ignore the other one, X . In this case, we can
use the methods of Chapter 2 to analyze the experiment and derive PY (y), which contains
the probability model for the random variable of interest. On the other hand, if we have
already analyzed the experiment to derive the joint PMF PX,Y (x, y), it would be convenient
to derive PY (y) from PX,Y (x, y) without reexamining the details of the experiment.

To do so, we view x, y as the outcome of an experiment and observe that PX,Y (x, y) is
the probability of an outcome. Moreover, {Y = y} is an event, so that PY (y) = P[Y = y]
is the probability of an event. Theorem 4.2 relates the probability of an event to the joint
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PMF. It implies that we can find PY (y) by summing PX,Y (x, y) over all points in SX,Y with
the property Y = y. In the sum, y is a constant, and each term corresponds to a value of
x ∈ SX . Similarly, we can find PX (x) by summing PX,Y (x, y) over all points X, Y such
that X = x . We state this mathematically in the next theorem.

Theorem 4.3 For discrete random variables X and Y with joint PMF PX,Y (x, y),

PX (x) =
∑
y∈SY

PX,Y (x, y) , PY (y) =
∑
x∈SX

PX,Y (x, y) .

Theorem 4.3 shows us how to obtain the probability model (PMF) of X , and the prob-
ability model of Y given a probability model (joint PMF) of X and Y . When a random
variable X is part of an experiment that produces two random variables, we sometimes
refer to its PMF as a marginal probability mass function. This terminology comes from the
matrix representation of the joint PMF. By adding rows and columns and writing the results
in the margins, we obtain the marginal PMFs of X and Y . We illustrate this by reference to
the experiment in Example 4.1.

Example 4.3 In Example 4.1, we found the joint PMF of X and Y to be

PX,Y (x, y) y = 0 y = 1 y = 2
x = 0 0.01 0 0
x = 1 0.09 0.09 0
x = 2 0 0 0.81

(4.13)

Find the marginal PMFs for the random variables X and Y .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To find PX (x), we note that both X and Y have range {0, 1, 2}. Theorem 4.3 gives

PX (0) =
2∑

y=0

PX,Y (0, y) = 0.01 PX (1) =
2∑

y=0

PX,Y (1, y) = 0.18 (4.14)

PX (2) =
2∑

y=0

PX,Y (2, y) = 0.81 PX (x) = 0 x �= 0, 1, 2 (4.15)

For the PMF of Y , we obtain

PY (0) =
2∑

x=0

PX,Y (x, 0) = 0.10 PY (1) =
2∑

x=0

PX,Y (x, 1) = 0.09 (4.16)

PY (2) =
2∑

x=0

PX,Y (x, 2) = 0.81 PY (y) = 0 y �= 0, 1, 2 (4.17)

Referring to the matrix representation of PX,Y (x, y) in Example 4.1, we observe that
each value of PX (x) is the result of adding all the entries in one row of the matrix.
Each value of PY (y) is a column sum. We display PX (x) and PY (y) by rewriting the
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matrix in Example 4.1 and placing the row sums and column sums in the margins.

PX,Y (x, y) y = 0 y = 1 y = 2 PX (x)

x = 0 0.01 0 0 0.01
x = 1 0.09 0.09 0 0.18
x = 2 0 0 0.81 0.81
PY (y) 0.10 0.09 0.81

(4.18)

Note that the sum of all the entries in the bottom margin is 1 and so is the sum of all
the entries in the right margin. This is simply a verification of Theorem 2.1(b), which
states that the PMF of any random variable must sum to 1. The complete marginal
PMF, PY (y), appears in the bottom row of the table, and PX (x) appears in the last
column of the table.

PX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0.01 x = 0,

0.18 x = 1,

0.81 x = 2,

0 otherwise.

PY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.1 y = 0,

0.09 y = 1,

0.81 y = 2,

0 otherwise.

(4.19)

Quiz 4.3 The probability mass function PH,B(h, b) for the two random variables H and B is given
in the following table. Find the marginal PMFs PH (h) and PB(b).

PH,B (h, b) b = 0 b = 2 b = 4
h = −1 0 0.4 0.2
h = 0 0.1 0 0.1
h = 1 0.1 0.1 0

(4.20)

4.4 Joint Probability Density Function

The most useful probability model of a pair of continuous random variables is a general-
ization of the PDF of a single random variable (Definition 3.3).

Definition 4.3 Joint Probability Density Function (PDF)
The joint PDF of the continuous random variables X and Y is a function fX,Y (x, y) with
the property

FX,Y (x, y) =
∫ x

−∞

∫ y

−∞
fX,Y (u, v) dv du.

For a single random variable X , the PDF fX (x) is a measure of probability per unit length.
For two random variables X and Y , the joint PDF fX,Y (x, y) measures probability per unit
area. In particular, from the definition of the PDF,

P [x < X ≤ x + dx, y < Y ≤ y + dy] = fX,Y (x, y) dx dy. (4.21)

Given FX,Y (x, y), Definition 4.3 implies that fX,Y (x, y) is a derivative of the CDF.
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Theorem 4.4

fX,Y (x, y) = ∂2 FX,Y (x, y)

∂x ∂y

Definition 4.3 and Theorem 4.4 demonstrate that the joint CDF FX,Y (x, y) and the joint
PDF fX,Y (x, y) are equivalent probability models for random variables X and Y . In the
case of one random variable, we found in Chapter 3 that the PDF is typically more useful for
problem solving. This conclusion is even more true for pairs of random variables. Typically,
it is very difficult to use FX,Y (x, y) to calculate the probabilities of events. To get an idea
of the complication that arises, try proving the following theorem, which expresses the
probability of a finite rectangle in the X, Y plane in terms of the joint CDF.

Theorem 4.5

P [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2) − FX,Y (x2, y1)

− FX,Y (x1, y2) + FX,Y (x1, y1)

The steps needed to prove the theorem are outlined in Problem 4.1.5. The theorem says that
to find the probability that an outcome is in a rectangle, it is necessary to evaluate the joint
CDF at all four corners. When the probability of interest corresponds to a nonrectangular
area, the joint CDF is much harder to use.

Of course, not every function fX,Y (x, y) is a valid joint PDF. Properties (e) and (f) of
Theorem 4.1 for the CDF FX,Y (x, y) imply corresponding properties for the PDF.

Theorem 4.6 A joint PDF fX,Y (x, y) has the following properties corresponding to first and second
axioms of probability (see Section 1.3):

(a) fX,Y (x, y) ≥ 0 for all (x, y),

(b)
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1.

Given an experiment that produces a pair of continuous random variables X and Y , an
event A corresponds to a region of the X, Y plane. The probability of A is the double
integral of fX,Y (x, y) over the region of the X, Y plane corresponding to A.

Theorem 4.7 The probability that the continuous random variables (X, Y ) are in A is

P [A] =
∫∫
A

fX,Y (x, y) dx dy.

Example 4.4 Random variables X and Y have joint PDF

fX,Y (x, y) =
{

c 0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 otherwise.
(4.22)
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Find the constant c and P[A] = P[2 ≤ X < 3, 1 ≤ Y < 3].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The large rectangle in the diagram is the area of nonzero probability. Theorem 4.6
states that the integral of the joint PDF over this rectangle is 1:

Y

X

A

1 =
∫ 5

0

∫ 3

0
c dy dx = 15c. (4.23)

Therefore, c = 1/15. The small dark rectangle in the dia-
gram is the event A = {2 ≤ X < 3, 1 ≤ Y < 3}. P[A] is the
integral of the PDF over this rectangle, which is

P [A] =
∫ 3

2

∫ 3

1

1

15
dv du = 2/15. (4.24)

This probability model is an example of a pair of random variables uniformly dis-
tributed over a rectangle in the X, Y plane.

The following example derives the CDF of a pair of random variables that has a joint PDF
that is easy to write mathematically. The purpose of the example is to introduce techniques
for analyzing a more complex probability model than the one in Example 4.4. Typically,
we extract interesting information from a model by integrating the PDF or a function of the
PDF over some region in the X, Y plane. In performing this integration, the most difficult
task is to identify the limits. The PDF in the example is very simple, just a constant over a
triangle in the X, Y plane. However, to evaluate its integral over the region in Figure 4.1 we
need to consider five different situations depending on the values of (x, y). The solution
of the example demonstrates the point that the PDF is usually a more concise probability
model that offers more insights into the nature of an experiment than the CDF.

Example 4.5 Find the joint CDF FX,Y (x, y) when X and Y have joint PDF
Y

1

1
f x,y =2XY( )

X

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.
(4.25)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The joint CDF can be found using Definition 4.3 in which we integrate the joint PDF
fX,Y (x, y) over the area shown in Figure 4.1. To perform the integration it is extremely
useful to draw a diagram that clearly shows the area with nonzero probability, and then
to use the diagram to derive the limits of the integral in Definition 4.3.

The difficulty with this integral is that the nature of the region of integration depends
critically on x and y. In this apparentlysimple example, there are five cases to consider!
The five cases are shown in Figure 4.3. First, we note that with x < 0 or y < 0, the
triangle is completely outside the region of integration as shown in Figure 4.3a. Thus
we have FX,Y (x, y) = 0 if either x < 0 or y < 0. Another simple case arises when x ≥ 1
and y ≥ 1. In this case, we see in Figure 4.3e that the triangle is completely inside the
region of integration and we infer from Theorem 4.6 that FX,Y (x, y) = 1. The other
cases we must consider are more complicated. In each case, since fX,Y (x, y) = 2
over the triangular region, the value of the integral is two times the indicated area.
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x
X

y

Y

1

1 x
X

y

Y

1

1

x < 0 or y < 0 0 ≤ y ≤ x ≤ 1
(a) (b)

X

Y

1

1

y

x x
X

y

Y

1

1

0 ≤ x < y
0 ≤ x ≤ 1

0 ≤ y ≤ 1
x > 1

(c) (d)

X

Y

1

1

y

x

x > 1 and y > 1
(e)

Figure 4.3 Five cases for the CDF FX,Y (x, y) of Example 4.5.
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When (x, y) is inside the area of nonzero probability (Figure 4.3b), the integral is

FX,Y (x, y) =
∫ y

0

∫ x

v
2 du dv = 2xy − y2 (Figure 4.3b). (4.26)

In Figure 4.3c, (x, y) is above the triangle, and the integral is

FX,Y (x, y) =
∫ x

0

∫ x

v
2 du dv = x2 (Figure 4.3c). (4.27)

The remaining situation to consider is shown in Figure 4.3d when (x, y) is to the right
of the triangle of nonzero probability, in which case the integral is

FX,Y (x, y) =
∫ y

0

∫ 1

v
2 du dv = 2y − y2 (Figure 4.3d) (4.28)

The resulting CDF, corresponding to the five cases of Figure 4.3, is

FX,Y (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < 0 or y < 0 (a),
2xy − y2 0 ≤ y ≤ x ≤ 1 (b),
x2 0 ≤ x < y, 0 ≤ x ≤ 1 (c),
2y − y2 0 ≤ y ≤ 1, x > 1 (d),
1 x > 1, y > 1 (e).

(4.29)

In Figure 4.4, the surface plot of FX,Y (x, y) shows that cases (a) through (e) corre-
spond to contours on the “hill” that is FX,Y (x, y). In terms of visualizing the random
variables, the surface plot of FX,Y (x, y) is less instructive than the simple triangle
characterizing the PDF fX,Y (x, y).

Because the PDF in this example is two over SX,Y , each probability is just two times
the area of the region shown in one of the diagrams (either a triangle or a trapezoid).
You may want to apply some high school geometry to verify that the results obtained
from the integrals are indeed twice the areas of the regions indicated. The approach
taken in our solution, integrating over SX,Y to obtain the CDF, works for any PDF.

In Example 4.5, it takes careful study to verify that FX,Y (x, y) is a valid CDF that satisfies
the properties of Theorem 4.1, or even that it is defined for all values x and y. Comparing
the joint PDF with the joint CDF we see that the PDF indicates clearly that X, Y occurs
with equal probability in all areas of the same size in the triangular region 0 ≤ y ≤ x ≤ 1.
The joint CDF completely hides this simple, important property of the probability model.

In the previous example, the triangular shape of the area of nonzero probability demanded
our careful attention. In the next example, the area of nonzero probability is a rectangle.
However, the area corresponding to the event of interest is more complicated.

Example 4.6 As in Example 4.4, random variables X and Y have joint PDF

fX,Y (x, y) =
{

1/15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 otherwise.
(4.30)

What is P[A] = P[Y > X]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Theorem 4.7, we integrate the density fX,Y (x, y) over the part of the X, Y
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Figure 4.4 A graph of the joint CDF FX,Y (x, y) of Example 4.5.

plane satisfying Y > X . In this case,

Y

X

Y>X
P [A] =

∫ 3

0

(∫ 3

x

1

15

)
dy dx (4.31)

=
∫ 3

0

3 − x

15
dx = − (3 − x)2

30

∣∣∣∣∣
3

0

= 3

10
. (4.32)

In this example, we note that it made little difference whether we integrate first over y
and then over x or the other way around. In general, however, an initial effort to decide
the simplest way to integrate over a region can avoid a lot of complicated mathematical
maneuvering in performing the integration.

Quiz 4.4 The joint probability density function of random variables X and Y is

fX,Y (x, y) =
{

cxy 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

0 otherwise.
(4.33)

Find the constant c. What is the probability of the event A = X2 + Y 2 ≤ 1?

4.5 Marginal PDF

Suppose we perform an experiment that produces a pair of random variables X and Y
with joint PDF fX,Y (x, y). For certain purposes we may be interested only in the random
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variable X . We can imagine that we ignore Y and observe only X . Since X is a random
variable, it has a PDF fX (x). It should be apparent that there is a relationship between
fX (x) and fX,Y (x, y). In particular, if fX,Y (x, y) completely summarizes our knowledge
of joint events of the form X = x, Y = y, then we should be able to derive the PDFs
of X and Y from fX,Y (x, y). The situation parallels (with integrals replacing sums) the
relationship in Theorem 4.3 between the joint PMF PX,Y (x, y), and the marginal PMFs
PX (x) and PY (y). Therefore, we refer to fX (x) and fY (y) as the marginal probability
density functions of fX,Y (x, y).

Theorem 4.8 If X and Y are random variables with joint PDF fX,Y (x, y),

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy, fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx .

Proof From the definition of the joint PDF, we can write

FX (x) = P [X ≤ x] =
∫ x

−∞

(∫ ∞
−∞

fX,Y (u, y) dy

)
du. (4.34)

Taking the derivative of both sides with respect to x (which involves differentiating an integral with
variable limits), we obtain fX (x) = ∫∞

−∞ fX,Y (x, y) dy. A similar argument holds for fY (y).

Example 4.7 The joint PDF of X and Y is

fX,Y (x, y) =
{

5y/4 −1 ≤ x ≤ 1, x2 ≤ y ≤ 1,

0 otherwise.
(4.35)

Find the marginal PDFs fX (x) and fY (y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We use Theorem 4.8 to find the marginal PDF fX (x). When x < −1 or when x > 1,
fX,Y (x, y) = 0, and therefore fX (x) = 0. For −1 ≤ x ≤ 1,

X

Y

1

1

x-1

X=x

x
2

fX (x) =
∫ 1

x2

5y

4
dy = 5(1 − x4)

8
. (4.36)

The complete expression for the marginal PDF of X is

−1 0 1
0

0.5

x

f X
(x

)

fX (x) =
{

5(1 − x4)/8 −1 ≤ x ≤ 1,

0 otherwise.
(4.37)

For the marginal PDF of Y , we note that for y < 0 or y > 1, fY (y) = 0. For 0 ≤ y ≤ 1,
we integrate over the horizontal bar marked Y = y. The boundaries of the bar are
x = −√

y and x = √
y. Therefore, for 0 ≤ y ≤ 1,
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X

Y

1

1

y
1/2

-y
1/2

-1

Y=y fY (y) =
∫ √

y

−√
y

5y

4
dx = 5y

4
x

∣∣∣∣
x=√

y

x=−√
y

= 5y3/2/2. (4.38)

The complete marginal PDF of Y is

−1 0 1
0

1

2

3

y

f Y
(y

)

fY (y) =
{

(5/2)y3/2 0 ≤ y ≤ 1,

0 otherwise.
(4.39)

Quiz 4.5 The joint probability density function of random variables X and Y is

fX,Y (x, y) =
{

6(x + y2)/5 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.
(4.40)

Find fX (x) and fY (y), the marginal PDFs of X and Y .

4.6 Functions of Two Random Variables

There are many situations in which we observe two random variables and use their values to
compute a new random variable. For example, we can describe the amplitude of the signal
transmitted by a radio station as a random variable, X . We can describe the attenuation of
the signal as it travels to the antenna of a moving car as another random variable, Y . In
this case the amplitude of the signal at the radio receiver in the car is the random variable
W = X/Y . Other practical examples appear in cellular telephone base stations with two
antennas. The amplitudes of the signals arriving at the two antennas are modeled as random
variables X and Y . The radio receiver connected to the two antennas can use the received
signals in a variety of ways.

• It can choose the signal with the larger amplitude and ignore the other one. In this
case, the receiver produces the random variable W = X if |X | > |Y | and W = Y ,
otherwise. This is an example of selection diversity combining.

• The receiver can add the two signals and use W = X + Y . This process is referred
to as equal gain combining because it treats both signals equally.

• A third alternative is to combine the two signals unequally in order to give less weight
to the signal considered to be more distorted. In this case W = a X + bY . If a and b
are optimized, the receiver performs maximal ratio combining.

All three combining processes appear in practical radio receivers.
Formally, we have the following situation. We perform an experiment and observe

sample values of two random variables X and Y . Based on our knowledge of the experiment,
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we have a probability model for X and Y embodied in the joint PMF PX,Y (x, y) or a joint
PDF fX,Y (x, y). After performing the experiment, we calculate a sample value of the
random variable W = g(X, Y ). The mathematical problem is to derive a probability model
for W .

When X and Y are discrete random variables, SW , the range of W , is a countable set
corresponding to all possible values of g(X, Y ). Therefore, W is a discrete random variable
and has a PMF PW (w). We can apply Theorem 4.2 to find PW (w) = P[W = w]. Observe
that {W = w} is another name for the event {g(X, Y ) = w}. Thus we obtain PW (w) by
adding the values of PX,Y (x, y) corresponding to the x, y pairs for which g(x, y) = w.

Theorem 4.9 For discrete random variables X and Y , the derived random variable W = g(X, Y ) has
PMF

PW (w) =
∑

(x,y):g(x,y)=w

PX,Y (x, y) .

Example 4.8 A firm sends out two kinds of promotional facsimiles. One kind contains only text
and requires 40 seconds to transmit each page. The other kind contains grayscale
pictures that take 60 seconds per page. Faxes can be 1, 2, or 3 pages long. Let
the random variable L represent the length of a fax in pages. SL = {1, 2, 3}. Let
the random variable T represent the time to send each page. ST = {40, 60}. After
observing many fax transmissions, the firm derives the following probability model:

PL ,T (l, t) t = 40 sec t = 60 sec
l = 1 page 0.15 0.1
l = 2 pages 0.3 0.2
l = 3 pages 0.15 0.1

(4.41)

Let D = g(L , T ) = LT be the total duration in seconds of a fax transmission. Find the
range SD, the PMF PD(d), and the expected value E[D].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By examining the six possible combinations of L and T we find that the possible values
of D are SD = {40, 60, 80, 120, 180}. For the five elements of SD, we find the following
probabilities:

PD (40) = PL ,T (1, 40) = 0.15, PD (120) = PL ,T (3, 40) + PL ,T (2, 60) = 0.35,

PD (60) = PL ,T (1, 60) = 0.1, PD (180) = PL ,T (3, 60) = 0.1,

PD (80) = PL ,T (2, 40) = 0.3, PD (d) = 0; d �= 40, 60, 80, 120, 180.

The expected duration of a fax transmission is

E [D] =
∑

d∈SD

d PD (d) (4.42)

= (40)(0.15) + 60(0.1) + 80(0.3) + 120(0.35) + 180(0.1) = 96 sec. (4.43)

When X and Y are continuous random variables and g(x, y) is a continuous function,
W = g(X, Y ) is a continuous random variable. To find the PDF, fW (w), it is usually
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helpful to first find the CDF FW (w) and then calculate the derivative. Viewing {W ≤ w}
as an event A, we can apply Theorem 4.7.

Theorem 4.10 For continuous random variables X and Y , the CDF of W = g(X, Y ) is

FW (w) = P [W ≤ w] =
∫∫

g(x,y)≤w

fX,Y (x, y) dx dy.

Once we obtain the CDF FW (w), it is generally straightforward to calculate the derivative
fW (w) = d FW (w)/dw. However, for most functions g(x, y), performing the integration
to find FW (w) can be a tedious process. Fortunately, there are convenient techniques for
finding fW (w) for certain functions that arise in many applications. The most important
function, g(X, Y ) = X + Y , is the subject of Chapter 6. Another interesting function is the
maximum of two random variables. The following theorem follows from the observation
that {W ≤ w} = {X ≤ w} ∩ {Y ≤ w}.

Theorem 4.11 For continuous random variables X and Y , the CDF of W = max(X, Y ) is

FW (w) = FX,Y (w,w) =
∫ w

−∞

∫ w

−∞
fX,Y (x, y) dx dy.

Example 4.9 In Examples 4.4 and 4.6, X and Y have joint PDF

fX,Y (x, y) =
{

1/15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 otherwise.
(4.44)

Find the PDF of W = max(X, Y ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Because X ≥ 0 and Y ≥ 0, W ≥ 0. Therefore, FW (w) = 0 for w < 0. Because X ≤ 5
and Y ≤ 3, W ≤ 5. Thus FW (w) = 1 for w ≥ 5. For 0 ≤ w ≤ 5, diagrams provide a
guide to calculating FW (w). Two cases, 0 ≤ w ≤ 3 and 3 ≤ w ≤ 5, are shown here:

Y

X
w

w

Y

X
w

0 ≤ w ≤ 3 3 ≤ w ≤ 5

When 0 ≤ w ≤ 3, Theorem 4.11 yields

FW (w) =
∫ w

0

∫ w

0

1

15
dx dy = w2/15. (4.45)

Because the joint PDF is uniform, we see this probability is just the area w2 times the
value of the joint PDF over that area. When 3 ≤ w ≤ 5, the integral over the region
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{X ≤ w, Y ≤ w} becomes

FW (w) =
∫ w

0

(∫ 3

0

1

15
dy

)
dx =

∫ w

0

1

5
dx = w/5, (4.46)

which is the area 3w times the value of the joint PDF over that area. Combining the
parts, we can write the joint CDF:

0 2 4 6
0

0.5

1

w

F
W

(w
)

FW (w) =

⎧⎪⎪⎨
⎪⎪⎩

0 w < 0,

w2/15 0 ≤ w ≤ 3,

w/5 3 < w ≤ 5,

1 w > 5.

(4.47)

By taking the derivative, we find the corresponding joint PDF:

0 2 4 6
0

0.2

0.4

w

f W
(w

)

fW (w) =
⎧⎨
⎩

2w/15 0 ≤ w ≤ 3,

1/5 3 < w ≤ 5,

0 otherwise.

(4.48)

In the following example, W is the quotient of two positive numbers.

Example 4.10 X and Y have the joint PDF

fX,Y (x, y) =
{

λμe−(λx+μy) x ≥ 0, y ≥ 0,

0 otherwise.
(4.49)

Find the PDF of W = Y/X .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First we find the CDF:

FW (w) = P [Y/X ≤ w] = P [Y ≤ wX] . (4.50)

For w < 0, FW (w) = 0. For w ≥ 0, we integrate the joint PDF fX,Y (x, y) over the
region of the X, Y plane for which Y ≤ wX , X ≥ 0, and Y ≥ 0 as shown:

Y

X

Y wX�

Y=wX

P [Y ≤ wX] =
∫ ∞

0

(∫ wx

0
fX,Y (x, y) dy

)
dx (4.51)

=
∫ ∞

0
λe−λx

(∫ wx

0
μe−μy dy

)
dx (4.52)

=
∫ ∞

0
λe−λx (1 − e−μwx ) dx (4.53)

= 1 − λ

λ + μw
(4.54)

Therefore,

FW (w) =
{

0 w < 0,

1 − λ
λ+μw ω ≥ 0.

(4.55)
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Differentiating with respect to w, we obtain

fW (w) =
{

λμ/(λ + μw)2 w ≥ 0,

0 otherwise.
(4.56)

Quiz 4.6
(A) Two computers use modems and a telephone line to transfer e-mail and Internet

news every hour. At the start of a data call, the modems at each end of the line
negotiate a speed that depends on the line quality. When the negotiated speed is
low, the computers reduce the amount of news that they transfer. The number of bits
transmitted L and the speed B in bits per second have the joint PMF

PL ,B (l, b) b = 14, 400 b = 21, 600 b = 28, 800
l = 518, 400 0.2 0.1 0.05
l = 2, 592, 000 0.05 0.1 0.2
l = 7, 776, 000 0 0.1 0.2

(4.57)

Let T denote the number of seconds needed for the transfer. Express T as a function
of L and B. What is the PMF of T ?

(B) Find the CDF and the PDF of W = XY when random variables X and Y have joint
PDF

fX,Y (x, y) =
{

1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.
(4.58)

4.7 Expected Values

There are many situations in which we are interested only in the expected value of a derived
random variable W = g(X, Y ), not the entire probability model. In these situations, we
can obtain the expected value directly from PX,Y (x, y) or fX,Y (x, y) without taking the
trouble to compute PW (w) or fW (w). Corresponding to Theorems 2.10 and 3.4, we have:

Theorem 4.12 For random variables X and Y , the expected value of W = g(X, Y ) is

Discrete: E [W ] =
∑
x∈SX

∑
y∈SY

g(x, y)PX,Y (x, y) ,

Continuous: E [W ] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y (x, y) dx dy.

Example 4.11 In Example 4.8, compute E[D] directly from PL ,T (l, t).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Applying Theorem 4.12 to the discrete random variable D, we obtain

E [D] =
3∑

l=1

∑
t=40,60

lt PL ,T (l, t) (4.59)

= (1)(40)(0.15) + (1)60(0.1) + (2)(40)(0.3) + (2)(60)(0.2) (4.60)

+ (3)(40)(0.15) + (3)(60)(0.1) = 96 sec, (4.61)

which is the same result obtained in Example 4.8 after calculating PD(d).

Theorem 4.12 is surprisingly powerful. For example, it lets us calculate easily the expected
value of a sum.

Theorem 4.13
E [g1(X, Y ) + · · · + gn(X, Y )] = E [g1(X, Y )] + · · · + E [gn(X, Y )] .

Proof Let g(X, Y ) = g1(X, Y )+· · ·+gn(X, Y ). For discrete random variables X, Y , Theorem 4.12
states

E [g(X, Y )] =
∑

x∈SX

∑
y∈SY

(g1(x, y) + · · · + gn(x, y)) PX,Y (x, y) . (4.62)

We can break the double summation into n double summations:

E [g(X, Y )] =
∑

x∈SX

∑
y∈SY

g1(x, y)PX,Y (x, y) + · · · +
∑

x∈SX

∑
y∈SY

gn(x, y)PX,Y (x, y) . (4.63)

By Theorem 4.12, the i th double summation on the right side is E[gi (X, Y )], thus

E [g(X, Y )] = E
[
g1(X, Y )

]+ · · · + E [gn(X, Y )] . (4.64)

For continuous random variables, Theorem 4.12 says

E [g(X, Y )] =
∫ ∞
−∞

∫ ∞
−∞

(g1(x, y) + · · · + gn(x, y)) fX,Y (x, y) dx dy. (4.65)

To complete the proof, we express this integral as the sum of n integrals and recognize that each of
the new integrals is an expected value, E[gi (X, Y )].

In words, Theorem 4.13 says that the expected value of a sum equals the sum of the expected
values. We will have many occasions to apply this theorem. The following theorem
describes the expected sum of two random variables, a special case of Theorem 4.13.

Theorem 4.14 For any two random variables X and Y ,

E [X + Y ] = E [X] + E [Y ] .

An important consequence of this theorem is that we can find the expected sum of two
random variables from the separate probability models: PX (x) and PY (y) or fX (x) and
fY (y). We do not need a complete probability model embodied in PX,Y (x, y) or fX,Y (x, y).
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By contrast, the variance of X + Y depends on the entire joint PMF or joint CDF:

Theorem 4.15 The variance of the sum of two random variables is

Var [X + Y ] = Var [X] + Var [Y ] + 2E [(X − μX )(Y − μY )] .

Proof Since E[X + Y ] = μX + μY ,

Var[X + Y ] = E
[
(X + Y − (μX + μY ))2

]
(4.66)

= E
[
((X − μX ) + (Y − μY ))2

]
(4.67)

= E
[
(X − μX )2 + 2(X − μX )(Y − μY ) + (Y − μY )2

]
. (4.68)

We observe that each of the three terms in the preceding expected values is a function of X and Y .
Therefore, Theorem 4.13 implies

Var[X + Y ] = E
[
(X − μX )2

]
+ 2E [(X − μX )(Y − μY )] + E

[
(Y − μY )2

]
. (4.69)

The first and last terms are, respectively, Var[X] and Var[Y ].

The expression E[(X − μX )(Y − μY )] in the final term of Theorem 4.15 reveals important
properties of the relationship of X and Y . This quantity appears over and over in practical
applications, and it has its own name, covariance.

Definition 4.4 Covariance
The covariance of two random variables X and Y is

Cov [X, Y ] = E [(X − μX ) (Y − μY )] .

Sometimes, the notation σXY is used to denote the covariance of X and Y . The correlation
of two random variables, denoted rX,Y , is a close relative of the covariance.

Definition 4.5 Correlation
The correlation of X and Y is rX,Y = E[XY ]
The following theorem contains useful relationships among three expected values: the
covariance of X and Y , the correlation of X and Y , and the variance of X + Y .

Theorem 4.16

(a) Cov[X, Y ] = rX,Y − μXμY .

(b) Var[X + Y ] = Var[X] + Var[Y ] + 2 Cov[X, Y ].
(c) If X = Y , Cov[X, Y ] = Var[X] = Var[Y ] and rX,Y = E[X2] = E[Y 2].
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Proof Cross-multiplying inside the expected value of Definition 4.4 yields

Cov [X, Y ] = E [XY − μX Y − μY X + μX μY ] . (4.70)

Since the expected value of the sum equals the sum of the expected values,

Cov [X, Y ] = E [XY ] − E [μX Y ] − E [μY X] + E [μY μX ] . (4.71)

Note that in the expression E[μY X], μY is a constant. Referring to Theorem 2.12, we set a = μY and
b = 0 to obtain E[μY X] = μY E[X] = μY μX . The same reasoning demonstrates that E[μX Y ] =
μX E[Y ] = μX μY . Therefore,

Cov [X, Y ] = E [XY ] − μX μY − μY μX + μY μX = rX,Y − μX μY . (4.72)

The other relationships follow directly from the definitions and Theorem 4.15.

Example 4.12 For the integrated circuits tests in Example 4.1, we found in Example 4.3 that the
probability model for X and Y is given by the following matrix.

PX,Y (x, y) y = 0 y = 1 y = 2 PX (x)

x = 0 0.01 0 0 0.01
x = 1 0.09 0.09 0 0.18
x = 2 0 0 0.81 0.81
PY (y) 0.10 0.09 0.81

(4.73)

Find rX,Y and Cov[X, Y ].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By Definition 4.5,

rX,Y = E [XY ] =
2∑

x=0

2∑
y=0

xy PX,Y (x, y) (4.74)

= (1)(1)0.09 + (2)(2)0.81 = 3.33. (4.75)

To use Theorem 4.16(a) to find the covariance, we find

E [X] = (1)(0.18) + (2)(0.81) = 1.80, (4.76)

E [Y ] = (1)(0.09) + (2)(0.81) = 1.71. (4.77)

Therefore, by Theorem 4.16(a), Cov[X, Y ] = 3.33 − (1.80)(1.71) = 0.252.

Associated with the definitions of covariance and correlation are special terms to describe
random variables for which rX,Y = 0 and random variables for which Cov[X, Y ] = 0.

Definition 4.6 Orthogonal Random Variables
Random variables X and Y are orthogonal if rX,Y = 0.
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Definition 4.7 Uncorrelated Random Variables
Random variables X and Y are uncorrelated if Cov[X, Y ] = 0.

This terminology, while widely used, is somewhat confusing, since orthogonal means zero
correlation while uncorrelated means zero covariance.

The correlation coefficient is closely related to the covariance of two random variables.

Definition 4.8 Correlation Coefficient
The correlation coefficient of two random variables X and Y is

ρX,Y = Cov [X, Y ]√
Var[X] Var[Y ] = Cov [X, Y ]

σXσY
.

Note that the units of the covariance and the correlation are the product of the units of X
and Y . Thus, if X has units of kilograms and Y has units of seconds, then Cov[X, Y ] and
rX,Y have units of kilogram-seconds. By contrast, ρX,Y is a dimensionless quantity.

An important property of the correlation coefficient is that it is bounded by −1 and 1:

Theorem 4.17

−1 ≤ ρX,Y ≤ 1.

Proof Let σ 2
X and σ 2

Y denote the variances of X and Y and for a constant a, let W = X − aY . Then,

Var[W ] = E
[
(X − aY )2

]
− (E [X − aY ])2 . (4.78)

Since E[X − aY ] = μX − aμY , expanding the squares yields

Var[W ] = E
[

X2 − 2aXY + a2Y 2
]

−
(
μ2

X − 2aμX μY + a2μ2
Y

)
(4.79)

= Var[X] − 2a Cov [X, Y ] + a2 Var[Y ]. (4.80)

Since Var[W ] ≥ 0 for any a, we have 2a Cov[X, Y ] ≤ Var[X] + a2 Var[Y ]. Choosing a = σX /σY
yields Cov[X, Y ] ≤ σY σX , which implies ρX,Y ≤ 1. Choosing a = −σX /σY yields Cov[X, Y ] ≥
−σY σX , which implies ρX,Y ≥ −1.

We encounter ρX,Y in several contexts in this book. We will see that ρX,Y describes
the information we gain about Y by observing X . For example, a positive correlation
coefficient, ρX,Y > 0, suggests that when X is high relative to its expected value, Y also
tends to be high, and when X is low, Y is likely to be low. A negative correlation coefficient,
ρX,Y < 0, suggests that a high value of X is likely to be accompanied by a low value of
Y and that a low value of X is likely to be accompanied by a high value of Y . A linear
relationship between X and Y produces the extreme values, ρX,Y = ±1.
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Theorem 4.18 If X and Y are random variables such that Y = a X + b,

ρX,Y =
⎧⎨
⎩

−1 a < 0,

0 a = 0,

1 a > 0.

The proof is left as an exercise for the reader (Problem 4.7.7). Some examples of positive,
negative, and zero correlation coefficients include:

• X is the height of a student. Y is the weight of the same student. 0 < ρX,Y < 1.

• X is the distance of a cellular phone from the nearest base station. Y is the power of
the received signal at the cellular phone. −1 < ρX,Y < 0.

• X is the temperature of a resistor measured in degrees Celsius. Y is the temperature
of the same resistor measured in degrees Kelvin. ρX,Y = 1 .

• X is the gain of an electrical circuit measured in decibels. Y is the attenuation,
measured in decibels, of the same circuit. ρX,Y = −1.

• X is the telephone number of a cellular phone. Y is the social security number of the
phone’s owner. ρX,Y = 0.

Quiz 4.7
(A) Random variables L and T given in Example 4.8 have joint PMF

PL ,T (l, t) t = 40 sec t = 60 sec
l = 1 page 0.15 0.1
l = 2 pages 0.30 0.2
l = 3 pages 0.15 0.1.

(4.81)

Find the following quantities.

(1) E[L] and Var[L] (2) E[T ] and Var[T ]
(3) The correlation rL ,T = E[LT ] (4) The covariance Cov[L, T ]
(5) The correlation coefficient ρL ,T

(B) The joint probability density function of random variables X and Y is

fX,Y (x, y) =
{

xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

0 otherwise.
(4.82)

Find the following quantities.

(1) E[X] and Var[X] (2) E[Y ] and Var[Y ]
(3) The correlation rX,Y = E[XY ] (4) The covariance Cov[X, Y ]
(5) The correlation coefficient ρX,Y
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4.8 Conditioning by an Event

An experiment produces two random variables, X and Y . We learn that the outcome (x, y) is
an element of an event, B . We use the information (x, y) ∈ B to construct a new probability
model. If X and Y are discrete, the new model is a conditional joint PMF, the ratio of the
joint PMF to P[B]. If X and Y are continuous, the new model is a conditional joint PDF,
defined as the ratio of the joint PDF to P[B]. The definitions of these functions follow from
the same intuition as Definition 1.6 for the conditional probability of an event. Section 4.9
considers the special case of an event that corresponds to an observation of one of the two
random variables: either B = {X = x}, or B = {Y = y}.

Definition 4.9 Conditional Joint PMF
For discrete random variables X and Y and an event, B with P[B] > 0, the conditional
joint PMF of X and Y given B is

PX,Y |B (x, y) = P [X = x, Y = y|B] .

The following theorem is an immediate consequence of the definition.

Theorem 4.19 For any event B, a region of the X, Y plane with P[B] > 0,

PX,Y |B (x, y) =
⎧⎨
⎩

PX,Y (x, y)

P [B]
(x, y) ∈ B,

0 otherwise.

Example 4.13
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Random variables X and Y have the joint PMF PX,Y (x, y)

as shown. Let B denote the event X + Y ≤ 4. Find the
conditional PMF of X and Y given B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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PX,Y |B(x, y)
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Event B = {(1, 1), (2, 1), (2, 2), (3, 1)} consists of all points
(x, y) such that x + y ≤ 4. By adding up the probabilities of
all outcomes in B, we find

P [B] = PX,Y (1, 1) + PX,Y (2, 1)

+ PX,Y (2, 2) + PX,Y (3, 1) = 7

12
.

The conditional PMF PX,Y |B(x, y) is shown on the left.
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In the case of two continuous random variables, we have the following definition of the
conditional probability model.

Definition 4.10 Conditional Joint PDF
Given an event B with P[B] > 0, the conditional joint probability density function of X
and Y is

fX,Y |B (x, y) =
⎧⎨
⎩

fX,Y (x, y)

P [B]
(x, y) ∈ B,

0 otherwise.

Example 4.14 X and Y are random variables with joint PDF

fX,Y (x, y) =
{

1/15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3,

0 otherwise.
(4.83)

Find the conditional PDF of X and Y given the event B = {X + Y ≥ 4}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We calculate P[B] by integrating fX,Y (x, y) over the region B.
Y

X

B P [B] =
∫ 3

0

∫ 5

4−y

1

15
dx dy (4.84)

= 1

15

∫ 3

0
(1 + y) dy (4.85)

= 1/2. (4.86)
Definition 4.10 leads to the conditional joint PDF

fX,Y |B (x, y) =
{

2/15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, x + y ≥ 4,

0 otherwise.
(4.87)

Corresponding to Theorem 4.12, we have

Theorem 4.20 Conditional Expected Value
For random variables X and Y and an event B of nonzero probability, the conditional
expected value of W = g(X, Y ) given B is

Discrete: E [W |B] =
∑

x∈SX

∑
y∈SY

g(x, y)PX,Y |B (x, y) ,

Continuous: E [W |B] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y |B (x, y) dx dy.

Another notation for conditional expected value is μW |B .
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Definition 4.11 Conditional variance

The conditional variance of the random variable W = g(X, Y ) is

Var [W |B] = E
[(

W − μW |B
)2 |B

]
.

Another notation for conditional variance is σ 2
W |B . The following formula is a convenient

computational shortcut.

Theorem 4.21

Var [W |B] = E
[
W 2|B

]
− (μW |B)2.

Example 4.15 Continuing Example 4.13, find the conditional expected value and the conditional vari-
ance of W = X + Y given the event B = {X + Y ≤ 4}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We recall from Example 4.13 that PX,Y |B(x, y) has four points with nonzero proba-
bility: (1, 1), (1, 2), (1, 3), and (2, 2). Their probabilities are 3/7, 3/14, 1/7, and 3/14,
respectively. Therefore,

E [W |B] =
∑
x,y

(x + y)PX,Y |B (x, y) (4.88)

= 2
3

7
+ 3

3

14
+ 4

1

7
+ 4

3

14
= 41

14
. (4.89)

Similarly,

E
[
W 2|B

]
=
∑
x,y

(x + y)2 PX,Y |B (x, y) (4.90)

= 22 3

7
+ 32 3

14
+ 42 1

7
+ 42 3

14
= 131

14
. (4.91)

The conditional variance is Var[W |B] = E[W 2|B]−(E[W |B])2 = (131/14)−(41/14)2 =
153/196.

Example 4.16 Continuing Example 4.14, find the conditional expected value of W = XY given the
event B = {X + Y ≥ 4}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Y

X

B For the event B shown in the adjacent graph, Example 4.14
showed that the conditional PDF of X, Y given B is

fX,Y |B (x, y) =
{

2/15 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, (x, y) ∈ B,

0 otherwise.
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From Theorem 4.20,

E [XY |B] =
∫ 3

0

∫ 5

4−y

2

15
xy dx dy (4.92)

= 1

15

∫ 3

0

(
x2
∣∣∣5
4−y

)
y dy (4.93)

= 1

15

∫ 3

0

(
9y + 8y2 − y3

)
dy = 123

20
. (4.94)

Quiz 4.8
(A) From Example 4.8, random variables L and T have joint PMF

PL ,T (l, t) t = 40 sec t = 60 sec
l = 1 page 0.15 0.1
l = 2 pages 0.3 0.2
l = 3 pages 0.15 0.1

(4.95)

For random variable V = LT , we define the event A = {V > 80}. Find the condi-
tional PMF PL ,T |A(l, t) of L and T given A. What are E[V |A] and Var[V |A]?

(B) Random variables X and Y have the joint PDF

fX,Y (x, y) =
{

xy/4000 1 ≤ x ≤ 3, 40 ≤ y ≤ 60,

0 otherwise.
(4.96)

For random variable W = XY , we define the event B = {W > 80}. Find the
conditional joint PDF fX,Y |B(l, t) of X and Y given B. What are E[W |B] and
Var[W |B]?

4.9 Conditioning by a Random Variable

In Section 4.8, we use the partial knowledge that the outcome of an experiment (x, y) ∈ B
in order to derive a new probability model for the experiment. Now we turn our attention
to the special case in which the partial knowledge consists of the value of one of the
random variables: either B = {X = x} or B = {Y = y}. Learning {Y = y} changes our
knowledge of random variables X, Y . We now have complete knowledge of Y and modified
knowledge of X . From this information, we derive a modified probability model for X . The
new model is either a conditional PMF of X given Y or a conditional PDF of X given Y .
When X and Y are discrete, the conditional PMF and associated expected values represent a
specialized notation for their counterparts, PX,Y |B(x, y) and E[g(X, Y )|B] in Section 4.8.
By contrast, when X and Y are continuous, we cannot apply Section 4.8 directly because
P[B] = P[Y = y] = 0 as discussed in Chapter 3. Instead, we define a conditional PDF as
the ratio of the joint PDF to the marginal PDF.

 



4.9 CONDITIONING BY A RANDOM VARIABLE 181

Definition 4.12 Conditional PMF
For any event Y = y such that PY (y) > 0, the conditional PMF of X given Y = y is

PX |Y (x |y) = P [X = x |Y = y] .

The following theorem contains the relationship between the joint PMF of X and Y and
the two conditional PMFs, PX |Y (x |y) and PY |X (y|x).

Theorem 4.22 For random variables X and Y with joint PMF PX,Y (x, y), and x and y such that PX(x) > 0
and PY (y) > 0,

PX,Y (x, y) = PX |Y (x |y) PY (y) = PY |X (y|x) PX (x) .

Proof Referring to Definition 4.12, Definition 1.6, and Theorem 4.3, we observe that

PX |Y (x|y) = P [X = x|Y = y] = P [X = x, Y = y]

P [Y = y]
= PX,Y (x, y)

PY (y)
. (4.97)

Hence, PX,Y (x, y) = PX |Y (x|y)PY (y). The proof of the second part is the same with X and Y
reversed.

Example 4.17
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Random variables X and Y have the joint PMF
PX,Y (x, y), as given in Example 4.13 and repeated in
the accompanying graph. Find the conditional PMF
of Y given X = x for each x ∈ SX .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To apply Theorem 4.22, we first find the marginal PMF PX (x). By Theorem 4.3,
PX (x) = ∑

y∈SY
PX,Y (x, y). For a given X = x, we sum the nonzero probablities

along the vertical line X = x. That is,

PX (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/4 x = 1,

1/8 + 1/8 x = 2,

1/12 + 1/12 + 1/12 x = 3,

1/16 + 1/16 + 1/16 + 1/16 x = 4,

0 otherwise,

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/4 x = 1,

1/4 x = 2,

1/4 x = 3,

1/4 x = 4,

0 otherwise.

Theorem 4.22 implies that for x ∈ {1, 2, 3, 4},

PY |X (y|x) = PX,Y (x, y)

PX (x)
= 4PX,Y (x, y) . (4.98)
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For each x ∈ {1, 2, 3, 4}, PY |X (y|x) is a different PMF.

PY |X (y|1) =
{

1 y = 1,

0 otherwise.
PY |X (y|2) =

{
1/2 y ∈ {1, 2},
0 otherwise.

PY |X (y|3) =
{

1/3 y ∈ {1, 2, 3},
0 otherwise.

PY |X (y|4) =
{

1/4 y ∈ {1, 2, 3, 4},
0 otherwise.

Given X = x, the conditional PMF of Y is the discrete uniform (1, x) random variable.

For each y ∈ SY , the conditional probability mass function of X , gives us a new prob-
ability model of X . We can use this model in any way that we use PX (x), the model we
have in the absence of knowledge of Y . Most important, we can find expected values with
respect to PX |Y (x |y) just as we do in Chapter 2 with respect to PX (x).

Theorem 4.23 Conditional Expected Value of a Function
X and Y are discrete random variables. For any y ∈ SY , the conditional expected value of
g(X, Y ) given Y = y is

E [g(X, Y )|Y = y] =
∑
x∈SX

g(x, y)PX |Y (x |y) .

The conditional expected value of X given Y = y is a special case of Theorem 4.23:

E [X |Y = y] =
∑
x∈SX

x PX |Y (x |y) . (4.99)

Theorem 4.22 shows how to obtain the conditional PMF given the joint PMF, PX,Y (x, y).
In many practical situations, including the next example, we first obtain information about
marginal and conditional probabilities. We can then use that information to build the
complete model.

Example 4.18 In Example 4.17, we derived the following conditional PMFs: PY |X (y|1), PY |X (y|2),
PY |X (y|3), and PY |X (y|4). Find E[Y |X = x] for x = 1, 2, 3, 4.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Theorem 4.23 with g(x, y) = x, we calculate

E [Y |X = 1] = 1, E [Y |X = 2] = 1.5, (4.100)

E [Y |X = 3] = 2, E [Y |X = 4] = 2.5. (4.101)

Now we consider the case in which X and Y are continuous random variables. We
observe {Y = y} and define the PDF of X given {Y = y}. We cannot use B = {Y = y}
in Definition 4.10 because P[Y = y] = 0. Instead, we define a conditional probability
density function, denoted as fX |Y (x |y).
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Definition 4.13 Conditional PDF
For y such that fY (y) > 0, the conditional PDF of X given {Y = y} is

fX |Y (x |y) = fX,Y (x, y)

fY (y)
.

Definition 4.13 implies

fY |X (y|x) = fX,Y (x, y)

fX (x)
. (4.102)

Example 4.19 Returning to Example 4.5, random variables X and Y have joint PDF
Y

1

1
f x,y =2XY( )

X

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.
(4.103)

For 0 ≤ x ≤ 1, find the conditional PDF fY |X (y|x). For 0 ≤ y ≤ 1, find the conditional
PDF fX |Y (x|y).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For 0 ≤ x ≤ 1, Theorem 4.8 implies

fX (x) =
∫ ∞
−∞

fX,Y (x, y) dy =
∫ x

0
2 dy = 2x. (4.104)

The conditional PDF of Y given X is

fY |X (y|x) = fX,Y (x, y)

fX (x)
=
{

1/x 0 ≤ y ≤ x,

0 otherwise.
(4.105)

Given X = x, we see that Y is the uniform (0, x) random variable. For 0 ≤ y ≤ 1,
Theorem 4.8 implies

fY (y) =
∫ ∞
−∞

fX,Y (x, y) dx =
∫ 1

y
2 dx = 2(1 − y). (4.106)

Furthermore, Equation (4.102) implies

fX |Y (x|y) = fX,Y (x, y)

fY (y)
=
{

1/(1 − y) y ≤ x ≤ 1,

0 otherwise.
(4.107)

Conditioned on Y = y, we see that X is the uniform (y, 1) random variable.

We can include both expressions for conditional PDFs in the following formulas.

Theorem 4.24
fX,Y (x, y) = fY |X (y|x) fX (x) = fX |Y (x |y) fY (y) .

For each y with fY (y) > 0, the conditional PDF fX |Y (x |y) gives us a new probability
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model of X . We can use this model in any way that we use fX (x), the model we have in
the absence of knowledge of Y . Most important, we can find expected values with respect
to fX |Y (x |y) just as we do in Chapter 3 with respect to fX (x). More generally, we define
the conditional expected value of a function of the random variable X .

Definition 4.14 Conditional Expected Value of a Function
For continuous random variables X and Y and any y such that fY (y) > 0, the conditional
expected value of g(X, Y ) given Y = y is

E [g(X, Y )|Y = y] =
∫ ∞

−∞
g(x, y) fX |Y (x |y) dx .

The conditional expected value of X given Y = y is a special case of Definition 4.14:

E [X |Y = y] =
∫ ∞

−∞
x fX |Y (x |y) dx . (4.108)

When we introduced the concept of expected value in Chapters 2 and 3, we observed that
E[X] is a number derived from the probability model of X . This is also true for E[X |B].
The conditional expected value given an event is a number derived from the conditional
probability model. The situation is more complex when we consider E[X |Y = y], the
conditional expected value given a random variable. In this case, the conditional expected
value is a different number for each possible observation y ∈ SY . Therefore, E[X |Y = y]
is a deterministic function of the observation y. This implies that when we perform an
experiment and observe Y = y, E[X |Y = y] is a function of the random variable Y . We
use the notation E[X |Y ] to denote this function of the random variable Y . Since a function
of a random variable is another random variable, we conclude that E[X |Y ] is a random
variable! For some readers, the following definition may help to clarify this point.

Definition 4.15 Conditional Expected Value
The conditional expected value E[X |Y ] is a function of random variable Y such that if
Y = y then E[X |Y ] = E[X |Y = y].

Example 4.20 For random variables X and Y in Example 4.5, we found in Example 4.19 that the
conditional PDF of X given Y is

fX |Y (x|y) = fX,Y (x, y)

fY (y)
=
{

1/(1 − y) y ≤ x ≤ 1,

0 otherwise.
(4.109)

Find the conditional expected values E[X |Y = y] and E[X |Y ].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given the conditional PDF fX |Y (x|y), we perform the integration

E [X |Y = y] =
∫ ∞
−∞

x fX |Y (x|y) dx (4.110)

=
∫ 1

y

1

1 − y
x dx = x2

2(1 − y)

∣∣∣∣∣
x=1

x=y

= 1 + y

2
. (4.111)
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Since E[X |Y = y] = (1 + y)/2, E[X |Y ] = (1 + Y )/2.

An interesting property of the random variable E[X |Y ] is its expected value E[E[X |Y ]].
We find E[E[X |Y ]] in two steps: first we calculate g(y) = E[X |Y = y] and then we apply
Theorem 3.4 to evaluate E[g(Y )]. This two-step process is known as iterated expectation.

Theorem 4.25 Iterated Expectation

E [E [X |Y ]] = E [X] .

Proof We consider continuous random variables X and Y and apply Theorem 3.4:

E [E [X |Y ]] =
∫ ∞
−∞

E [X |Y = y] fY (y) dy. (4.112)

To obtain this formula from Theorem 3.4, we have used E[X |Y = y] in place of g(x) and fY (y) in
place of fX (x). Next, we substitute the right side of Equation (4.108) for E[X |Y = y]:

E [E [X |Y ]] =
∫ ∞
−∞

(∫ ∞
−∞

x fX |Y (x|y) dx

)
fY (y) dy. (4.113)

Rearranging terms in the double integral and reversing the order of integration, we obtain:

E [E [X |Y ]] =
∫ ∞
−∞

x
∫ ∞
−∞

fX |Y (x|y) fY (y) dy dx. (4.114)

Next, we apply Theorem 4.24 and Theorem 4.8 to infer that the inner integral is simply fX (x).
Therefore,

E [E [X |Y ]] =
∫ ∞
−∞

x fX (x) dx. (4.115)

The proof is complete because the right side of this formula is the definition of E[X]. A similar
derivation (using sums instead of integrals) proves the theorem for discrete random variables.

The same derivation can be generalized to any function g(X) of one of the two random
variables:

Theorem 4.26
E [E [g(X)|Y ]] = E [g(X)] .

The following versions of Theorem 4.26 are instructive. If Y is continuous,

E [g(X)] = E [E [g(X)|Y ]] =
∫ ∞

−∞
E [g(X)|Y = y] fY (y) dy, (4.116)

and if Y is discrete, we have a similar expression,

E [g(X)] = E [E [g(X)|Y ]] =
∑
y∈SY

E [g(X)|Y = y] PY (y) . (4.117)
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Theorem 4.26 decomposes the calculation of E[g(X)] into two steps: the calculation of
E[g(X)|Y = y], followed by the averaging of E[g(X)|Y = y] over the distribution of Y .
This is another example of iterated expectation. In Section 4.11, we will see that the iterated
expectation can both facilitate understanding as well as simplify calculations.

Example 4.21 At noon on a weekday, we begin recording new call attempts at a telephone switch.
Let X denote the arrival time of the first call, as measured by the number of seconds
after noon. Let Y denote the arrival time of the second call. In the most common
model used in the telephone industry, X and Y are continuous random variables with
joint PDF

fX,Y (x, y) =
{

λ2e−λy 0 ≤ x < y,

0 otherwise.
(4.118)

where λ > 0 calls/second is the average arrival rate of telephone calls. Find the
marginal PDFs fX (x) and fY (y) and the conditional PDFs fX |Y (x|y) and fY |X (y|x).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For x < 0, fX (x) = 0. For x ≥ 0, Theorem 4.8 gives fX (x):

fX (x) =
∫ ∞

x
λ2e−λy dy = λe−λx . (4.119)

Referring to Appendix A.2, we see that X is an exponential random variable with
expected value 1/λ. Given X = x, the conditional PDF of Y is

fY |X (y|x) = fX,Y (x, y)

fX (x)
=
{

λe−λ(y−x) y > x,

0 otherwise.
(4.120)

To interpret this result, let U = Y − X denote the interarrival time, the time between
the arrival of the first and second calls. Problem 4.10.15 asks the reader to show that
given X = x, U has the same PDF as X . That is, U is an exponential (λ) random
variable.

Now we can find the marginal PDF of Y . For y < 0, fY (y) = 0. Theorem 4.8
implies

fY (y) =
{ ∫ y

0 λ2e−λy dx = λ2ye−λy y ≥ 0,

0 otherwise.
(4.121)

Y is the Erlang (2, λ) random variable (Appendix A). Given Y = y, the conditional
PDF of X is

fX |Y (x|y) = fX,Y (x, y)

fY (y)
=
{

1/y 0 ≤ x < y,

0 otherwise.
(4.122)

Under the condition that the second call arrives at time y, the time of arrival of the first
call is the uniform (0, y) random variable.

In Example 4.21, we begin with a joint PDF and compute two conditional PDFs. Often
in practical situations, we begin with a conditional PDF and a marginal PDF. Then we use
this information to compute the joint PDF and the other conditional PDF.

Example 4.22 Let R be the uniform (0, 1) random variable. Given R = r , X is the uniform (0, r)

random variable. Find the conditional PDF of R given X .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The problem definition states that

fR (r) =
{

1 0 ≤ r < 1,

0 otherwise,
fX |R (x|r ) =

{
1/r 0 ≤ x < r < 1,

0 otherwise.
(4.123)
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It follows from Theorem 4.24 that the joint PDF of R and X is

fR,X (r, x) = fX |R (x|r ) fR (r) =
{

1/r 0 ≤ x < r < 1,

0 otherwise.
(4.124)

Now we can find the marginal PDF of X from Theorem 4.8. For 0 < x < 1,

fX (x) =
∫ ∞
−∞

fR,X (r, x) dr =
∫ 1

x

dr

r
= − ln x. (4.125)

By the definition of the conditional PDF,

fR|X (r |x) = fR,X (r, x)

fX (x)
=
{

1
−r ln x x ≤ r ≤ 1,

0 otherwise.
(4.126)

Quiz 4.9
(A) The probability model for random variable A is

PA (a) =
⎧⎨
⎩

0.4 a = 0,

0.6 a = 2,

0 otherwise.
(4.127)

The conditional probability model for random variable B given A is

PB|A (b|0) =
⎧⎨
⎩

0.8 b = 0,

0.2 b = 1,

0 otherwise,
PB|A (b|2) =

⎧⎨
⎩

0.5 b = 0,

0.5 b = 1,

0 otherwise.
(4.128)

(1) What is the probability model for
A and B? Write the joint PMF
PA,B(a, b) as a table.

(2) If A = 2, what is the conditional
expected value E[B|A = 2]?

(3) If B = 0, what is the conditional
PMF PA|B (a|0)?

(4) If B = 0, what is the conditional
variance Var[A|B = 0] of A?

(B) The PDF of random variable X and the conditional PDF of random variable Y given
X are

fX (x) =
{

3x2 0 ≤ x ≤ 1,

0 otherwise,
fY |X (y|x) =

{
2y/x2 0 ≤ y ≤ x, 0 < x ≤ 1,

0 otherwise.

(1) What is the probability model for
X and Y ? Find fX,Y (x, y).

(2) If X = 1/2, find the conditional
PDF fY |X (y|1/2).

(3) If Y = 1/2, what is the condi-
tional PDF fX |Y (x |1/2)?

(4) If Y = 1/2, what is the condi-
tional variance Var[X |Y = 1/2]?
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4.10 Independent Random Variables

Chapter 1 presents the concept of independent events. Definition 1.7 states that events A
and B are independent if and only if the probability of the intersection is the product of the
individual probabilities, P[AB] = P[A]P[B].

Applying the idea of independence to random variables, we say that X and Y are inde-
pendent random variables if and only if the events {X = x} and {Y = y} are independent
for all x ∈ SX and all y ∈ SY . In terms of probability mass functions and probability
density functions we have the following definition.

Definition 4.16 Independent Random Variables
Random variables X and Y are independent if and only if

Discrete: PX,Y (x, y) = PX (x) PY (y) ,

Continuous: fX,Y (x, y) = fX (x) fY (y) .

Because Definition 4.16 is an equality of functions, it must be true for all values of x and
y. Theorem 4.22 implies that if X and Y are independent discrete random variables, then

PX |Y (x |y) = PX (x) , PY |X (y|x) = PY (y) . (4.129)

Theorem 4.24 implies that if X and Y are independent continuous random variables, then

fX |Y (x |y) = fX (x) fY |X (y|x) = fY (y) . (4.130)

Example 4.23

fX,Y (x, y) =
{

4xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.
(4.131)

Are X and Y independent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The marginal PDFs of X and Y are

fX (x) =
{

2x 0 ≤ x ≤ 1,

0 otherwise,
fY (y) =

{
2y 0 ≤ y ≤ 1,

0 otherwise.
(4.132)

It is easily verified that fX,Y (x, y) = fX (x) fY (y) for all pairs (x, y) and so we conclude
that X and Y are independent.

Example 4.24

fU,V (u, v) =
{

24uv u ≥ 0, v ≥ 0, u + v ≤ 1,

0 otherwise.
(4.133)

Are U and V independent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since fU,V (u, v) looks similar in form to fX,Y (x, y) in the previous example, we might
suppose that U and V can also be factored into marginal PDFs fU (u) and fV (v).
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However, this is not the case. Owing to the triangular shape of the region of nonzero
probability, the marginal PDFs are

fU (u) =
{

12u(1 − u)2 0 ≤ u ≤ 1,

0 otherwise,
(4.134)

fV (v) =
{

12v(1 − v)2 0 ≤ v ≤ 1,

0 otherwise.
(4.135)

Clearly, U and V are not independent. Learning U changes our knowledge of V . For
example, learning U = 1/2 informs us that P[V ≤ 1/2] = 1.

In these two examples, we see that the region of nonzero probability plays a crucial role
in determining whether random variables are independent. Once again, we emphasize that
to infer that X and Y are independent, it is necessary to verify the functional equalities in
Definition 4.16 for all x ∈ SX and y ∈ SY . There are many cases in which some events of
the form {X = x} and {Y = y} are independent and others are not independent. If this is
the case, the random variables X and Y are not independent.

The interpretation of independent random variables is a generalization of the interpreta-
tion of independent events. Recall that if A and B are independent, then learning that A has
occurred does not change the probability of B occurring. When X and Y are independent
random variables, the conditional PMF or the conditional PDF of X given Y = y is the
same for all y ∈ SY , and the conditional PMF or the conditional PDF of Y given X = x
is the same for all x ∈ SX . Moreover, Equations (4.129) and (4.130) state that when two
random variables are indpendent, each conditional PMF or PDF is identical to a correspond-
ing marginal PMF or PDF. In summary, when X and Y are independent, observing Y = y
does not alter our probability model for X . Similarly, observing X = x does not alter our
probability model for Y . Therefore, learning that Y = y provides no information about X ,
and learning that X = x provides no information about Y .

The following theorem contains several important properties of expected values of in-
dependent random variables.

Theorem 4.27 For independent random variables X and Y ,

(a) E[g(X)h(Y )] = E[g(X)]E[h(Y )],
(b) rX,Y = E[XY ] = E[X]E[Y ],
(c) Cov[X, Y ] = ρX,Y = 0,

(d) Var[X + Y ] = Var[X] + Var[Y ],
(e) E[X |Y = y] = E[X] for all y ∈ SY ,

(f) E[Y |X = x] = E[Y ] for all x ∈ SX .

Proof We present the proof for discrete random variables. By replacing PMFs and sums with
PDFs and integrals we arrive at essentially the same proof for continuous random variables. Since
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PX,Y (x, y) = PX (x)PY (y),

E [g(X)h(Y )] =
∑

x∈SX

∑
y∈SY

g(x)h(y)PX (x) PY (y) (4.136)

=
⎛
⎝∑

x∈SX

g(x)PX (x)

⎞
⎠
⎛
⎝∑

y∈SY

h(y)PY (y)

⎞
⎠ = E [g(X)] E [h(Y )] . (4.137)

If g(X) = X , and h(Y ) = Y , this equation implies rX,Y = E[XY ] = E[X]E[Y ]. This equation
and Theorem 4.16(a) imply Cov[X, Y ] = 0. As a result, Theorem 4.16(b) implies Var[X + Y ] =
Var[X] + Var[Y ]. Furthermore, ρX,Y = Cov[X, Y ]/(σX σY ) = 0.

Since PX |Y (x|y) = PX (x),

E [X |Y = y] =
∑

x∈SX

x PX |Y (x|y) =
∑

x∈SX

x PX (x) = E [X] . (4.138)

Since PY |X (y|x) = PY (y),

E [Y |X = x] =
∑

y∈SY

y PY |X (y|x) =
∑

y∈SY

y PY (y) = E [Y ] . (4.139)

These results all follow directly from the joint PMF for independent random variables. We
observe that Theorem 4.27(c) states that independent random variables are uncorrelated.
We will have many occasions to refer to this property. It is important to know that while
Cov[X, Y ] = 0 is a necessary property for independence, it is not sufficient. There are
many pairs of uncorrelated random variables that are not independent.

Example 4.25 Random variables X and Y have a joint PMF given by the following matrix

PX,Y (x, y) y = −1 y = 0 y = 1
x = −1 0 0.25 0
x = 1 0.25 0.25 0.25

(4.140)

Are X and Y independent? Are X and Y uncorrelated?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For the marginal PMFs, we have PX (−1) = 0.25 and PY (−1) = 0.25. Thus

PX (−1) PY (−1) = 0.0625 �= PX,Y (−1, −1) = 0, (4.141)

and we conclude that X and Y are not independent.

To find Cov[X, Y ], we calculate

E [X] = 0.5, E [Y ] = 0, E [XY ] = 0. (4.142)

Therefore, Theorem 4.16(a) implies

Cov [X, Y ] = E [XY ] − E [X] E [Y ] = ρX,Y = 0, (4.143)

and by definition X and Y are uncorrelated.
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Quiz 4.10
(A) Random variables X and Y in Example 4.1 and random variables Q and G in Quiz 4.2

have joint PMFs:

PX,Y (x, y) y = 0 y = 1 y = 2
x = 0 0.01 0 0
x = 1 0.09 0.09 0
x = 2 0 0 0.81

PQ,G (q, g) g = 0 g = 1 g = 2 g = 3
q = 0 0.06 0.18 0.24 0.12
q = 1 0.04 0.12 0.16 0.08

(1) Are X and Y independent? (2) Are Q and G independent?

(B) Random variables X1 and X2 are independent and identically distributed with prob-
ability density function

fX (x) =
{

1 − x/2 0 ≤ x ≤ 2,

0 otherwise.
(4.144)

(1) What is the joint PDF f X1,X2(x1, x2)? (2) Find the CDF of Z = max(X1, X2).

4.11 Bivariate Gaussian Random Variables

The bivariate Gaussian disribution is a probability model for X and Y with the property
that X and Y are each Gaussian random variables.

Definition 4.17 Bivariate Gaussian Random Variables
Random variables X and Y have a bivariate Gaussian PDF with parameters μ1, σ1, μ2,
σ2, and ρ if

fX,Y (x, y) =
exp

⎡
⎢⎣−

(
x−μ1

σ1

)2 − 2ρ(x−μ1)(y−μ2)
σ1σ2

+
(

y−μ2
σ2

)2

2(1 − ρ2)

⎤
⎥⎦

2πσ1σ2
√

1 − ρ2
,

where μ1 and μ2 can be any real numbers, σ1 > 0, σ2 > 0, and −1 < ρ < 1.

Figure 4.5 illustrates the bivariate Gaussian PDF for μ1 = μ2 = 0, σ1 = σ2 = 1, and
three values of ρ. When ρ = 0, the joint PDF has the circular symmetry of a sombrero.
When ρ = 0.9, the joint PDF forms a ridge over the line x = y, and when ρ = −0.9 there
is a ridge over the line x = −y. The ridge becomes increasingly steep as ρ → ±1.

To examine mathematically the properties of the bivariate Gaussian PDF, we define

μ̃2(x) = μ2 + ρ
σ2

σ1
(x − μ1), σ̃2 = σ2

√
1 − ρ2, (4.145)

 



192 CHAPTER 4 PAIRS OF RANDOM VARIABLES

−2
−1

0
1

2

−2−1012
0

0.1

0.2

0.3

 x

=0

 y

 f X
,Y

(x
,y

)

−2
−1

0
1

2

−2−1012
0

0.1

0.2

0.3

 x

=0.9

 y

 f X
,Y

(x
,y

)

−2
−1

0
1

2

−2−1012
0

0.1

0.2

0.3

 x

=−0.9

 y

 f X
,Y

(x
,y

)

Figure 4.5 The Joint Gaussian PDF fX,Y (x, y) for μ1 = μ2 = 0, σ1 = σ2 = 1, and three values
of ρ.
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and manipulate the formula in Definition 4.17 to obtain the following expression for the
joint Gaussian PDF:

fX,Y (x, y) = 1

σ1
√

2π
e−(x−μ1)

2/2σ 2
1

1

σ̃2
√

2π
e−(y−μ̃2(x))2/2σ̃ 2

2 . (4.146)

Equation (4.146) expresses fX,Y (x, y) as the product of two Gaussian PDFs, one with
parameters μ1 and σ1 and the other with parameters μ̃2 and σ̃2. This formula plays a key
role in the proof of the following theorem.

Theorem 4.28 If X and Y are the bivariate Gaussian random variables in Definition 4.17, X is the Gaussian
(μ1, σ1) random variable and Y is the Gaussian (μ2, σ2) random variable:

fX (x) = 1

σ1
√

2π
e−(x−μ1)

2/2σ 2
1 fY (y) = 1

σ2
√

2π
e−(y−μ2)

2/2σ 2
2 .

Proof Integrating fX,Y (x, y) in Equation (4.146) over all y, we have

fX (x) =
∫ ∞
−∞

fX,Y (x, y) dy (4.147)

= 1

σ1
√

2π
e−(x−μ1)

2/2σ 2
1

∫ ∞
−∞

1

σ̃2
√

2π
e−(y−μ̃2(x))2/2σ̃ 2

2 dy

︸ ︷︷ ︸
1

(4.148)

The integral above the bracket equals 1 because it is the integral of a Gaussian PDF. The remainder
of the formula is the PDF of the Gaussian (μ1, σ1) random variable. The same reasoning with the
roles of X and Y reversed leads to the formula for fY (y).

Given the marginal PDFs of X and Y , we use Definition 4.13 to find the conditional PDFs.

Theorem 4.29 If X and Y are the bivariate Gaussian random variables in Definition 4.17, the conditional
PDF of Y given X is

fY |X (y|x) = 1

σ̃2
√

2π
e−(y−μ̃2(x))2/2σ̃ 2

2 ,

where, given X = x, the conditional expected value and variance of Y are

μ̃2(x) = μ2 + ρ
σ2

σ1
(x − μ1), σ̃ 2

2 = σ 2
2 (1 − ρ2).

Theorem 4.29 is the result of dividing fX,Y (x, y) in Equation (4.146) by fX (x) to obtain
fY |X (y|x). The cross sections of Figure 4.6 illustrate the conditional PDF. The figure is a
graph of fX,Y (x, y) = fY |X (y|x) fX (x). Since X is a constant on each cross section, the
cross section is a scaled picture of fY |X (y|x). As Theorem 4.29 indicates, the cross section
has the Gaussian bell shape. Corresponding to Theorem 4.29, the conditional PDF of X

 



194 CHAPTER 4 PAIRS OF RANDOM VARIABLES

Figure 4.6 Cross-sectional view of the joint Gaussian PDF with μ1 = μ2 = 0, σ1 = σ2 = 1,
and ρ = 0.9. Theorem 4.29 confirms that the bell shape of the cross section occurs because the
conditional PDF fY |X (y|x) is Gaussian.

given Y is also Gaussian. This conditional PDF is found by dividing fX,Y (x, y) by fY (y)

to obtain fX |Y (x |y).

Theorem 4.30 If X and Y are the bivariate Gaussian random variables in Definition 4.17, the conditional
PDF of X given Y is

fX |Y (x |y) = 1

σ̃1
√

2π
e−(x−μ̃1(y))2/2σ̃ 2

1 ,

where, given Y = y, the conditional expected value and variance of X are

μ̃1(y) = μ1 + ρ
σ1

σ2
(y − μ2) σ̃ 2

1 = σ 2
1 (1 − ρ2).

The next theorem identifies ρ in Definition 4.17 as the correlation coefficient of X and
Y , ρX,Y .

Theorem 4.31 Bivariate Gaussian random variables X and Y in Definition 4.17 have correlation coefficient

ρX,Y = ρ.

Proof Substituting μ1, σ1, μ2, and σ2 for μX , σX , μY , and σY in Definition 4.4 and Definition 4.8,
we have

ρX,Y = E
[
(X − μ1)(Y − μ2)

]
σ1σ2

. (4.149)
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To evaluate this expected value, we use the substitution fX,Y (x, y) = fY |X (y|x) fX (x) in the double
integral of Theorem 4.12. The result can be expressed as

ρX,Y = 1

σ1σ2

∫ ∞
−∞

(x − μ1)

(∫ ∞
−∞

(y − μ2) fY |X (y|x) dy

)
fX (x) dx (4.150)

= 1

σ1σ2

∫ ∞
−∞

(x − μ1) E
[
Y − μ2|X = x

]
fX (x) dx (4.151)

Because E[Y |X = x] = μ̃2(x) in Theorem 4.29, it follows that

E
[
Y − μ2|X = x

] = μ̃2(x) − μ2 = ρ
σ2

σ1
(x − μ1) (4.152)

Therefore,

ρX,Y = ρ

σ 2
1

∫ ∞
−∞

(x − μ1)2 fX (x) dx = ρ, (4.153)

because the integral in the final expression is Var[X] = σ 2
1 .

From Theorem 4.31, we observe that if X and Y are uncorrelated, then ρ = 0 and, from
Theorems 4.29 and 4.30, fY |X (y|x) = fY (y) and fX |Y (x |y) = fX (x). Thus we have the
following theorem.

Theorem 4.32 Bivariate Gaussian random variables X and Y are uncorrelated if and only if they are
independent.

Theorem 4.31 identifies the parameter ρ in the bivariate gaussian PDF as the correlation
coefficient ρX,Y of bivariate Gaussian random variables X and Y . Theorem 4.17 states
that for any pair of random variables, |ρX,Y | < 1, which explains the restriction |ρ| < 1
in Definition 4.17. Introducing this inequality to the formulas for conditional variance in
Theorem 4.29 and Theorem 4.30 leads to the following inequalities:

Var [Y |X = x] = σ 2
2 (1 − ρ2) ≤ σ 2

2 , (4.154)

Var [X |Y = y] = σ 2
1 (1 − ρ2) ≤ σ 2

1 . (4.155)

These formulas state that for ρ �= 0, learning the value of one of the random variables leads
to a model of the other random variable with reduced variance. This suggests that learning
the value of Y reduces our uncertainty regarding X .

Quiz 4.11 Let X and Y be jointly Gaussian (0, 1) random variables with correlation coefficient 1/2.

(1) What is the joint PDF of X and Y ?

(2) What is the conditional PDF of X given Y = 2?
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4.12 Matlab

Matlab is a useful tool for studying experiments that produce a pair of random vari-
ables X, Y . For discrete random variables X and Y with joint PMF PX,Y (x, y), we use
Matlab to to calculate probabilities of events and expected values of derived random
variables W = g(X, Y ) using Theorem 4.9. In addition, simulation experiments often
depend on the generation of sample pairs of random variables with specific probability
models. That is, given a joint PMF PX,Y (x, y) or PDF fX,Y (x, y), we need to produce a
collection {(x1, y1), (x2, y2), . . . , (xm, ym)}. For finite discrete random variables, we are
able to develop some general techniques. For continuous random variables, we give some
specific examples.

Discrete Random Variables

We start with the case when X and Y are finite random variables with ranges

SX = {x1, . . . , xn} SY = {y1, . . . , ym} . (4.156)

In this case, we can take advantage of Matlab techniques for surface plots of g(x, y)

over the x, y plane. In Matlab, we represent SX and SY by the n element vector sx and
m element vector sy. The function [SX,SY]=ndgrid(sx,sy) produces the pair of
n × m matrices,

SX =
⎡
⎢⎣

x1 · · · x1
...

...

xn · · · xn

⎤
⎥⎦ , SY =

⎡
⎢⎣

y1 · · · ym
...

...

y1 · · · ym

⎤
⎥⎦ . (4.157)

We refer to matrices SX and SY as a sample space grid because they are a grid representation
of the joint sample space

SX,Y = {(x, y)|x ∈ SX , y ∈ SY } . (4.158)

That is, [SX(i,j) SY(i,j)] is the pair (xi , y j ).
To complete the probability model, for X and Y , in Matlab, we employ the n × m

matrix PXY such that PXY(i,j) = PX,Y (xi , y j ). To make sure that probabilities have
been generated properly, we note that [SX(:) SY(:) PXY(:)] is a matrix whose
rows list all possible pairs xi , y j and corresponding probabilities PX,Y (xi , y j ).

Given a function g(x, y) that operates on the elements of vectors x and y, the advantage
of this grid approach is that the Matlab function g(SX,SY) will calculate g(x, y) for
each x ∈ SX and y ∈ SY . In particular, g(SX,SY) produces an n × m matrix with i, j th
element g(xi , y j ).

Example 4.26 An Internet photo developer Web site prints compressed photo images. Each image
file contains a variable-sized image of X × Y pixels described by the joint PMF

PX,Y (x, y) y = 400 y = 800 y = 1200
x = 800 0.2 0.05 0.1
x = 1200 0.05 0.2 0.1
x = 1600 0 0.1 0.2.

(4.159)
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For random variables X, Y , write a script imagepmf.m that defines the sample space
grid matrices SX, SY, and PXY.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the script imagepmf.m, the matrix SX has

[
800 1200 1600

]′ for each column
while SY has

[
400 800 1200

]
for each row. After running imagepmf.m, we can

inspect the variables:

%imagepmf.m
PXY=[0.2 0.05 0.1; ...

0.05 0.2 0.1; ...
0 0.1 0.2];

[SX,SY]=ndgrid([800 1200 1600],...
[400 800 1200]);

» imagepmf
» SX
SX =

800 800 800
1200 1200 1200
1600 1600 1600

» SY
SY =

400 800 1200
400 800 1200
400 800 1200

Example 4.27 At 24 bits (3 bytes) per pixel, a 10:1 image compression factor yields image files with
B = 0.3XY bytes. Find the expected value E[B] and the PMF PB(b).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The script imagesize.m produces the expected value as eb, and the PMF, repre-
sented by the vectors sb and pb.

%imagesize.m
imagepmf;
SB=0.3*(SX.*SY);
eb=sum(sum(SB.*PXY))
sb=unique(SB)’
pb=finitepmf(SB,PXY,sb)’

The 3 × 3 matrix SB has i, j th element
g(xi , y j ) = 0.3xi y j . The calculation of eb
is simply a Matlab implementation of The-
orem 4.12. Since some elements of SB
are identical, sb=unique(SB) extracts the
unique elements.

Although SB and PXY are both 3×3 matrices, each is stored internally by Matlab
as a 9-element vector. Hence, we can pass SB and PXY to the finitepmf()
function which was designed to handle a finite random variable described by a pair
of column vectors. Figure 4.7 shows one result of running the program imagesize.
The vectors sb and pb comprise PB(b). For example, PB(288000) = 0.3.

We note that ndgrid is very similar to another Matlab function meshgrid that
is more commonly used for graphing scalar functions of two variables. For our purposes,
ndgrid is more convenient. In particular, as we can observe from Example 4.27, the matrix
PXY has the same row and column structure as our table representation of PX,Y (x, y).

Random Sample Pairs

For finite random variable pairs X, Y described by SX , SY and joint PMF PX,Y (x, y), or
equivalently SX, SY, and PXY in Matlab, we can generate random sample pairs using the
function finiterv(s,p,m)defined in Chapter 2. Recall that x=finiterv(s,p,m)
returned m samples (arranged as a column vector x) of a random variable X such that a
sample value is s(i) with probability p(i). In fact, to support random variable pairs
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» imagesize
eb =

319200
sb =

96000 144000 192000 288000 384000 432000 576000
pb =

0.2000 0.0500 0.0500 0.3000 0.1000 0.1000 0.2000

Figure 4.7 Output resulting from imagesize.m in Example 4.27.

X, Y , the function w=finiterv(s,p,m) permits s to be a k ×2 matrix where the rows
of s enumerate all pairs (x, y) with nonzero probability. Given the grid representation SX,
SY, and PXY, we generate m sample pairs via

xy=finiterv([SX(:) SY(:)],PXY(:),m)

In particular, the i th pair, SX(i),SY(i), will occur with probability PXY(i). The
output xy will be an m × 2 matrix such that each row represents a sample pair x, y.

Example 4.28 Write a function xy=imagerv(m) that generates m sample pairs of the image size
random variables X, Y of Example 4.27.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The function imagerv uses the imagesize.m script to define the matrices SX, SY,
and PXY. It then calls the finiterv.m function. Here is the code imagerv.m and
a sample run:

function xy = imagerv(m);
imagepmf;
S=[SX(:) SY(:)];
xy=finiterv(S,PXY(:),m);

» xy=imagerv(3)
xy =

800 400
1200 800
1600 800

Example 4.28 can be generalized to produce sample pairs for any discrete random variable
pair X, Y . However, given a collection of, for example, m = 10, 000 samples of X, Y , it
is desirable to be able to check whether the code generates the sample pairs properly. In
particular, we wish to check for each x ∈ SX and y ∈ SY whether the relative frequency of
x, y in m samples is close to PX,Y (x, y). In the following example, we develop a program
to calculate a matrix of relative frequencies that corresponds to the matrix PXY.

Example 4.29 Given a list xy of sample pairs of random variables X, Y with Matlab range grids
SX and SY, write a Matlab function fxy=freqxy(xy,SX,SY) that calculates the
relative frequency of every pair x, y. The output fxy should correspond to the matrix
[SX(:) SY(:) PXY(:)].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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function fxy = freqxy(xy,SX,SY)
xy=[xy; SX(:) SY(:)];
[U,I,J]=unique(xy,’rows’);
N=hist(J,1:max(J))-1;
N=N/sum(N);
fxy=[U N(:)];
fxy=sortrows(fxy,[2 1 3]);

In freqxy.m, the rows of the ma-
trix [SX(:) SY(:)] list all possi-
ble pairs x, y. We append this matrix
to xy to ensure that the new xy has
every possible pair x, y. Next, the
unique function copies all unique
rows of xy to the matrix U and
also provides the vector J that in-
dexes the rows of xy in U; that is,
xy=U(J).

In addition, the number of occurrences of j in J indicates the number of occur-
rences in xy of row j in U. Thus we use the hist function on J to calculate
the relative frequencies. We include the correction factor -1 because we had ap-
pended [SX(:) SY(:)] to xy at the start. Lastly, we reorder the rows of fxy
because the output of unique produces the rows of U in a different order from
[SX(:) SY(:) PXY(:)].

Matlab provides the function stem3(x,y,z), where x, y, and z are length n
vectors, for visualizing a bivariate PMF PX,Y (x, y) or for visualizing relative frequencies
of sample values of a pair of random variables. At each position x(i), y(i) on the xy
plane, the function draws a stem of height z(i).

Example 4.30 Generate m = 10, 000 samples of random variables X, Y of Example 4.27. Calculate
the relative frequencies and use stem3 to graph them.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The script imagestem.m generates the following relative frequency stem plot.

%imagestem.m
imagepmf;
xy=imagerv(10000);
fxy=freqxy(xy,SX,SY);
stem3(fxy(:,1),...

fxy(:,2),fxy(:,3));
xlabel(’\it x’);
ylabel(’\it y’); 0

800
1600

04008001200
0

0.1

0.2

 x y

Continuous Random Variables

Finally, we turn to the subject of generating sample pairs of continuous random variables. In
this case, there are no general techniques such as the sample space grids for discrete random
variables. In general, a joint PDF fX,Y (x, y) or CDF FX,Y (x, y) can be viewed using the
function plot3. For example, Figure 4.4 was generated this way. In addition, one can
calculate E[g(X, Y )] in Theorem 4.12 using Matlab’s numerical integration methods;
however, such methods tend to be slow and not particularly instructive.

There exist a wide variety of techniques for generating sample values of pairs of con-
tinuous random variables of specific types. This is particularly true for bivariate Gaussian
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random variables. In the general case of an arbitrary joint PDF fX,Y (x, y), a basic approach
is to generate sample values x1, . . . , xm for X using the marginal PDF fX (x). Then for
each sample xi , we generate yi using the conditional PDF fX |Y (x |yi). Matlab can do
this efficiently provided the samples y1, . . . , ym can be generated from x1, . . . , xm using
vector processing techniques, as in the following example.

Example 4.31 Write a function xy= xytrianglerv(m) that generates m sample pairs of X and
Y in Example 4.19.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Example 4.19, we found that

fX (x) =
{

2x 0 ≤ x ≤ 1,

0 otherwise,
fY |X (y|x) =

{
1/x 0 ≤ y ≤ x,

0 otherwise.
(4.160)

For 0 ≤ x ≤ 1, we have that FX (x) = x2. Using Theorem 3.22 to generate sample val-
ues of X , we define u = FX (x) = x2. Then, for 0 < u < 1, x = √

u. By Theorem 3.22,
if U is uniform (0, 1), then

√
U has PDF fX (x). Next, we observe that given X = xi ,

Y is a uniform (0, xi ) random variable. Given another uniform (0, 1) random variable
U ′, Theorem 3.20(a) states that Y = xi U

′ is a uniform (0, xi ) random variable.

function xy = xytrianglerv(m);
x=sqrt(rand(m,1));
y=x.*rand(m,1);
xy=[x y];

We implement these ideas in the func-
tion xytrianglerv.m.

Quiz 4.12 For random variables X and Y with joint PMF PX,Y (x, y) given in Example 4.13, write a
Matlab function xy=dtrianglerv(m) that generates m sample pairs.

Chapter Summary

This chapter introduces experiments that produce two or more random variables.

• The joint CDF FX,Y (x, y) = P[X ≤ x, Y ≤ y] is a complete probability model of the
random variables X and Y . However, it is much easier to use the joint PMF PX,Y(x, y) for
discrete random variables and the joint PDF fX,Y (x, y) for continuous random variables.

• The marginal PMFs PX (x) and PY (y) for discrete random variables and the marginal
PDFs fX (x) and fY (y) for continuous random variables are probability models for the
individual random variables X and Y .

• Expected values E[g(X, Y )] of functions g(X, Y ) summarize properties of the entire
probability model of an experiment. Cov[X, Y ] and rX,Y convey valuable insights into
the relationship of X and Y .

• Conditional probability models occur when we obtain partial information about the
random variables X and Y . We derive new probability models, including the conditional
joint PMF PX,Y |A(x, y) and the conditional PMFs PX |Y (x |y) and PY |X (y|x) for discrete
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random variables, as well as the conditional joint PDF fX,Y |A(x, y) and the conditional
PDFs fX |Y (x |y) and fY |X (y|x) for continuous random variables.

• Random variables X and Y are independent if the events {X = x} and {Y = y} are
independent for all x, y in SX,Y . If X and Y are discrete, they are independent if and
only if PX,Y (x, y) = PX (x)PY (y) for all x and y. If X and Y are continuous, they are
independent if and only if fX,Y (x, y) = fX (x) fY (y) for all x and y.

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

4.1.1• Random variables X and Y have the joint CDF

FX,Y (x, y) =
⎧⎨
⎩

(1 − e−x )(1 − e−y) x ≥ 0;
y ≥ 0,

0 otherwise.

(a) What is P[X ≤ 2, Y ≤ 3]?
(b) What is the marginal CDF, FX (x)?

(c) What is the marginal CDF, FY (y)?

4.1.2• Express the following extreme values of FX,Y (x, y)

in terms of the marginal cumulative distribution
functions FX (x) and FY (y).

(a) FX,Y (x, −∞)

(b) FX,Y (x, ∞)

(c) FX,Y (−∞, ∞)

(d) FX,Y (−∞, y)

(e) FX,Y (∞, y)

4.1.3
�

For continuous random variables X, Y with joint
CDF FX,Y (x, y) and marginal CDFs FX (x) and
FY (y), find P[x1 ≤ X < x2 ∪ y1 ≤ Y < y2]. This
is the probability of the shaded “cross” region in the
following diagram.

1

X

y

Y

x

y2

x1 2

4.1.4
�

Random variables X and Y have CDF FX (x) and
FY (y). Is F(x, y) = FX (x)FY (y) a valid CDF?
Explain your answer.

4.1.5
�

In this problem, we prove Theorem 4.5.

(a) Sketch the following events on the X, Y plane:

A = {X ≤ x1, y1 < Y ≤ y2} ,

B = {x1 < X ≤ x2, Y ≤ y1} ,

C = {x1 < X ≤ x2, y1 < Y ≤ y2} .

(b) Express the probability of the events A, B, and
A∪ B ∪C in terms of the joint CDF FX,Y (x, y).

(c) Use the observation that events A, B, and C are
mutually exclusive to prove Theorem 4.5.

4.1.6
�

Can the following function be the joint CDF of
random variables X and Y ?

F(x, y) =
{

1 − e−(x+y) x ≥ 0, y ≥ 0,

0 otherwise.

4.2.1• Random variables X and Y have the joint PMF

PX,Y (x, y) =
{

cxy x = 1, 2, 4; y = 1, 3,

0 otherwise.

(a) What is the value of the constant c?

(b) What is P[Y < X]?
(c) What is P[Y > X]?
(d) What is P[Y = X]?
(e) What is P[Y = 3]?

4.2.2• Random variables X and Y have the joint PMF

PX,Y (x, y) =
⎧⎨
⎩

c|x + y| x = −2, 0, 2;
y = −1, 0, 1,

0 otherwise.
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(a) What is the value of the constant c?

(b) What is P[Y < X]?
(c) What is P[Y > X]?
(d) What is P[Y = X]?
(e) What is P[X < 1]?

4.2.3• Test two integrated circuits. In each test, the prob-
ability of rejecting the circuit is p. Let X be the
number of rejects (either 0 or 1) in the first test and
let Y be the number of rejects in the second test.
Find the joint PMF PX,Y (x, y).

4.2.4
�

For two flips of a fair coin, let X equal the total
number of tails and let Y equal the number of heads
on the last flip. Find the joint PMF PX,Y (x, y).

4.2.5
�

In Figure 4.2, the axes of the figures are labeled X
and Y because the figures depict possible values of
the random variables X and Y . However, the figure
at the end of Example 4.1 depicts PX,Y (x, y) on
axes labeled with lowercase x and y. Should those
axes be labeled with the uppercase X and Y ? Hint:
Reasonable arguments can be made for both views.

4.2.6
�

As a generalization of Example 4.1, consider a test
of n circuits such that each circuit is acceptable with
probability p, independent of the outcome of any
other test. Show that the joint PMF of X , the num-
ber of acceptable circuits, and Y , the number of
acceptable circuits found before observing the first
reject, is

PX,Y (x, y) =⎧⎪⎨
⎪⎩
(n−y−1

x−y
)

px (1 − p)n−x 0 ≤ y ≤ x < n,

pn x = y = n,

0 otherwise.

Hint: For 0 ≤ y ≤ x < n, show that

{X = x, Y = y} = A ∩ B ∩ C,

where

A: The first y tests are acceptable.

B: Test y + 1 is a rejection.

C: The remaining n − y − 1 tests yield x − y
acceptable circuits

4.2.7
�

Each test of an integrated circuit produces an ac-
ceptable circuit with probability p, independent of
the outcome of the test of any other circuit. In test-
ing n circuits, let K denote the number of circuits
rejected and let X denote the number of acceptable

circuits (either 0 or 1) in the last test. Find the joint
PMF PK ,X (k, x).

4.2.8
�

Each test of an integrated circuit produces an ac-
ceptable circuit with probability p, independent of
the outcome of the test of any other circuit. In test-
ing n circuits, let K denote the number of circuits
rejected and let X denote the number of acceptable
circuits that appear before the first reject is found.
Find the joint PMF PK ,X (k, x).

4.3.1• Given the random variables X and Y in Prob-
lem 4.2.1, find

(a) The marginal PMFs PX (x) and PY (y),

(b) The expected values E[X] and E[Y ],
(c) The standard deviations σX and σY .

4.3.2• Given the random variables X and Y in Prob-
lem 4.2.2, find

(a) The marginal PMFs PX (x) and PY (y),

(b) The expected values E[X] and E[Y ],
(c) The standard deviations σX and σY .

4.3.3• For n = 0, 1, . . . and 0 ≤ k ≤ 100, the joint PMF
of random variables N and K is

PN,K (n, k) = 100ne−100

n!
(

100

k

)
pk(1− p)100−k .

Otherwise, PN,K (n, k) = 0. Find the marginal
PMFs PN (n) and PK (k).

4.3.4
�

Random variables N and K have the joint PMF

PN,K (n, k)

=
⎧⎨
⎩

(1 − p)n−1 p/n k = 1, . . . , n;
n = 1, 2, . . . ,

0 otherwise.

Find the marginal PMFs PN (n) and PK (k).

4.3.5
�

Random variables N and K have the joint PMF

PN,K (n, k) =

⎧⎪⎨
⎪⎩

100ne−100

(n+1)! k = 0, 1, . . . , n;
n = 0, 1, . . . ,

0 otherwise.

Find the marginal PMF PN (n). Show that
the marginal PMF PK (k) satisfies PK (k) =
P[N > k]/100.

4.4.1• Random variables X and Y have the joint PDF

fX,Y (x, y) =
{

c x + y ≤ 1, x ≥ 0, y ≥ 0,

0 otherwise.
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(a) What is the value of the constant c?

(b) What is P[X ≤ Y ]?
(c) What is P[X + Y ≤ 1/2]?

4.4.2
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

cxy2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

(a) Find the constant c.

(b) Find P[X > Y ] and P[Y < X2].
(c) Find P[min(X, Y ) ≤ 1/2].
(d) Find P[max(X, Y ) ≤ 3/4].

4.4.3
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

6e−(2x+3y) x ≥ 0, y ≥ 0,

0 otherwise.

(a) Find P[X > Y ] and P[X + Y ≤ 1].
(b) Find P[min(X, Y ) ≥ 1].
(c) Find P[max(X, Y ) ≤ 1].

4.4.4
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

8xy 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Following the method of Example 4.5, find the joint
CDF FX,Y (x, y).

4.5.1• Random variables X and Y have the joint PDF

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) Sketch the region of nonzero probability.

(b) What is P[X > 0]?
(c) What is fX (x)?

(d) What is E[X]?
4.5.2• X and Y are random variables with the joint PDF

fX,Y (x, y) =
{

2 x + y ≤ 1, x ≥ 0, y ≥ 0,

0 otherwise.

(a) What is the marginal PDF fX (x)?

(b) What is the marginal PDF fY (y)?

4.5.3
�

Over the circle X2 + Y 2 ≤ r2, random variables X
and Y have the uniform PDF

fX,Y (x, y) =
{

1/(πr2) x2 + y2 ≤ r2,

0 otherwise.

(a) What is the marginal PDF fX (x)?

(b) What is the marginal PDF fY (y)?

4.5.4
�

X and Y are random variables with the joint PDF

fX,Y (x, y) =
⎧⎨
⎩

5x2/2 −1 ≤ x ≤ 1;
0 ≤ y ≤ x2,

0 otherwise.

(a) What is the marginal PDF fX (x)?

(b) What is the marginal PDF fY (y)?

4.5.5
�

Over the circle X2 + Y 2 ≤ r2, random variables X
and Y have the PDF

fX,Y (x, y) =
{

2 |xy| /r4 x2 + y2 ≤ r2,

0 otherwise.

(a) What is the marginal PDF fX (x)?

(b) What is the marginal PDF fY (y)?

4.5.6
�

Random variables X and Y have the joint PDF

fX,Y (x, y) =
{

cy 0 ≤ y ≤ x ≤ 1,

0 otherwise.

(a) Draw the region of nonzero probability.

(b) What is the value of the constant c?

(c) What is FX (x)?

(d) What is FY (y)?

(e) What is P[Y ≤ X/2]?
4.6.1• Given random variables X and Y in Problem 4.2.1

and the function W = X − Y , find

(a) The probability mass function PW (w),

(b) The expected value E[W ],
(c) P[W > 0].

4.6.2• Given random variables X and Y in Problem 4.2.2
and the function W = X + 2Y , find

(a) The probability mass function PW (w),

(b) The expected value E[W ],
(c) P[W > 0].

4.6.3• Let X and Y be discrete random variables with joint
PMF PX,Y (x, y) that is zero except when x and y
are integers. Let W = X + Y and show that the
PMF of W satisfies

PW (w) =
∞∑

x=−∞
PX,Y (x, w − x) .
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4.6.4
�

Let X and Y be discrete random variables with joint
PMF

PX,Y (x, y) =
⎧⎨
⎩

0.01 x = 1, 2 . . . , 10,

y = 1, 2 . . . , 10,

0 otherwise.

What is the PMF of W = min(X, Y )?

4.6.5
�

For random variables X and Y given in Prob-
lem 4.6.4, what is the PMF of V = max(X, Y )?

4.6.6
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

x + y 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

Let W = max(X, Y ).

(a) What is SW , the range of W?

(b) Find FW (w) and fW (w).

4.6.7
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

6y 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Let W = Y − X .

(a) What is SW , the range of W?

(b) Find FW (w) and fW (w).

4.6.8
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Let W = Y/X .

(a) What is SW , the range of W?

(b) Find FW (w), fW (w), and E[W ].
4.6.9
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Let W = X/Y .

(a) What is SW , the range of W?

(b) Find FW (w), fW (w), and E[W ].
4.6.10
�

In a simple model of a cellular telephone system, a
portable telephone is equally likely to be found any-
where in a circular cell of radius 4 km. (See Prob-
lem 4.5.3.) Find the CDF FR(r) and PDF fR(r) of
R, the distance (in km) between the telephone and
the base station at the center of the cell.

4.6.11
�

For a constant a > 0, random variables X and Y
have joint PDF

fX,Y (x, y) =
{

1/a2 0 ≤ x ≤ a, 0 ≤ y ≤ a
0 otherwise

Find the CDF and PDF of random variable

W = max

(
X

Y
,

Y

X

)
.

Hint: Is it possible to observe W < 1?

4.7.1• For the random variables X and Y in Problem 4.2.1,
find

(a) The expected value of W = Y/X ,

(b) The correlation, E[XY ],
(c) The covariance, Cov[X, Y ],
(d) The correlation coefficient, ρX,Y ,

(e) The variance of X + Y , Var[X + Y ].
(Refer to the results of Problem 4.3.1 to answer
some of these questions.)

4.7.2• For the random variables X and Y in Problem 4.2.2
find

(a) The expected value of W = 2XY ,

(b) The correlation, E[XY ] ,

(c) The covariance, Cov[X, Y ],
(d) The correlation coefficient, ρX,Y ,

(e) The variance of X + Y , Var[X + Y ].
(Refer to the results of Problem 4.3.2 to answer
some of these questions.)

4.7.3• Let H and B be the random variables in Quiz 4.3.
Find rH,B and Cov[H, B].

4.7.4• For the random variables X and Y in Example 4.13,
find

(a) The expected values E[X] and E[Y ],
(b) The variances Var[X] and Var[Y ],
(c) The correlation, E[XY ],
(d) The covariance, Cov[X, Y ],
(e) The correlation coefficient, ρX,Y .

4.7.5
�

Random variables X and Y have joint PMF

PX,Y (x, y) =
⎧⎨
⎩

1/21 x = 0, 1, 2, 3, 4, 5;
y = 0, 1, . . . , x,

0 otherwise.

Find the marginal PMFs PX (x) and PY (y). Also
find the covariance Cov[X, Y ].
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4.7.6
�

For the random variables X and Y in Example 4.13,
let W = min(X, Y ) and V = max(X, Y ). Find

(a) The expected values, E[W ] and E[V ],
(b) The variances, Var[W ] and Var[V ],
(c) The correlation, E[W V ],
(d) The covariance, Cov[W, V ],
(e) The correlation coefficient, Cov[W, V ].

4.7.7
�

For a random variable X , let Y = aX + b. Show
that if a > 0 then ρX,Y = 1. Also show that if
a < 0, then ρX,Y = −1.

4.7.8
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

(x + y)/3 0 ≤ x ≤ 1;
0 ≤ y ≤ 2,

0 otherwise.

(a) What are E[X] and Var[X]?
(b) What are E[Y ] and Var[Y ]?
(c) What is Cov[X, Y ]?
(d) What is E[X + Y ]?
(e) What is Var[X + Y ]?

4.7.9
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

4xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

(a) What are E[X] and Var[X]?
(b) What are E[Y ] and Var[Y ]?
(c) What is Cov[X, Y ]?
(d) What is E[X + Y ]?
(e) What is Var[X + Y ]?

4.7.10
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

5x2/2 −1 ≤ x ≤ 1;
0 ≤ y ≤ x2,

0 otherwise.

(a) What are E[X] and Var[X]?
(b) What are E[Y ] and Var[Y ]?
(c) What is Cov[X, Y ]?
(d) What is E[X + Y ]?
(e) What is Var[X + Y ]?

4.7.11
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.

(a) What are E[X] and Var[X]?
(b) What are E[Y ] and Var[Y ]?
(c) What is Cov[X, Y ]?
(d) What is E[X + Y ]?
(e) What is Var[X + Y ]?

4.7.12
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1,

0 otherwise.

Find E[XY ] and E[eX+Y ].
4.7.13
�

Random variables N and K have the joint PMF

PN,K (n, k)

=
⎧⎨
⎩

(1 − p)n−1 p/n k = 1, . . . , n;
n = 1, 2, . . . ,

0 otherwise.

Find the marginal PMF PN (n) and the expected
values E[N], Var[N], E[N2], E[K ], Var[K ],
E[N + K ], E[N K ], Cov[N, K ].

4.8.1• Let random variables X and Y have the joint PMF
PX,Y (x, y) given in Problem 4.6.4. Let A denote
the event that min(X, Y ) > 5. Find the conditional
PMF PX,Y |A(x, y).

4.8.2• Let random variables X and Y have the joint PMF
PX,Y (x, y) given in Problem 4.6.4. Let B denote
the event that max(X, Y ) ≤ 5. Find the conditional
PMF PX,Y |B(x, y).

4.8.3• Random variables X and Y have joint PDF

fX,Y (x, y) =
{

6e−(2x+3y) x ≥ 0, y ≥ 0,

0 otherwise.

Let A be the event that X + Y ≤ 1. Find the condi-
tional PDF fX,Y |A(x, y).

4.8.4
�

For n = 1, 2, . . . and k = 1, . . . , n, the joint PMF
of N and K satisfies

PN,K (n, k) = (1 − p)n−1 p/n.

Otherwise, PN,K (n, k) = 0. Let B denote the
event that N ≥ 10. Find the conditional PMFs
PN,K |B (n, k) and PN |B (n). In addition, find
the conditional expected values E[N |B], E[K |B],
E[N + K |B], Var[N |B], Var[K |B], E[N K |B].
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4.8.5
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

(x + y)/3 0 ≤ x ≤ 1;
0 ≤ y ≤ 2,

0 otherwise.

Let A = {Y ≤ 1}.
(a) What is P[A]?
(b) Find fX,Y |A(x, y), fX |A(x), and fY |A(y).

4.8.6
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

(4x + 2y)/3 0 ≤ x ≤ 1;
0 ≤ y ≤ 1,

0 otherwise.

Let A = {Y ≤ 1/2}.
(a) What is P[A]?
(b) Find fX,Y |A(x, y), fX |A(x), and fY |A(y).

4.8.7
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

5x2/2 −1 ≤ x ≤ 1;
0 ≤ y ≤ x2,

0 otherwise.

Let A = {Y ≤ 1/4}.
(a) What is the conditional PDF fX,Y |A(x, y)?

(b) What is fY |A(y)?

(c) What is E[Y |A]?
(d) What is fX |A(x)?

(e) What is E[X |A]?
4.9.1• A business trip is equally likely to take 2, 3, or 4

days. After a d-day trip, the change in the traveler’s
weight, measured as an integer number of pounds,
is uniformly distributed between −d and d pounds.
For one such trip, denote the number of days by D
and the change in weight by W . Find the joint PMF
PD,W (d, w).

4.9.2• Flip a coin twice. On each flip, the probability of
heads equals p. Let Xi equal the number of heads
(either 0 or 1) on flip i . Let W = X1 − X2 and
Y = X1 + X2. Find PW,Y (w, y), PW |Y (w|y), and
PY |W (y|w).

4.9.3• X and Y have joint PDF

fX,Y (x, y) =
⎧⎨
⎩

(4x + 2y)/3 0 ≤ x ≤ 1;
0 ≤ y ≤ 1,

0 otherwise.

(a) For which values of y is fX |Y (x|y) defined?
What is fX |Y (x|y)?

(b) For which values of x is fY |X (y|x) defined?
What is fY |X (y|x)?

4.9.4• Random variables X and Y have joint PDF

fX,Y (x, y) =
{

2 0 ≤ y ≤ x ≤ 1,

0 otherwise.

Find the PDF fY (y), the conditional PDF
fX |Y (x|y), and the conditional expected value
E[X |Y = y].

4.9.5• Let random variables X and Y have joint PDF
fX,Y (x, y) given in Problem 4.9.4. Find the PDF
fX (x), the conditional PDF fY |X (y|x), and the con-
ditional expected value E[Y |X = x].

4.9.6• A student’s final exam grade depends on how close
the student sits to the center of the classroom during
lectures. If a student sits r feet from the center of
the room, the grade is a Gaussian random variable
with expected value 80 − r and standard deviation
r . If r is a sample value of random variable R, and
X is the exam grade, what is fX |R(x|r )?

4.9.7
�

The probability model for random variable A is

PA (a) =
⎧⎨
⎩

1/3 a = −1,

2/3 a = 1,

0 otherwise.

The conditional probability model for random var-
iable B given A is:

PB|A (b| − 1) =
⎧⎨
⎩

1/3 b = 0,

2/3 b = 1,

0 otherwise,

PB|A (b|1) =
⎧⎨
⎩

1/2 b = 0,

1/2 b = 1,

0 otherwise.

(a) What is the probability model for random vari-
ables A and B? Write the joint PMF PA,B (a, b)

as a table.

(b) If A = 1, what is the conditional expected value
E[B|A = 1]?

(c) If B = 1, what is the conditional PMF
PA|B (a|1)?

(d) If B = 1, what is the conditional variance
Var[A|B = 1] of A?

(e) What is the covariance Cov[A, B] of A and B?
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4.9.8
�

For random variables A and B given in Prob-
lem 4.9.7, let U = E[B|A]. Find the PMF PU (u).
What is E[U ] = E[E[B|A]]?

4.9.9
�

Random variables N and K have the joint PMF

PN,K (n, k) =

⎧⎪⎨
⎪⎩

100ne−100

(n+1)! k = 0, 1, . . . , n;
n = 0, 1, . . . ,

0 otherwise.

Find the marginal PMF PN (n), the conditional
PMF PK |N (k|n), and the conditional expected
value E[K |N = n]. Express the random variable
E[K |N ] as a function of N and use the iterated ex-
pectation to find E[K ].

4.9.10
�

At the One Top Pizza Shop, mushrooms are the only
topping. Curiously, a pizza sold before noon has
mushrooms with probability p = 1/3 while a pizza
sold after noon never has mushrooms. Also, an
arbitrary pizza is equally likely to be sold before
noon as after noon. On a day in which 100 pizzas
are sold, let N equal the number of pizzas sold be-
fore noon and let M equal the number of mushroom
pizzas sold during the day. What is the joint PMF
PM,N (m, n)? Hint: Find the conditional PMF of
M given N .

4.9.11
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

1/2 −1 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) What is fY (y)?

(b) What is fX |Y (x|y)?

(c) What is E[X |Y = y]?
4.9.12
�

Over the circle X2 + Y 2 ≤ r2, random variables X
and Y have the uniform PDF

fX,Y (x, y) =
{

1/(πr2) x2 + y2 ≤ r2,

0 otherwise.

(a) What is fY |X (y|x)?

(b) What is E[Y |X = x]?
4.9.13
�

Calls arriving at a telephone switch are either voice
calls (v) or data calls (d). Each call is a voice
call with probability p, independent of any other
call. Observe calls at a telephone switch until you
see two voice calls. Let M equal the number of
calls up to and including the first voice call. Let
N equal the number of calls observed up to and in-
cluding the second voice call. Find the conditional

PMFs PM |N (m|n) and PN |M (n|m). Interpret your
results.

4.9.14
��

Suppose you arrive at a bus stop at time 0 and at
the end of each minute, with probability p, a bus
arrives, or with probability 1 − p, no bus arrives.
Whenever a bus arrives, you board that bus with
probability q and depart. Let T equal the number
of minutes you stand at a bus stop. Let N be the
number of buses that arrive while you wait at the
bus stop.

(a) Identify the set of points (n, t) for which
P[N = n, T = t] > 0.

(b) Find PN,T (n, t).

(c) Find the marginal PMFs PN (n) and PT (t).

(d) Find the conditional PMFs PN |T (n|t) and
PT |N (t |n).

4.9.15
��

Each millisecond at a telephone switch, a call inde-
pendently arrives with probability p. Each call is
either a data call (d) with probability q or a voice call
(v). Each data call is a fax call with probability r .
Let N equal the number of milliseconds required to
observe the first 100 fax calls. Let T equal the num-
ber of milliseconds you observe the switch waiting
for the first fax call. Find the marginal PMF PT (t)
and the conditional PMF PN |T (n|t). Lastly, find
the conditional PMF PT |N (t |n).

4.10.1• Flip a fair coin 100 times. Let X equal the num-
ber of heads in the first 75 flips. Let Y equal the
number of heads in the remaining 25 flips. Find
PX (x) and PY (y). Are X and Y independent? Find
PX,Y (x, y).

4.10.2• X and Y are independent, identically distributed
random variables with PMF

PX (k) = PY (k) =
⎧⎨
⎩

3/4 k = 0,

1/4 k = 20,

0 otherwise.

Find the following quantities:

E [X] , Var[X],
E [X + Y ] , Var[X + Y ], E

[
XY 2XY

]
.
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4.10.3• Random variables X and Y have a joint PMF de-
scribed by the following table.

PX,Y (x, y) y = −1 y = 0 y = 1
x = −1 3/16 1/16 0
x = 0 1/6 1/6 1/6
x = 1 0 1/8 1/8

(a) Are X and Y independent?

(b) In fact, the experiment from which X and Y are
derived is performed sequentially. First, X is
found, then Y is found. In this context, label the
conditional branch probabilities of the following
tree:

�
�

�
��

X=−1
?

	
	

	
		 X=1
?

X=0?

�����Y=−1?

Y=0?

�����Y=−1?

����� Y=1?

Y=0?

Y=0?����� Y=1?

4.10.4• For the One Top Pizza Shop of Problem 4.9.10, are
M and N independent?

4.10.5• Flip a fair coin until heads occurs twice. Let X1
equal the number of flips up to and including the first
H . Let X2 equal the number of additional flips up
to and including the second H . What are PX1(x1)

and PX2 (x2). Are X1 and X2 independent? Find
PX1,X2(x1, x2).

4.10.6• Flip a fair coin until heads occurs twice. Let X1
equal the number of flips up to and including the
first H . Let X2 equal the number of additional flips
up to and including the second H . Let Y = X1−X2.
Find E[Y ] and Var[Y ]. Hint: Don’t try to find
PY (y).

4.10.7• X and Y are independent random variables with
PDFs

fX (x) =
{ 1

3 e−x/3 x ≥ 0,

0 otherwise,

fY (y) =
{ 1

2 e−y/2 y ≥ 0,

0 otherwise.

(a) What is P[X > Y ]?

(b) What is E[XY ]?
(c) What is Cov[X, Y ]?

4.10.8• X1 and X2 are independent identically distributed
random variables with expected value E[X] and
variance Var[X].
(a) What is E[X1 − X2]?
(b) What is Var[X1 − X2]?

4.10.9• Let X and Y be independent discrete random vari-
ables such that PX (k) = PY (k) = 0 for all non-
integer k. Show that the PMF of W = X + Y
satisfies

PW (w) =
∞∑

k=−∞
PX (k) PY (w − k) .

4.10.10
�

An ice cream company orders supplies by fax. De-
pending on the size of the order, a fax can be either

1 page for a short order,
2 pages for a long order.

The company has three different suppliers:
The vanilla supplier is 20 miles away.
The chocolate supplier is 100 miles away.
The strawberry supplier is 300 miles away.

An experiment consists of monitoring an order and
observing N , the number of pages, and D, the dis-
tance the order is transmitted.

The following probability model describes the
experiment:

van. choc. straw.
short 0.2 0.2 0.2
long 0.1 0.2 0.1

(a) What is the joint PMF PN,D(n, d) of the number
of pages and the distance?

(b) What is E[D], the expected distance of an order?

(c) Find PD|N (d|2), the conditional PMF of the dis-
tance when the order requires 2 pages.

(d) Write E[D|N = 2], the expected distance given
that the order requires 2 pages.

(e) Are the random variables D and N independent?

(f) The price per page of sending a fax is one cent
per mile transmitted. C cents is the price of one
fax. What is E[C], the expected price of one
fax?

4.10.11
�

A company receives shipments from two factories.
Depending on the size of the order, a shipment can
be in
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1 box for a small order,
2 boxes for a medium order,
3 boxes for a large order.

The company has two different suppliers:
Factory Q is 60 miles from the company.
Factory R is 180 miles from the company.

An experiment consists of monitoring a shipment
and observing B, the number of boxes, and M , the
number of miles the shipment travels. The follow-
ing probability model describes the experiment:

Factory Q Factory R
small order 0.3 0.2
medium order 0.1 0.2
large order 0.1 0.1

(a) Find PB,M (b, m), the joint PMF of the number
of boxes and the distance. (You may present
your answer as a matrix if you like.)

(b) What is E[B], the expected number of boxes?

(c) What is PM |B (m|2), the conditional PMF of the
distance when the order requires two boxes?

(d) Find E[M|B = 2], the expected distance given
that the order requires 2 boxes.

(e) Are the random variables B and M independent?

(f) The price per mile of sending each box is one
cent per mile the box travels. C cents is the
price of one shipment. What is E[C], the ex-
pected price of one shipment?

4.10.12
�

X1 and X2 are independent, identically distributed
random variables with PDF

fX (x) =
{

x/2 0 ≤ x ≤ 2,

0 otherwise.

(a) Find the CDF, FX (x).

(b) What is P[X1 ≤ 1, X2 ≤ 1], the probability that
X1 and X2 are both less than or equal to 1?

(c) Let W = max(X1, X2). What is FW (1), the
CDF of W evaluated at w = 1?

(d) Find the CDF FW (w).

4.10.13
�

X and Y are independent random variables with
PDFs

fX (x) =
{

2x 0 ≤ x ≤ 1,

0 otherwise,

fY (y) =
{

3y2 0 ≤ y ≤ 1,

0 otherwise.

Let A = {X > Y }.

(a) What are E[X] and E[Y ]?
(b) What are E[X |A] and E[Y |A]?

4.10.14
�

Prove that random variables X and Y are indepen-
dent if and only if

FX,Y (x, y) = FX (x) FY (y) .

4.10.15
�

Following Example 4.21, let X and Y denote the ar-
rival times of the first two calls at a telephone switch.
The joint PDF of X and Y is

fX,Y (x, y) =
{

λ2e−λy 0 ≤ x < y,

0 otherwise.

What is the PDF of W = Y − X?

4.10.16
��

Consider random variables X , Y , and W from Prob-
lem 4.10.15.

(a) Are W and X independent?

(b) Are W and Y independent?

4.10.17
��

X and Y are independent random variables with
CDFs FX (x) and FY (y). Let U = min(X, Y ) and
V = max(X, Y ).

(a) What is FU,V (u, v)?

(b) What is fU,V (u, v)?

Hint: To find the joint CDF, let A = {U ≤ u} and
B = {V ≤ v} and note that P[AB] = P[B] −
P[Ac B].

4.11.1• Random variables X and Y have joint PDF

fX,Y (x, y) = ce−(x2/8)−(y2/18).

What is the constant c? Are X and Y independent?

4.11.2
�

Random variables X and Y have joint PDF

fX,Y (x, y) = ce−(2x2−4xy+4y2).

(a) What are E[X] and E[Y ]?
(b) Find ρ, the correlation coefficient of X and Y .

(c) What are Var[X] and Var[Y ]?
(d) What is the constant c?

(e) Are X and Y independent?

4.11.3
�

X and Y are jointly Gaussian random variables with
E[X] = E[Y ] = 0 and Var[X] = Var[Y ] = 1. Fur-
thermore, E[Y |X] = X/2. What is the joint PDF
of X and Y ?

4.11.4
�

An archer shoots an arrow at a circular target of ra-
dius 50cm. The arrow pierces the target at a random
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position (X, Y ), measured in centimeters from the
center of the disk at position (X, Y ) = (0, 0). The
“bullseye” is a solid black circle of radius 2cm, at
the center of the target. Calculate the probability
P[B] of the event that the archer hits the bullseye
under each of the following models:

(a) X and Y are iid continuous uniform (−50, 50)

random variables.

(b) The PDF fX,Y (x, y) is uniform over the 50cm
circular target.

(c) X and Y are iid Gaussian (μ = 0, σ = 10)

random variables.

4.11.5
�

A person’s white blood cell (WBC) count W (mea-
sured in thousands of cells per microliter of blood)
and body temperature T (in degrees Celsius) can
be modeled as bivariate Gaussian random variables
such that W is Gaussian (7, 2) and T is Gaussian
(37, 1). To determine whether a person is sick,
first the person’s temperature T is measured. If
T > 38, then the person’s WBC count is measured.
If W > 10, the person is declared ill (event I ).

(a) Suppose W and T are uncorrelated. What is
P[I ]? Hint: Draw a tree diagram for the exper-
iment.

(b) Now suppose W and T have correlation coeffi-
cient ρ = 1/

√
2. Find the conditional probabil-

ity P[I |T = t] that a person is declared ill given
that the person’s temperature is T = t .

4.11.6
�

Under what conditions on the constants a, b, c, and
d is

f (x, y) = de−(a2x2+bxy+c2 y2)

a joint Gaussian PDF?

4.11.7
�

Show that the joint Gaussian PDF fX,Y (x, y) given
by Definition 4.17 satisfies

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dx dy = 1.

Hint: Use Equation (4.146) and the result of Prob-
lem 3.5.9.

4.11.8
�

Let X1 and X2 have a bivariate Gaussian PDF
with correlation coefficient ρ12 such that each Xi

is a Gaussian (μi , σi ) random variable. Show that
Y = X1 X2 has variance

Var[Y ] = σ 2
1 σ 2

2 (1+ρ2
12)+σ 2

1 μ2
2 +μ2

1σ 2
2 −μ2

1μ2
2

Hints: Use the iterated expectation to calculate

E
[

X2
1 X2

2

]
= E

[
E
[

X2
1 X2

2 |X2

]]
.

You may also need to look ahead to Problem 6.3.4.

4.12.1• For random variables X and Y in Example 4.27, use
Matlab to generate a list of the form

x1 y1 PX,Y (x1, y1)

x2 y2 PX,Y (x2, y2)
...

...
...

that includes all possible pairs (x, y).

4.12.2• For random variables X and Y in Example 4.27, use
Matlab to calculate E[X], E[Y ], the correlation
E[XY ], and the covariance Cov[X, Y ].

4.12.3• Write a script trianglecdfplot.m that gen-
erates the graph of FX,Y (x, y) of Figure 4.4.

4.12.4
�

Problem 4.2.6 extended Example 4.1 to a test of
n circuits and identified the joint PDF of X , the
number of acceptable circuits, and Y , the number
of successful tests before the first reject. Write a
Matlab function

[SX,SY,PXY]=circuits(n,p)
that generates the sample space grid for the n circuit
test. Check your answer against Equation (4.6) for
the p = 0.9 and n = 2 case. For p = 0.9 and
n = 50, calculate the correlation coefficient ρX,Y .

4.12.5
�

For random variable W of Example 4.10, we can
generate random samples in two different ways:

1. Generate samples of X and Y and calculate
W = Y/X .

2. Find the CDF FW (w) and generate samples
using Theorem 3.22.

Write Matlab functions w=wrv1(m) and
w=wrv2(m) to implement these methods. Does
one method run much faster? If so, why? (Use
cputime to make run-time comparisons.)

 



5
Random Vectors

In this chapter, we generalize the concepts presented in Chapter 4 to any number of random
variables. In doing so, we find it convenient to introduce vector notation. A random vector
treats a collection of n random variables as a single entity. Thus vector notation provides
a concise representation of relationships that would otherwise be extremely difficult to
represent. Section 5.1 defines a probability model for a set of n random variables in terms
of an n-dimensional CDF, an n-dimensional PMF, and an n-dimensional PDF. The following
section presents vector notation for a set of random variables and the associated probability
functions. The subsequent sections define marginal probability functions of subsets of
n random variables, n independent random variables, independent random vectors, and
expected values of functions of n random variables. We then introduce the covariance
matrix and correlation matrix, two collections of expected values that play an important role
in stochastic processes and in estimation of random variables. The final two sections cover
sets of n Gaussian random variables and the application of Matlab, which is especially
useful in working with multiple random variables.

5.1 Probability Models of N Random Variables

Chapter 4 presents probability models of two random variables X and Y . The definitions
and theorems can be generalized to experiments that yield an arbitrary number of random
variables X1, . . . , Xn . To express a complete probability model of X1, . . . , Xn , we define
the joint cumulative distribution function.

Definition 5.1 Multivariate Joint CDF
The joint CDF of X1, . . . , Xn is

FX1,...,Xn (x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn] .

Definition 5.1 is concise and general. It provides a complete probability model regardless
of whether any or all of the Xi are discrete, continuous, or mixed. However, the joint CDF

211
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is usually not convenient to use in analyzing practical probability models. Instead, we use
the joint PMF or the joint PDF.

Definition 5.2 Multivariate Joint PMF
The joint PMF of the discrete random variables X1, . . . , Xn is

PX1,...,Xn (x1, . . . , xn) = P [X1 = x1, . . . , Xn = xn] .

Definition 5.3 Multivariate Joint PDF
The joint PDF of the continuous random variables X1, . . . , Xn is the function

fX1,...,Xn (x1, . . . , xn) = ∂n FX1,...,Xn (x1, . . . , xn)

∂x1 · · · ∂xn
.

Theorems 5.1 and 5.2 indicate that the joint PMF and the joint PDF have properties that are
generalizations of the axioms of probability.

Theorem 5.1 If X1, . . . , Xn are discrete random variables with joint PMF PX1,...,Xn (x1, . . . , xn),

(a) PX1,...,Xn (x1, . . . , xn) ≥ 0,

(b)
∑

x1∈SX1

· · ·
∑

xn∈SXn

PX1,...,Xn (x1, . . . , xn) = 1.

Theorem 5.2 If X1, . . . , Xn are continuous random variables with joint PDF fX1,...,Xn (x1, . . . , xn),

(a) fX1,...,Xn (x1, . . . , xn) ≥ 0,

(b) FX1,...,Xn (x1, . . . , xn) =
∫ x1

−∞
· · ·
∫ xn

−∞
fX1,...,Xn (u1, . . . , un) du1 · · · dun,

(c)
∫ ∞

−∞
· · ·
∫ ∞

−∞
fX1,...,Xn (x1, . . . , xn) dx1 · · · dxn = 1.

Often we consider an event A described in terms of a property of X1, . . . , Xn , such as
|X1 + X2 + · · · + Xn | ≤ 1, or maxi Xi ≤ 100. To find the probability of the event A, we
sum the joint PMF or integrate the joint PDF over all x1, . . . , xn that belong to A.

Theorem 5.3 The probability of an event A expressed in terms of the random variables X1, . . . , Xn is

Discrete: P [A] =
∑

(x1,...,xn)∈A

PX1,...,Xn (x1, . . . , xn) ,

Continuous: P [A] =
∫

· · ·
∫

A

fX1,...,Xn (x1, . . . , xn) dx1 dx2 . . . dxn.

Although we have written the discrete version of Theorem 5.3 with a single summation,
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x
(1 page)

y
(2 pages)

z
(3 pages)

PX,Y,Z (x, y, z) total
pages

events

0 0 4 1/1296 12 B
0 1 3 1/108 11 B
0 2 2 1/24 10 B
0 3 1 1/12 9 B
0 4 0 1/16 8 AB
1 0 3 1/162 10 B
1 1 2 1/18 9 B
1 2 1 1/6 8 AB
1 3 0 1/6 7 B
2 0 2 1/54 8 AB
2 1 1 1/9 7 B
2 2 0 1/6 6 B
3 0 1 2/81 6
3 1 0 2/27 5
4 0 0 1/81 4

Table 5.1 The PMF PX,Y,Z (x, y, z) and the events A and B for Example 5.2.

we must remember that in fact it is a multiple sum over the n variables x1, . . . , xn .

Example 5.1 Consider a set of n independent trials in which there are r possible outcomes s1, . . . , sr
for each trial. In each trial, P[si ] = pi . Let Ni equal the number of times that outcome
si occurs over n trials. What is the joint PMF of N1, . . . , Nr ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The solution to this problem appears in Theorem 1.19 and is repeated here:

PN1,...,Nr (n1, . . . , nr ) =
(

n

n1, . . . , nr

)
pn1

1 pn2
2 · · · pnr

r . (5.1)

Example 5.2 In response to requests for information, a company sends faxes that can be 1, 2, or 3
pages in length, depending on the information requested. The PMF of L , the length
of one fax is

PL (l) =

⎧⎪⎪⎨
⎪⎪⎩

1/3 l = 1,

1/2 l = 2,

1/6 l = 3,

0 otherwise.

(5.2)

For a set of four independent information requests:

(a) What is the joint PMF of the random variables, X , Y ,and Z , the number of 1-page,
2-page, and 3-page faxes, respectively?

(b) What is P[A] = P[total length of four faxes is 8 pages]?
(c) What is P[B] = P[at least half of the four faxes has more than 1 page]?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Each fax sent is an independent trial with three possible outcomes: L = 1, L = 2, and
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L = 3. Hence, the number of faxes of each length out of four faxes is described by
the multinomial PMF of Example 5.1:

PX,Y,Z (x, y, z) =
(

4

x, y, z

)(
1

3

)x (1

2

)y (1

6

)z
. (5.3)

The PMF is displayed numerically in Table 5.1. The final column of the table indicates
that there are three outcomes in event A and 12 outcomes in event B. Adding the
probabilities in the two events, we have P[A] = 107/432 and P[B] = 8/9.

Example 5.3 The random variables X1, . . . , Xn have the joint PDF

fX1,...,Xn (x1, . . . , xn) =
{

1 0 ≤ xi ≤ 1, i = 1, . . . , n,

0 otherwise.
(5.4)

Let A denote the event that maxi Xi ≤ 1/2. Find P[A].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P [A] = P

[
max

i
Xi ≤ 1/2

]
= P

[
X1 ≤ 1/2, . . . , Xn ≤ 1/2

]
(5.5)

=
∫ 1/2

0
· · ·
∫ 1/2

0
1 dx1 · · · dxn = 1

2n . (5.6)

Here we have n independent uniform (0, 1) random variables. As n grows, the proba-
bility that the maximum is less than 1/2 rapidly goes to 0.

Quiz 5.1 The random variables Y1, . . . , Y4 have the joint PDF

fY1,...,Y4 (y1, . . . , y4) =
{

4 0 ≤ y1 ≤ y2 ≤ 1, 0 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.
(5.7)

Let C denote the event that maxi Yi ≤ 1/2. Find P[C].

5.2 Vector Notation

When an experiment produces two or more random variables, vector and matrix notation
provide a concise representation of probability models and their properties. This section
presents a set of definitions that establish the mathematical notation of random vectors. We
use boldface notation x for a column vector. Row vectors are transposed column vectors; x′
is a row vector. The components of a column vector are, by definition, written in a column.
However, to save space, we will often use the transpose of a row vector to display a column
vector: y = [y1 · · · yn

]′ is a column vector.

Definition 5.4 Random Vector
A random vector is a column vector X = [X1 · · · Xn

]′
. Each Xi is a random variable.

A random variable is a random vector with n = 1. The sample values of the components
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of a random vector comprise a column vector.

Definition 5.5 Vector Sample Value
A sample value of a random vector is a column vector x = [

x1 · · · xn
]′

. The i th
component, xi , of the vector x is a sample value of a random variable, Xi .

Following our convention for random variables, the uppercase X is the random vector and
the lowercase x is a sample value of X. However, we also use boldface capitals such as A
and B to denote matrices with components that are not random variables. It will be clear
from the context whether A is a matrix of numbers, a matrix of random variables, or a
random vector.

The CDF, PMF, or PDF of a random vector is the joint CDF, joint PMF, or joint PDF of
the components.

Definition 5.6 Random Vector Probability Functions

(a) The CDF of a random vector X is FX(x) = FX1,...,Xn (x1, . . . , xn).

(b) The PMF of a discrete random vector X is PX(x) = PX1,...,Xn (x1, . . . , xn).

(c) The PDF of a continuous random vector X is fX(x) = fX1,...,Xn (x1, . . . , xn).

We use similar notation for a function g(X) = g(X1, . . . , Xn) of n random variables and a
function g(x) = g(x1, . . . , xn) of n numbers. Just as we described the relationship of two
random variables in Chapter 4, we can explore a pair of random vectors by defining a joint
probability model for vectors as a joint CDF, a joint PMF, or a joint PDF.

Definition 5.7 Probability Functions of a Pair of Random Vectors
For random vectors X with n components and Y with m components:

(a) The joint CDF of X and Y is

FX,Y (x, y) = FX1,...,Xn,Y1,...,Ym (x1, . . . , xn, y1, . . . , ym) ;
(b) The joint PMF of discrete random vectors X and Y is

PX,Y (x, y) = PX1,...,Xn,Y1,...,Ym (x1, . . . , xn, y1, . . . , ym) ;
(c) The joint PDF of continuous random vectors X and Y is

fX,Y (x, y) = fX1,...,Xn,Y1,...,Ym (x1, . . . , xn, y1, . . . , ym) .

The logic of Definition 5.7 is that the pair of random vectors X and Y is the same as
W = [

X′ Y′]′ = [
X1 · · · Xn Y1 · · · Ym

]′
, a concatenation of X and Y. Thus a

probability function of the pair X and Y corresponds to the same probability function of
W; for example, FX,Y(x, y) is the same CDF as FW(w).
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Example 5.4 Random vector X has PDF

fX (x) =
{

6e−a′x x ≥ 0
0 otherwise

(5.8)

where a = [1 2 3
]′. What is the CDF of X?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Because a has three components, we infer that X is a 3-dimensional random vector.
Expanding a′x, we write the PDF as a function of the vector components,

fX (x) =
{

6e−x1−2x2−3x3 xi ≥ 0
0 otherwise

(5.9)

Applying Definition 5.7, we integrate the PDF with respect to the three variables to
obtain

FX (x) =
{

(1 − e−x1 )(1 − e−2x2)(1 − e−3x3 ) xi ≥ 0
0 otherwise

(5.10)

Quiz 5.2 Discrete random vectors X = [
x1 x2 x3

]′
and Y = [

y1 y2 y3
]′

are related by
Y = AX. Find the joint PMF PY(y) if X has joint PMF

PX (x) =
⎧⎨
⎩

(1 − p)px3 x1 < x2 < x3;
x1, x2, x3 ∈ {1, 2, . . .} ,

0 otherwise,
A =

⎡
⎣ 1 0 0

−1 1 0
0 −1 1

⎤
⎦ . (5.11)

5.3 Marginal Probability Functions

In analyzing an experiment, we may wish to study some of the random variables and ignore
other ones. To accomplish this, we can derive marginal PMFs or marginal PDFs that
are probability models for a fraction of the random variables in the complete experiment.
Consider an experiment with four random variables W, X, Y, Z . The probability model for
the experiment is the joint PMF, PW,X,Y,Z(w, x, y, z) or the joint PDF, fW,X,Y,Z(w, x, y, z).
The following theorems give examples of marginal PMFs and PDFs.

Theorem 5.4 For a joint PMF PW,X,Y,Z (w, x, y, z) of discrete random variables W, X, Y, Z, some
marginal PMFs are

PX,Y,Z (x, y, z) =
∑

w∈SW

PW,X,Y,Z (w, x, y, z) ,

PW,Z (w, z) =
∑
x∈SX

∑
y∈SY

PW,X,Y,Z (w, x, y, z) ,

PX (x) =
∑

w∈SW

∑
y∈SY

∑
z∈SZ

PW,X,Y,Z (w, x, y, z) .
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Theorem 5.5 For a joint PDF fW,X,Y,Z (w, x, y, z) of continuous random variables W, X, Y, Z, some
marginal PDFs are

fX,Y,Z (x, y, z) =
∫ ∞

−∞
fW,X,Y,Z (w, x, y, z) dw,

fW,Z (w, z) =
∫ ∞

−∞

∫ ∞

−∞
fW,X,Y,Z (w, x, y, z) dx dy,

fX (x) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fW,X,Y,Z (w, x, y, z) dw dy dz.

Theorems 5.4 and 5.5 can be generalized in a straightforward way to any marginal
PMF or marginal PDF of an arbitrary number of random variables. For a probability model
described by the set of random variables {X1, . . . , Xn}, each nonempty strict subset of those
random variables has a marginal probability model. There are 2n subsets of {X1, . . . , Xn}.
After excluding the entire set and the null set φ, we find that there are 2n − 2 marginal
probability models.

Example 5.5 As in Quiz 5.1, the random variables Y1, . . . , Y4 have the joint PDF

fY1,...,Y4 (y1, . . . , y4) =
{

4 0 ≤ y1 ≤ y2 ≤ 1, 0 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.
(5.12)

Find the marginal PDFs fY1,Y4 (y1, y4), fY2,Y3 (y2, y3), and fY3(y3).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fY1,Y4 (y1, y4) =
∫ ∞
−∞

∫ ∞
−∞

fY1,...,Y4 (y1, . . . , y4) dy2 dy3. (5.13)

In the foregoing integral, the hard part is identifying the correct limits. These limits will
depend on y1 and y4. For 0 ≤ y1 ≤ 1 and 0 ≤ y4 ≤ 1,

fY1,Y4 (y1, y4) =
∫ 1

y1

∫ y4

0
4 dy3 dy2 = 4(1 − y1)y4. (5.14)

The complete expression for fY1,Y4(y1, y4) is

fY1,Y4 (y1, y4) =
{

4(1 − y1)y4 0 ≤ y1 ≤ 1, 0 ≤ y4 ≤ 1,

0 otherwise.
(5.15)

Similarly, for 0 ≤ y2 ≤ 1 and 0 ≤ y3 ≤ 1,

fY2,Y3 (y2, y3) =
∫ y2

0

∫ 1

y3

4 dy4 dy1 = 4y2(1 − y3). (5.16)

The complete expression for fY2,Y3(y2, y3) is

fY2,Y3 (y2, y3) =
{

4y2(1 − y3) 0 ≤ y2 ≤ 1, 0 ≤ y3 ≤ 1,

0 otherwise.
(5.17)
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Lastly, for 0 ≤ y3 ≤ 1,

fY3 (y3) =
∫ ∞
−∞

fY2,Y3 (y2, y3) dy2 =
∫ 1

0
4y2(1 − y3) dy2 = 2(1 − y3). (5.18)

The complete expression is

fY3 (y3) =
{

2(1 − y3) 0 ≤ y3 ≤ 1,

0 otherwise.
(5.19)

Quiz 5.3 The random vector X = [X1 X2 X3
]′

has PDF

fX (X) =
{

6 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1,

0 otherwise.
(5.20)

Find the marginal PDFs f X1,X2(x1, x2), fX1,X3(x1, x3), fX2,X3(x2, x3), and fX1(x1), fX2(x2),
fX3(x3).

5.4 Independence of Random Variables and Random Vectors

The following definition extends the definition of independence of two random variables.
It states that X1, . . . , Xn are independent when the joint PMF or PDF can be factored into
a product of n marginal PMFs or PDFs.

Definition 5.8 N Independent Random Variables
Random variables X1, . . . , Xn are independent if for all x1, . . . , xn,

Discrete: PX1,...,Xn (x1, . . . , xn) = PX1 (x1) PX2 (x2) · · · PX N (xn) ,

Continuous: fX1,...,Xn (x1, . . . , xn) = fX1 (x1) fX2 (x2) · · · fXn (xn) .

Example 5.6 As in Example 5.5, random variables Y1, . . . , Y4 have the joint PDF

fY1,...,Y4 (y1, . . . , y4) =
{

4 0 ≤ y1 ≤ y2 ≤ 1, 0 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.
(5.21)

Are Y1, . . . , Y4 independent random variables?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Equation (5.15) of Example 5.5, we found the marginal PDF fY1,Y4(y1, y4). We can
use this result to show that

fY1 (y1) =
∫ 1

0
fY1,Y4 (y1, y4) dy4 = 2(1 − y1), 0 ≤ y1 ≤ 1, (5.22)

fY4 (y4) =
∫ 1

0
fY1,Y4 (y1, y4) dy1 = 2y4, 0 ≤ y4 ≤ 1. (5.23)
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The full expressions for the marginal PDFs are

fY1 (y1) =
{

2(1 − y1) 0 ≤ y1 ≤ 1,

0 otherwise,
(5.24)

fY4 (y4) =
{

2y4 0 ≤ y4 ≤ 1,

0 otherwise.
(5.25)

Similarly, the marginal PDF fY2,Y3(y2, y3) found in Equation (5.17) of Example 5.5
implies that for 0 ≤ y2 ≤ 1,

fY2 (y2) =
∫ ∞
−∞

fY2,Y3 (y2, y3) dy3 =
∫ 1

0
4y2(1 − y3) dy3 = 2y2 (5.26)

It follows that the marginal PDF of Y2 is

fY2 (y2) =
{

2y2 0 ≤ y2 ≤ 1,

0 otherwise.
(5.27)

From Equation (5.19) for the PDF fY3 (y3) derived in Example 5.5, we have

fY1(y1) fY2(y2) fY3(y3) fY4 (y4)

=
{

16(1 − y1)y2(1 − y3)y4 0 ≤ y1, y2, y3, y4 ≤ 1,

0 otherwise,

�= fY1,...,Y4 (y1, . . . , y4).

(5.28)

Therefore Y1, . . . , Y4 are not independent random variables.

Independence of n random variables is typically a property of an experiment consisting of
n independent subexperiments. In this case, subexperiment i produces the random variable
Xi . If all subexperiments follow the same procedure, all of the Xi have the same PMF or
PDF. In this case, we say the random variables Xi are identically distributed.

Definition 5.9 Independent and Identically Distributed (iid)
Random variables X1, . . . , Xn are independent and identically distributed (iid) if

Discrete: PX1,...,Xn (x1, . . . , xn) = PX (x1) PX (x2) · · · PX (xn) ,

Continuous: fX1,...,Xn (x1, . . . , xn) = fX (x1) fX (x2) · · · fX (xn) .

In considering the relationship of a pair of random vectors, we have the following definition
of independence:

Definition 5.10 Independent Random Vectors
Random vectors X and Y are independent if

Discrete: PX,Y (x, y) = PX (x) PY (y) ,

Continuous: fX,Y (x, y) = fX (x) fY (y) .
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Example 5.7 As in Example 5.5, random variables Y1, . . . , Y4 have the joint PDF

fY1,...,Y4 (y1, . . . , y4) =
{

4 0 ≤ y1 ≤ y2 ≤ 1, 0 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.
(5.29)

Let V = [Y1 Y4
]′ and W = [Y2 Y3

]′. Are V and W independent random vectors?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We first note that the components of V are V1 = Y1, and V2 = Y4. Also, W1 = Y2, and
W2 = Y3. Therefore,

fV,W (v, w) = fY1,...,Y4 (v1, w1, w2, v2) =
⎧⎨
⎩

4 0 ≤ v1 ≤ w1 ≤ 1;
0 ≤ w2 ≤ v2 ≤ 1,

0 otherwise.

(5.30)

Since V = [Y1 Y4
]′ and W = [Y2 Y3

]′,
fV (v) = fY1,Y4 (v1, v2) fW (w) = fY2,Y3 (w1, w2) (5.31)

In Example 5.5. we found fY1,Y4 (y1, y4) and fY2,Y3(y2, y3) in Equations (5.15) and (5.17).
From these marginal PDFs, we have

fV (v) =
{

4(1 − v1)v2 0 ≤ v1, v2 ≤ 1,

0 otherwise,
(5.32)

fW (w) =
{

4w1(1 − w2) 0 ≤ w1, w2 ≤ 1,

0 otherwise.
(5.33)

Therefore,

fV (v) fW (w) =
{

16(1 − v1)v2w1(1 − w2) 0 ≤ v1, v2, w1, w2 ≤ 1,

0 otherwise,
(5.34)

which is not equal to fV,W(v, w). Therefore V and W are not independent.

Quiz 5.4 Use the components of Y = [
Y1, . . . , Y4

]′
in Example 5.7 to construct two independent

random vectors V and W. Prove that V and W are independent.

5.5 Functions of Random Vectors

Just as we did for one random variable and two random variables, we can derive a random
variable W = g(X) that is a function of an arbitrary number of random variables. If W
is discrete, the probability model can be calculated as PW (w), the probability of the event
A = {W = w} in Theorem 5.3. If W is continuous, the probability model can be expressed
as FW (w) = P[W ≤ w].
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Theorem 5.6 For random variable W = g(X),

Discrete: PW (w) = P [W = w] =
∑

x:g(x)=w

PX (x) ,

Continuous: FW (w) = P [W ≤ w] =
∫

· · ·
∫

g(x)≤w

fX (x) dx1 · · · dxn.

Example 5.8 Consider an experiment that consists of spinning the pointer on the wheel of circumfer-
ence 1 meter in Example 3.1 n times and observing Yn meters, the maximum position
of the pointer in the n spins. Find the CDF and PDF of Yn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If Xi is the position of the pointer on the i th spin, then Yn = max{X1, X2, . . . , Xn}. As
a result, Yn ≤ y if and only if each Xi ≤ y. This implies

P [Yn ≤ y] = P
[
X1 ≤ y, X2 ≤ y, . . . Xn ≤ y

]
. (5.35)

If we assume the spins to be independent, the events {X1 ≤ y}, {X2 ≤ y}, . . . , {Xn ≤ y}
are independent events. Thus

P [Yn ≤ y] = P
[
X1 ≤ y

] · · · P [Xn ≤ y] = (P [X ≤ y])n = (FX (y))n . (5.36)

Example 3.2 derives that FX (x) = x for 0 ≤ x < 1. Furthermore, FX (x) = 0 for
x < 0 and FX (x) = 1 for x ≥ 1 since 0 ≤ X ≤ 1. Therefore, since the CDF of Yn is
FYn (y) = (FX (y))n , we can write the CDF and corresponding PDF as

FYn (y) =
⎧⎨
⎩

0 y < 0,

yn 0 ≤ y ≤ 1,

1 y > 1,

fYn (y) =
{

nyn−1 0 ≤ y ≤ 1,

0 otherwise.
(5.37)

The following theorem is a generalization of Example 5.8. It expresses the PDF of the
maximum and minimum values of a sequence of iid random variables in terms of the CDF
and PDF of the individual random variables.

Theorem 5.7 Let X be a vector of n iid random variables each with CDF FX (x) and PDF fX (x).

(a) The CDF and the PDF of Y = max{X1, . . . , Xn} are

FY (y) = (FX (y))n, fY (y) = n(FX (y))n−1 fX (y) .

(b) The CDF and the PDF of W = min{X1, . . . , Xn} are

FW (w) = 1 − (1 − FX (w))n, fW (w) = n(1 − FX (w))n−1 fX (w) .

Proof By definition, fY (y) = P[Y ≤ y]. Because Y is the maximum value of {X1, . . . , Xn},
the event {Y ≤ y} = {X1 ≤ y, X2 ≤ y, . . . , Xn ≤ y}. Because all the random variables Xi are

 



222 CHAPTER 5 RANDOM VECTORS

iid, {Y ≤ y} is the intersection of n independent events. Each of the events {Xi ≤ y} has probability
FX (y). The probability of the intersection is the product of the individual probabilities, which implies
the first part of the theorem: FY (y) = (FX (y))n . The second part is the result of differentiating FY (y)

with respect to y. The derivations of FW (w) and fW (w) are similar. They begin with the observations
that FW (w) = 1−P[W > w] and that the event {W > w} = {X1 > w, X2 > w, . . . Xn > w}, which
is the intersection of n independent events, each with probability 1 − FX (w).

In some applications of probability theory, we are interested only in the expected value
of a function, not the complete probability model. Although we can always find E[W ] by
first deriving PW (w) or fW (w), it is easier to find E[W ] by applying the following theorem.

Theorem 5.8 For a random vector X, the random variable g(X) has expected value

Discrete: E [g(X)] =
∑

x1∈SX1

· · ·
∑

xn∈SXn

g(x)PX (x) ,

Continuous: E [g(X)] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x) fX (x) dx1 · · · dxn.

If W = g(X) is the product of n univariate functions and the components of X are mutually
independent, E[W ] is a product of n expected values.

Theorem 5.9 When the components of X are independent random variables,

E [g1(X1)g2(X2) · · · gn(Xn)] = E [g1(X1)] E [g2(X2)] · · · E [gn(Xn)] .

Proof When X is discrete, independence implies PX(x) = PX1(x1) · · · PXn (xn). This implies

E
[
g1(X1) · · · gn(Xn)

] =
∑

x1∈SX1

· · ·
∑

xn∈SXn

g1(x1) · · · gn(xn)PX (x) (5.38)

=
( ∑

x1∈SX1

g1(x1)PX1 (x1)

)
· · ·
( ∑

xn∈SXn

gn(xn)PXn (xn)

)
(5.39)

= E
[
g1(X1)

]
E
[
g2(X2)

] · · · E [gn(Xn)] . (5.40)

The derivation is similar for independent continuous random variables.

We have considered the case of a single random variable W = g(X) derived from a
random vector X. More complicated experiments may yield a new random vector Y with
components Y1, . . . , Yn that are functions of the components of X: Yk = gk(X). We can
derive the PDF of Y by first finding the CDF FY(y) and then applying Theorem 5.2(b). The
following theorem demonstrates this technique.

 



5.5 FUNCTIONS OF RANDOM VECTORS 223

Theorem 5.10 Given the continuous random vector X, define the derived random vector Y such that
Yk = a Xk + b for constants a > 0 and b. The CDF and PDF of Y are

FY (y) = FX

(
y1 − b

a
, . . . ,

yn − b

a

)
, fY (y) = 1

an
fX

(
y1 − b

a
, . . . ,

yn − b

a

)
.

Proof We observe Y has CDF FY(y) = P[aX1 + b ≤ y1, . . . , aXn + b ≤ yn]. Since a > 0,

FY (y) = P

[
X1 ≤ y1 − b

a
, . . . , Xn ≤ yn − b

a

]
= FX

(
y1 − b

a
, . . . ,

yn − b

a

)
. (5.41)

From Theorem 5.2(b), the joint PDF of Y is

fY (y) = ∂n FY1,...,Yn (y1, . . . , yn)

∂y1 · · · ∂yn
= 1

an fX

(
y1 − b

a
, . . . ,

yn − b

a

)
. (5.42)

Theorem 5.10 is a special case of a transformation of the form Y = AX+ b. The following
theorem is a consequence of the change-of-variable theorem (Appendix B, Math Fact B.13)
in multivariable calculus.

Theorem 5.11 If X is a continuous random vector and A is an invertible matrix, then Y = AX + b has
PDF

fY (y) = 1

|det (A)| fX

(
A−1(y − b)

)

Proof Let B = {y|y ≤ ỹ} so that FY(ỹ) = ∫
B fY(y) dy. Define the vector transformation x =

T (y) = A−1(y − b). It follows that Y ∈ B if and only if X ∈ T (B), where T (B) = {x|Ax + b ≤ ỹ}
is the image of B under transformation T . This implies

FY
(
ỹ
) = P [X ∈ T (B)] =

∫
T (B)

fX (x) dx (5.43)

By the change-of-variable theorem (Math Fact B.13),

FY
(
ỹ
) =

∫
B

fX
(

A−1(y − b)
) ∣∣∣det

(
A−1

)∣∣∣ dy (5.44)

where |det(A−1)| is the absolute value of the determinant of A−1. Definition 5.6 for the CDF and PDF
of a random vector combined with Theorem 5.2(b) imply that fY(y) = fX(A−1(y − b))|det(A−1)|.
The theorem follows since |det(A−1)| = 1/|det(A)|.

Quiz 5.5
(A) A test of light bulbs produced by a machine has three possible outcomes: L, long life;

A, average life; and R, reject. The results of different tests are independent. All tests
have the following probability model: P[L] = 0.3, P[A] = 0.6, and P[R] = 0.1.
Let X1, X2, and X3 be the number of light bulbs that are L, A, and R respectively in
five tests. Find the PMF PX(x); the marginal PMFs PX1(x1), PX2(x2), and PX3(x3);
and the PMF of W = max(X1, X2, X3).
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(B) The random vector X has PDF

fX (x) =
{

e−x3 0 ≤ x1 ≤ x2 ≤ x3,

0 otherwise.
(5.45)

Find the PDF of Y = AX + b. where A = diag[2, 2, 2] and b = [4 4 4
]′

.

5.6 Expected Value Vector and Correlation Matrix

Corresponding to the expected value of a single random variable, the expected value of a
random vector is a column vector in which the components are the expected values of the
components of the random vector. There is a corresponding definition of the variance and
standard deviation of a random vector.

Definition 5.11 Expected Value Vector
The expected value of a random vector X is a column vector

E [X] = μX = [E [X1] E [X2] · · · E [Xn]
]′

.

The correlation and covariance (Definition 4.5 and Definition 4.4) are numbers that contain
important information about a pair of random variables. Corresponding information about
random vectors is reflected in the set of correlations and the set of covariances of all pairs
of components. These sets are referred to as second order statistics. They have a concise
matrix notation. To establish the notation, we first observe that for random vectors X with
n components and Y with m components, the set of all products, Xi Y j , is contained in the
n × m random matrix XY′. If Y = X, the random matrix XX′ contains all products, Xi X j ,
of components of X.

Example 5.9 If X = [X1 X2 X3
]′, what are the components of XX′?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XX′ =
⎡
⎣X1

X2
X3

⎤
⎦[X1 X2 X3

] =
⎡
⎢⎣

X2
1 X1 X2 X1 X3

X2 X1 X2
2 X2 X3

X3 X1 X3 X2 X2
3

⎤
⎥⎦ . (5.46)

In Definition 5.11, we defined the expected value of a random vector as the vector of
expected values. This definition can be extended to random matrices.

Definition 5.12 Expected Value of a Random Matrix
For a random matrix A with the random variable Ai j as its i, j th element, E[A] is a matrix
with i, j th element E[Aij ].

Applying this definition to the random matrix XX′, we have a concise way to define the
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correlation matrix of random vector X.

Definition 5.13 Vector Correlation
The correlation of a random vector X is an n ×n matrix RX with i, j th element RX (i, j) =
E[Xi X j ]. In vector noation,

RX = E
[
XX′] .

Example 5.10 If X = [X1 X2 X3
]′, the correlation matrix of X is

RX =

⎡
⎢⎢⎢⎣

E
[

X2
1

]
E
[
X1 X2

]
E
[
X1 X3

]
E
[
X2 X1

]
E
[

X2
2

]
E
[
X2 X3

]
E
[
X3 X1

]
E
[
X3 X2

]
E
[

X2
3

]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E
[

X2
1

]
rX1,X2 rX1,X3

rX2,X1 E
[

X2
2

]
rX2,X3

rX3,X1 rX3,X2 E
[

X2
3

]

⎤
⎥⎥⎥⎦ .

The i, j th element of the correlation matrix is the expected value of the random variable
Xi X j . The covariance matrix of X is a similar generalization of the covariance of two
random variables.

Definition 5.14 Vector Covariance
The covariance of a random vector X is an n × n matrix CX with components CX (i, j) =
Cov[Xi , X j ]. In vector notation,

CX = E
[
(X − μX)(X − μX)′

]

Example 5.11 If X = [X1 X2 X3
]′, the covariance matrix of X is

CX =
⎡
⎣ Var[X1] Cov

[
X1, X2

]
Cov

[
X1, X3

]
Cov

[
X2, X1

]
Var[X2] Cov

[
X2, X3

]
Cov

[
X3, X1

]
Cov

[
X3, X2

]
Var[X3]

⎤
⎦ (5.47)

Theorem 4.16(a), which connects the correlation and covariance of a pair of random
variables, can be extended to random vectors.

Theorem 5.12 For a random vector X with correlation matrix RX, covariance matrix CX, and vector
expected value μX,

CX = RX − μXμ′
X.
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Proof The proof is essentially the same as the proof of Theorem 4.16(a) with vectors replacing
scalars. Cross multiplying inside the expectation of Definition 5.14 yields

CX = E
[
XX′ − Xμ′

X − μXX′ + μXμ′
X
]

(5.48)

= E
[
XX′]− E

[
Xμ′

X
]− E

[
μXX′]+ E

[
μXμ′

X
]
. (5.49)

Since E[X] = μX is a constant vector,

CX = RX − E [X] μ′
X − μX E

[
X′]+ μXμ′

X = RX − μXμ′
X. (5.50)

Example 5.12 Find the expected value E[X], the correlation matrix RX, and the covariance matrix
CX of the 2-dimensional random vector X with PDF

fX (X) =
{

2 0 ≤ x1 ≤ x2 ≤ 1,

0 otherwise.
(5.51)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The elements of the expected value vector are

E
[
Xi
] =

∫ ∞
−∞

∫ ∞
−∞

xi fX (x) dx1dx2 =
∫ 1

0

∫ x2

0
2xi dx1dx2, i = 1, 2. (5.52)

The integrals are E[X1] = 1/3 and E[X2] = 2/3, so that μX = E[X] = [
1/3 2/3

]′.
The elements of the correlation matrix are

E
[

X2
1

]
=
∫ ∞
−∞

∫ ∞
−∞

x2
1 fX (x) dx1dx2 =

∫ 1

0

∫ x2

0
2x2

1 dx1dx2, (5.53)

E
[

X2
2

]
=
∫ ∞
−∞

∫ ∞
−∞

x2
2 fX (x) dx1dx2 =

∫ 1

0

∫ x2

0
2x2

2 dx1dx2, (5.54)

E
[
X1 X2

] =
∫ ∞
−∞

∫ ∞
−∞

x1x2 fX (x) dx1dx2 =
∫ 1

0

∫ x2

0
2x1x2 dx1dx2. (5.55)

These integrals are E[X1
2] = 1/6, E[X2

2] = 1/2, and E[X1 X2] = 1/4. Therefore,

RX =
[

1/6 1/4
1/4 1/2

]
. (5.56)

We use Theorem 5.12 to find the elements of the covariance matrix.

CX = RX − μXμ′
X =

[
1/6 1/4
1/4 1/2

]
−
[

1/9 2/9
2/9 4/9

]
=
[

1/18 1/36
1/36 1/18

]
. (5.57)

In addition to the correlations and covariances of the elements of one random vector, it
is useful to refer to the correlations and covariances of elements of two random vectors.

Definition 5.15 Vector Cross-Correlation
The cross-correlation of random vectors, X with n components and Y with m components,
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is an n × m matrix RXY with i, j th element RXY (i, j) = E[Xi Y j ], or, in vector notation,

RXY = E
[
XY′] .

Definition 5.16 Vector Cross-Covariance
The cross-covariance of a pair of random vectors X with n components and Y with m
components is an n × m matrix CXY with i, j th element CXY(i, j) = Cov[Xi , Y j ], or, in
vector notation,

CXY = E
[
(X − μX)(Y − μY)′

]
.

To distinguish the correlation or covariance of a random vector from the correlation or
covariance of a pair of random vectors, we sometimes use the terminology autocorre-
lation and autocovariance when there is one random vector and cross-correlation and
cross-covariance when there is a pair of random vectors. Note that when X = Y the au-
tocorrelation and cross-correlation are identical (as are the covariances). Recognizing this
identity, some texts use the notation RXX and CXX for the correlation and covariance of a
random vector.

When Y is a linear transformation of X, the following theorem states the relationship of
the second-order statistics of Y to the corresponding statistics of X.

Theorem 5.13 X is an n-dimensional random vector with expected value μX, correlation RX, and co-
variance CX. The m-dimensional random vector Y = AX + b, where A is an m × n
matrix and b is an m-dimensional vector, has expected value μY, correlation matrix RY,
and covariance matrix CY given by

μY = AμX + b,

RY = ARXA′ + (AμX)b′ + b(AμX)′ + bb′,
CY = ACXA′.

Proof We derive the formulas for the expected value and covariance of Y. The derivation for the
correlation is similar. First, the expected value of Y is

μY = E [AX + b] = AE [X] + E [b] = AμX + b. (5.58)

It follows that Y − μY = A(X − μX). This implies

CY = E
[
(A(X − μX))(A(X − μX))′

]
(5.59)

= E
[
A(X − μX))(X − μX)′A′] = AE

[
(X − μX)(X − μX)′

]
A′ = ACXA′. (5.60)
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Example 5.13 Given random vector X defined in Example 5.12, let Y = AX + b, where

A =
⎡
⎣1 0

6 3
3 6

⎤
⎦ and b =

⎡
⎣ 0

−2
−2

⎤
⎦ . (5.61)

Find the expected value μY, the correlation RY, and the covariance CY.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the matrix operations of Theorem 5.13, we obtain μY = [1/3 2 3

]′ and

RY =
⎡
⎣ 1/6 13/12 4/3

13/12 7.5 9.25
4/3 9.25 12.5

⎤
⎦ ; CY =

⎡
⎣1/18 5/12 1/3

5/12 3.5 3.25
1/3 3.25 3.5

⎤
⎦ . (5.62)

The cross-correlation and cross-covariance of two random vectors can be derived using
algebra similar to the proof of Theorem 5.13.

Theorem 5.14 The vectors X and Y = AX + b have cross-correlation RXY and cross-covariance CXY
given by

RXY = RXA′ + μXb′, CXY = CXA′.

In the next example, we see that covariance and cross-covariance matrices allow us
to quickly calculate the correlation coefficient between any pair of component random
variables.

Example 5.14 Continuing Example 5.13 for random vectors X and Y = AX + b, calculate

(a) The cross-correlation matrix RXY and the cross-covariance matrix CXY.
(b) The correlation coefficients ρY1,Y3 and ρX2,Y1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Direct matrix calculation using Theorem 5.14 yields

RXY =
[

1/6 13/12 4/3
1/4 5/3 29/12

]
; CXY =

[
1/18 5/12 1/3
1/36 1/3 5/12

]
. (5.63)

(b) Referring to Definition 4.8 and recognizing that Var[Yi ] = CY(i, i), we have

ρY1,Y3 = Cov
[
Y1, Y3

]
√

Var[Y1] Var[Y3] = CY (1, 3)√
CY (1, 1)CY (3, 3)

= 0.756 (5.64)

Similarly,

ρX2,Y1 = Cov
[
X2, Y1

]
√

Var[X2] Var[Y1]
= CXY(2, 1)√

CX(2, 2)CY(1, 1)
= 1/2. (5.65)
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Quiz 5.6 The 3-dimensional random vector X = [X1 X2 X3
]′

has PDF

fX (X) =
{

6 0 ≤ x1 ≤ x2 ≤ x3 ≤ 1,

0 otherwise.
(5.66)

Find the expected value E[X], and the correlation and covariance matrices RX and CX.

5.7 Gaussian Random Vectors

Multiple Gaussian random variables appear in many practical applications of probability
theory. The multivariate Gaussian distribution is a probability model for n random variables
with the property that the marginal PDFs are all Gaussian. A set of random variables
described by the multivariate Gaussian PDF is said to be jointly Gaussian. A vector whose
components are jointly Gaussian random variables is said to be a Gaussian random vector.
The PDF of a Gaussian random vector has a particularly concise notation. The following
definition is a generalization of Definition 3.8 and Definition 4.17.

Definition 5.17 Gaussian Random Vector
X is the Gaussian (μX, CX) random vector with expected value μX and covariance CX if
and only if

fX (x) = 1

(2π)n/2[det (CX)]1/2
exp

(
−1

2
(x − μX)′C−1

X (x − μX)

)

where det(CX), the determinant of CX, satisfies det(CX) > 0.

When n = 1, CX and x − μX are just σ 2
X and x − μX , and the PDF in Definition 5.17

reduces to the ordinary Gaussian PDF of Definition 3.8. That is, a 1-dimensional Gaussian
(μ, σ 2) random vector is a Gaussian (μ, σ ) random variable, notwithstanding that we
write their parameters differently1. In Problem 5.7.4, we ask you to show that for n = 2,
Definition 5.17 reduces to the bivariate Gaussian PDF in Definition 4.17. The condition
that det(CX) > 0 is a generalization of the requirement for the bivariate Gaussian PDF that
|ρ| < 1. Basically, det(CX) > 0 reflects the requirement that no random variable Xi is a
linear combination of the other random variables X j .

For a Gaussian random vector X, an important special case arises when Cov[Xi , X j ] = 0
for all i �= j . In this case, the off-diagonal elements of the covariance matrix CX are
all zero and the i th diagonal element is simply Var[Xi ] = σ 2

i . In this case, we write
CX = diag[σ 2

1 , σ 2
2 , . . . , σ 2

n ]. When the covariance matrix is diagonal, Xi and X j are
uncorrelated for i �= j . In Theorem 4.32, we showed that uncorrelated bivariate Gaussian
random variables are independent. The following theorem generalizes this result.

1For the Gaussian random variable, we use parameters μ and σ because they have the same units; however, for
the Gaussian random vector, the PDF dictates that we use μX and CX as parameters.
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Theorem 5.15 A Gaussian random vector X has independent components if and only if CX is a diagonal
matrix.

Proof First, if the components of X are independent, then for i �= j , Xi and X j are independent.
By Theorem 4.27(c), Cov[Xi , X j ] = 0. Hence the off-diagonal terms of CX are all zero. If CX is
diagonal, then

CX =

⎡
⎢⎢⎣

σ 2
1

. . .

σ 2
n

⎤
⎥⎥⎦ and C−1

X =

⎡
⎢⎢⎣

1/σ 2
1

. . .

1/σ 2
n

⎤
⎥⎥⎦ . (5.67)

It follows that CX has determinant det(CX) =∏n
i=1 σ 2

i and that

(x − μX)′C−1
X (x − μX) =

n∑
i=1

(Xi − μi )
2

σ 2
i

. (5.68)

From Definition 5.17, we see that

fX (x) = 1

(2π)n/2∏n
i=1 σ 2

i

exp

⎛
⎝−

n∑
i=1

(xi − μi )/2σ 2
i

⎞
⎠ (5.69)

=
n∏

i=1

1√
2πσ 2

i

exp
(
−(xi − μi )

2/2σ 2
i

)
. (5.70)

Thus fX(x) =∏n
i=1 fXi (xi ), implying X1, . . . , Xn are independent.

Example 5.15 Consider the outdoor temperature at a certain weather station. On May 5, the tem-
perature measurements in units of degrees Fahrenheit taken at 6 AM, 12 noon, and
6 PM are all Gaussian random variables, X1, X2, X3 with variance 16 degrees2. The
expected values are 50 degrees, 62 degrees, and 58 degrees respectively. The co-
variance matrix of the three measurements is

CX =
⎡
⎣16.0 12.8 11.2

12.8 16.0 12.8
11.2 12.8 16.0

⎤
⎦ . (5.71)

(a) Write the joint PDF of X1, X2 using the algebraic notation of Definition 4.17.
(b) Write the joint PDF of X1, X2 using vector notation.
(c) Write the joint PDF of X = [X1 X2 X3

]′ using vector notation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) First we note that X1 and X2 have expected values μ1 = 50 and μ2 = 62,
variances σ 2

1 = σ 2
2 = 16, and covariance Cov[X1, X2] = 12.8. It follows from

Definition 4.8 that the correlation coefficient is

ρX1,X2 = Cov
[
X1, X2

]
σ1σ2

= 12.8

16
= 0.8. (5.72)
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From Definition 4.17, the joint PDF is

fX1,X2 (x1, x2) =
exp
(
− (x1−50)2−1.6(x1−50)(x2−62)+(x2−62)2

19.2

)
60.3

. (5.73)

(b) Let W = [X1 X2
]′ denote a vector representation for random variables X1 and

X2. From the covariance matrix CX, we observe that the 2 × 2 submatrix in the
upper left corner is the covariance matrix of the random vector W. Thus

μW =
[

50
62

]
, CW =

[
16.0 12.8
12.8 16.0

]
. (5.74)

We observe that det(CW) = 92.16 and det(CW)1/2 = 9.6. From Definition 5.17,
the joint PDF of W is

fW (w) = 1

60.3
exp

(
−1

2
(w − μW)T C−1

W (w − μW)

)
. (5.75)

(c) For the joint PDF of X, we note that X has expected value μX = [50 62 58
]′

and that det(CX)1/2 = 22.717. Thus

fX (x) = 1

357.8
exp

(
−1

2
(x − μX)T C−1

X (x − μX)

)
. (5.76)

The following theorem is a generalization of Theorem 3.13. It states that a linear trans-
formation of a Gaussian random vector results in another Gaussian random vector.

Theorem 5.16 Given an n-dimensional Gaussian random vector X with expected value μX and covariance
CX, and an m × n matrix A with rank(A) = m,

Y = AX + b

is an m-dimensional Gaussian random vector with expected value μY = AμX + b and
covariance CY = ACXA′.

Proof The proof of Theorem 5.13 contains the derivations of μY and CY. Our proof that Y has a
Gaussian PDF is confined to the special case when m = n and A is an invertible matrix. The case of
m < n is addressed in Problem 5.7.9. When m = n, we use Theorem 5.11 to write

fY (y) = 1
|det (A)| fX

(
A−1(y − b)

)
(5.77)

=
exp
(
− 1

2 [A−1(y − b) − μX]′C−1
X [A−1(y − b) − μX]

)
(2π)n/2 |det (A)| |det (CX)|1/2

. (5.78)

In the exponent of fY(y), we observe that

A−1(y − b) − μX = A−1[y − (AμX + b)] = A−1(y − μY), (5.79)
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since μY = AμX + b. Applying (5.79) to (5.78) yields

fY (y) =
exp
(
− 1

2 [A−1(y − μY)]′C−1
X [A−1(y − μY)]

)
(2π)n/2 |det (A)| |det (CX)|1/2

. (5.80)

Using the identities |det(A)||det(CX)|1/2 = |det(ACXA′)|1/2 and (A−1)′ = (A′)−1, we can write

fY (y) =
exp
(
− 1

2 (y − μY)′(A′)−1C−1
X A−1(y − μY)

)
(2π)n/2

∣∣det
(
ACXA′)∣∣1/2

. (5.81)

Since (A′)−1C−1
X A−1 = (ACXA′)−1, we see from Equation (5.81) that Y is a Gaussian vector with

expected value μY and covariance matrix CY = ACXA′.

Example 5.16 Continuing Example 5.15, use the formula Yi = (5/9)(Xi − 32) to convert the three
temperature measurements to degrees Celsius.

(a) What is μY, the expected value of random vector Y?
(b) What is CY, the covariance of random vector Y?
(c) Write the joint PDF of Y = [Y1 Y2 Y3

]′ using vector notation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) In terms of matrices, we observe that Y = AX + b where

A =
⎡
⎣5/9 0 0

0 5/9 0
0 0 5/9

⎤
⎦ , b = −160

9

⎡
⎣1

1
1

⎤
⎦ . (5.82)

(b) Since μX = [50 62 58
]′, from Theorem 5.16,

μY = AμX + b =
⎡
⎣ 10

50/3
130/9

⎤
⎦ . (5.83)

(c) The covariance of Y is CY = ACXA′. We note that A = A′ = (5/9)I where I is
the 3 × 3 identity matrix. Thus CY = (5/9)2CX and C−1

Y = (9/5)2C−1
X . The PDF

of Y is

fY (y) = 1

24.47
exp

(
−81

50
(y − μY)T C−1

X (y − μY)

)
. (5.84)

A standard normal random vector is a generalization of the standard normal random
variable in Definition 3.9.

Definition 5.18 Standard Normal Random Vector
The n-dimensional standard normal random vector Z is the n-dimensional Gaussian
random vector with E[Z] = 0 and CZ = I.

 



5.7 GAUSSIAN RANDOM VECTORS 233

From Definition 5.18, each component Zi of Z has expected value E[Zi ] = 0 and variance
Var[Zi ] = 1. Thus Zi is a Gaussian (0, 1) random variable. In addition, E[Zi Z j ] = 0 for
all i �= j . Since CZ is a diagonal matrix, Z1, . . . , Zn are independent.

In many situations, it is useful to transform the Gaussian (μ, σ ) random variable X to
the standard normal random variable Z = (X − μX )/σX . For Gaussian vectors, we have a
vector transformation to transform X into a standard normal random vector.

Theorem 5.17 For a Gaussian (μX, CX) random vector, let A be an n × n matrix with the property
AA′ = CX. The random vector

Z = A−1(X − μX)

is a standard normal random vector.

Proof Applying Theorem 5.16 with A replaced by A−1, and b = A−1μX, we have that Z is a
Gaussian random vector with expected value

E [Z] = E
[
A−1(X − μX)

]
= A−1E

[
X − μX

] = 0, (5.85)

and covariance

CZ = A−1CX(A−1)′ = A−1AA′(A′)−1 = I. (5.86)

The transformation in this theorem is considerably less straightforward than the scalar
transformation Z = (X −μX )/σX , because it is necessary to find for a given CX a matrix A
with the property AA′ = CX. The calculation of A from CX can be achieved by applying the
linear algebra procedure singular value decomposition. Section 5.8 describes this procedure
in more detail and applies it to generating sample values of Gaussian random vectors.

The inverse transform of Theorem 5.17 is particularly useful in computer simulations.

Theorem 5.18 Given the n-dimensional standard normal random vector Z, an invertible n × n matrix A,
and an n-dimensional vector b,

X = AZ + b

is an n-dimensional Gaussian random vector with expected value μX = b and covariance
matrix CX = AA′.

Proof By Theorem 5.16, X is a Gaussian random vector with expected value

μX = E [X] = E
[
AZ + μX

] = AE [Z] + b = b. (5.87)

The covariance of X is

CX = ACZA′ = AIA′ = AA′. (5.88)

Theorem 5.18 says that we can transform the standard normal vector Z into a Gaussian
random vector X whose covariance matrix is of the form CX = AA′. The usefulness of
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Theorems 5.17 and 5.18 depends on whether we can always find a matrix A such that
CX = AA′. In fact, as we verify below, this is possible for every Gaussian vector X.

Theorem 5.19 For a Gaussian vector X with covariance CX, there always exists a matrix A such that
CX = AA′.

Proof To verify this fact, we connect some simple facts:

• In Problem 5.6.9, we ask the reader to show that every random vector X has a positive semidef-
inite covariance matrix CX. By Math Fact B.17, every eigenvalue of CX is nonnegative.

• The definition of the Gaussian vector PDF requires the existence of C−1
X . Hence, for a Gaussian

vector X, all eigenvalues of CX are nonzero. From the previous step, we observe that all
eigenvalues of CX must be positive.

• Since CX is a real symmetric matrix, Math Fact B.15 says it has a singular value decomposition
(SVD) CX = UDU′ where D = diag[d1, . . . , dn] is the diagonal matrix of eigenvalues of CX.
Since each di is positive, we can define D1/2 = diag[√d1, . . . ,

√
dn], and we can write

CX = UD1/2D1/2U′ =
(

UD1/2
) (

UD1/2
)′

. (5.89)

We see that A = UD1/2.

From Theorems 5.17, 5.18, and 5.19, it follows that any Gaussian (μX, CX) random vector
X can be written as a linear transformation of uncorrelated Gaussian (0, 1) random variables.
In terms of the SVD CX = UDU′ and the standard normal vector Z, the transformation is

X = UD1/2Z + μX. (5.90)

We recall that U has orthonormal columns u1, . . . , un . When μX = 0, Equation (5.90) can
be written as

X =
n∑

i=1

√
di ui Zi . (5.91)

The interpretation of Equation (5.91) is that a Gaussian random vector X is a combination
of orthogonal vectors

√
diui , each scaled by an independent Gaussian random variable Zi .

In a wide variety of problems involving Gaussian random vectors, the transformation from
the Gaussian vector X to the standard normal random vector Z to is the key to an efficient
solution. Also, we will see in the next section that Theorem 5.18 is essential in using
Matlab to generate arbitrary Gaussian random vectors.

Quiz 5.7 Z is the two-dimensional standard normal random vector. The Gaussian random vector X
has components

X1 = 2Z1 + Z2 + 2 and X2 = Z1 − Z2. (5.92)

Calculate the expected value μX and the covariance matrix CX.
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5.8 Matlab

As in Section 4.12, we demonstrate two ways of using Matlab to study random vectors.
We first present examples of programs that calculate values of probability functions, in this
case the PMF of a discrete random vector and the PDF of a Gaussian random vector. Then
we present a program that generates sample values of the Gaussian (μX, CX) random vector
given any μX and CX.

Probability Functions

The Matlab approach of using a sample space grid, presented in Section 4.12, can also
be applied to finite random vectors X described by a PMF PX(x).

Example 5.17 Finite random vector X = [X1 X2, · · · X5
]′ has PMF

PX (x) =
⎧⎨
⎩

k
√

x′x xi ∈ {−10, 9, . . . , 10} ;
i = 1, 2, . . . , 5,

0 otherwise.

(5.93)

What is the constant k? Find the expected value and standard deviation of X3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Summing PX(x) over all possible values of x is the sort of tedious task that Matlab
handles easily. Here are the code and corresponding output:

%x5.m
sx=-10:10;
[SX1,SX2,SX3,SX4,SX5]...

=ndgrid(sx,sx,sx,sx,sx);
P=sqrt(SX1.ˆ2 +SX2.ˆ2+SX3.ˆ2+SX4.ˆ2+SX5.ˆ2);
k=1.0/(sum(sum(sum(sum(sum(P))))))
P=k*P;
EX3=sum(sum(sum(sum(sum(P.*SX3)))))
EX32=sum(sum(sum(sum(sum(P.*(SX3.ˆ2))))));
sigma3=sqrt(EX32-(EX3)ˆ2)

» x5
k =

1.8491e-008
EX3 =
-3.2960e-017

sigma3 =
6.3047

»

In fact, by symmetry arguments, it should be clear that E[X3] = 0. In adding 115

terms, Matlab’s finite precision resulted in a small error on the order of 10−17.

Example 5.17 demonstrates the use of Matlab to calculate properties of a probability
model by performing lots of straightforward calculations. For a continuous random vector
X, Matlab could be used to calculate E[g(X)] using Theorem 5.8 and numeric integration.
One step in such a calculation is computing values of the PDF. The following example
performs this function for any Gaussian (μX, CX) random vector.

Example 5.18 Write a Matlab function f=gaussvectorpdf(mu,C,x) that calculates fX(x) for
a Gaussian (μ, C) random vector.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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function f=gaussvectorpdf(mu,C,x)
n=length(x);
z=x(:)-mu(:);
f=exp(-z’*inv(C)*z)/...

sqrt((2*pi)ˆn*det(C));

In gaussvectorpdf.m, we di-
rectly implement the Gaussian
PDF fX(x) of Definition 5.17. Of
course, Matlab makes the cal-
culation simple by providing oper-
ators for matrix inverses and de-
terminants.

Sample Values of Gaussian Random Vectors

Gaussian random vectors appear in a wide variety of experiments. Here we present a
program that generates sample values of Gaussian (μX, CX) random vectors. The matrix
notation lends itself to concise Matlab coding. Our approach is based on Theorem 5.18.
In particular, we generate a standard normal random vector Z and, given a covariance
matrix C, we use built-in Matlab functions to calculate a matrix A such that C = AA′.
By Theorem 5.18, X = AZ + μX is a Gaussian (μX, C) vector. Although the Matlab
code for this task will be quite short, it needs some explanation:

• x=randn(m,n) produces an m × n matrix, with each matrix element a Gaussian
(0, 1) random variable. Thus each column of x is a standard normal vector Z.

• [U,D,V]=svd(C) is the singular value decomposition (SVD) of matrix C. In
math notation, given C, svd produces a diagonal matrix D of the same dimension as
C and with nonnegative diagonal elements in decreasing order, and unitary matrices
U and V so that C = UDV′. Singular value decomposition is a powerful technique
that can be applied to any matrix. When C is a covariance matrix, the singular value
decomposition yields U = V and C = UDU′. Just as in the proof of Theorem 5.19,
A = UD1/2.

function x=gaussvector(mu,C,m)
[U,D,V]=svd(C);
x=V*(Dˆ(0.5))*randn(n,m)...

+(mu(:)*ones(1,m));

Using randn and svd, generat-
ing Gaussian random vectors is easy.
x=gaussvector(mu,C,1) produces a
Gaussian random vector with expected
value mu and covariance C.

The general form gaussvector(mu,C,m) produces an n ×m matrix where each of
the m columns is a Gaussian random vector with expected value mu and covariance C. The
reason for defining gaussvector to return m vectors at the same time is that calculating
the singular value decomposition is a computationally burdensome step. By producing m
vectors at once, we perform the SVD just once, rather than m times.

Quiz 5.8 The daily noon temperature in New Jersey in July can be modeled as a Gaussian random
vector T = [

T1 · · · T31
]′

where Ti is the temperature on the i th day of the month.
Suppose that E[Ti ] = 80 for all i , and that Ti and Tj have covariance

Cov
[
Ti , Tj

] = 36

1 + |i − j | (5.94)
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Define the daily average temperature as

Y = T1 + T2 + · · · + T31

31
. (5.95)

Based on this model, write a program p=julytemps(T) that calculates P[Y ≥ T ], the
probability that the daily average temperature is at least T degrees.

Chapter Summary

This chapter introduces experiments that produce an arbitrary number of random variables.

• The probability model of an experiment that produces n random variables can be rep-
resented as an n-dimensional CDF. If all of the random variables are discrete, there is a
corresponding n-dimensional PMF. If all of the random variables are continuous, there
is an n-dimensional PDF. The PDF is the nth partial derivative of the CDF with respect
to all n variables.

• A random vector with n dimensions is a concise representation of a set of n random
variables. There is a corresponding notation for the probability model (CDF, PMF,
PDF) of a random vector.

• There are 2n − 2 marginal probability models that can be derived from the probability
model of an experiment that produces n random variables. Each marginal PMF is a
summation over the sample space of all of the random variables that are not included in
the marginal probability model. Each marginal PDF is a corresponding multiple integral.

• The probability model (CDF, PMF, PDF) of n independent random variables is the
product of the univariate probability models of the n random variables.

• The expected value of a function of a discrete random vector is the sum over the range
of the random vector of the product of the function and the PMF.

• The expected value of a function of a continuous random vector is the integral over the
range of the random vector of the product of the function and the PDF.

• The expected value of a random vector with n dimensions is a deterministic vector
containing the n expected values of the components of the vector.

• The covariance matrix of a random vector contains the covariances of all pairs of random
variables in the random vector.

• The multivariate Gaussian PDF is a probability model for a vector in which all the
components are Gaussian random variables.

• A linear function of a Gaussian random vector is also a Gaussian random vector.

• Further Reading: [WS01] and [PP01] make extensive use of vectors and matrices. To
go deeply into vector random variables, students can use [Str98] to gain a firm grasp of
principles of linear algebra.
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Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

5.1.1• Every laptop returned to a repair center is classified
according its needed repairs: (1) LCD screen, (2)
motherboard, (3) keyboard, or (4) other. A random
broken laptop needs a type i repair with probability
pi = 24−i /15. Let Ni equal the number of type
i broken laptops returned on a day in which four
laptops are returned.

(a) Find the joint PMF

PN1,N2,N3,N4 (n1, n2, n3, n4)

(b) What is the probability that two laptops require
LCD repairs?

(c) What is the probability that more laptops require
motherboard repairs than keyboard repairs?

5.1.2• When ordering a personal computer, a customer can
add the following features to the basic configura-
tion: (1) additional memory, (2) flat panel display,
(3) professional software, and (4) wireless modem.
A random computer order has feature i with prob-
ability pi = 2−i independent of other features. In
an hour in which three computers are ordered, let
Ni equal the number of computers with feature i .

(a) Find the joint PMF

PN1,N2,N3,N4 (n1, n2, n3, n4) .

(b) What is the probability of selling a computer
with no additional features?

(c) What is the probability of selling a computer
with at least three additional features?

5.1.3• The random variables X1, . . . , Xn have the joint
PDF

fX1,...,Xn (x1, . . . , xn) =
⎧⎨
⎩

1 0 ≤ xi ≤ 1;
i = 1, . . . , n,

0 otherwise.

(a) What is the joint CDF, FX1,...,Xn (x1, . . . , xn)?

(b) For n = 3, what is the probability that mini Xi ≤
3/4?

5.2.1• For random variables X1, . . . , Xn in Problem 5.1.3,
let X = [X1 · · · Xn

]′. What is fX(x)?

5.2.2• Random vector X = [X1 · · · Xn
]′ has PDF

fX (x) =
{

ca′x 0 ≤ x ≤ 1
0 otherwise

where a is a vector with each component ai > 0.
What is c?

5.3.1
�

Given fY(y) in Quiz 5.3, find the marginal PDF
fY3 (y3).

5.3.2
�

A wireless data terminal has three messages wait-
ing for transmission. After sending a message,
it expects an acknowledgement from the receiver.
When it receives the acknowledgement, it transmits
the next message. If the acknowledgement does
not arrive, it sends the message again. The prob-
ability of successful transmission of a message is
p independent of other transmissions. Let K =[
K1 K2 K3

]′ be the 3-dimensional random
vector in which Ki is the total number of transmis-
sions when message i is received successfully. (K3
is the total number of transmissions used to send all
three messages.) Show that

PK (k) =
⎧⎨
⎩

p3(1 − p)k3−3 k1 < k2 < k3;
ki ∈ {1, 2 . . .} ,

0 otherwise.

5.3.3
�

From the joint PMF PK(k) in Problem 5.3.2, find
the marginal PMFs

(a) PK1,K2(k1, k2),

(b) PK1,K3(k1, k3),

(c) PK2,K3(k2, k2),

(d) PK1(k1), PK2(k2), and PK3(k3).

5.3.4
�

The random variables Y1, . . . , Y4 have the joint PDF

fY (y) =
{

24 0 ≤ y1 ≤ y2 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.

Find the marginal PDFs fY1,Y4(y1, y4),
fY1,Y2(y1, y2), and fY1(y1).

5.3.5
�

In a compressed data file of 10,000 bytes, each byte
is equally likely to be any one of 256 possible char-
acters b0, . . . , b255 independent of any other byte.
If Ni is the number of times bi appears in the file,
find the joint PMF of N0, . . . , N255. Also, what is
the joint PMF of N0 and N1?
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5.3.6
�

Let N be the r -dimensional random vector with
the multinomial PMF given in Example 5.1 with
n > r > 2:

PN (n) =
(

n

n1, . . . , nr

)
pn1

1 · · · pnr
r

(a) What is the joint PMF of N1 and N2? Hint:
Consider a new classification scheme with cate-
gories: s1, s2, and “other.”

(b) Let Ti = N1 + · · · + Ni . What is the PMF of
Ti ?

(c) What is the joint PMF of T1 and T2?

5.3.7
�

For Example 5.2, we derived the joint PMF of three
types of fax transmissions:

PX,Y,Z (x, y, z) =
(

4

x, y, z

)
1

3x
1

2y
1

6z .

(a) In a group of four faxes, what is the PMF of the
number of 3-page faxes?

(b) In a group of four faxes, what is the expected
number of 3-page faxes?

(c) Given that there are two 3-page faxes in a group
of four, what is the joint PMF of the number of
1-page faxes and the number of 2-page faxes?

(d) Given that there are two 3-page faxes in a group
of four, what is the expected number of 1-page
faxes?

(e) In a group of four faxes, what is the joint PMF
of the number of 1-page faxes and the number
of 2-page faxes?

5.3.8
�

As a generalization of the message transmission sys-
tem in Problem 5.3.2, consider a terminal that has n
messages to transmit. The components ki of the n-
dimensional random vector K are the total number
of messages transmitted when message i is received
successfully.

(a) Find the PMF of K.

(b) For each j ∈ {1, 2, . . . , n − 1}, find the
marginal PMF PK1,K2,...,K j (k1, k2, . . . , k j )

(c) For each i ∈ {1, 2, . . . , n}, find the marginal
PMF PKi (ki ).

Hint: These PMFs are members of a family of dis-
crete random variables in Appendix A.

5.4.1• The n components Xi of random vector X have
E[Xi ] = 0 Var[Xi ] = σ 2. What is the covariance
matrix CX?

5.4.2• In Problem 5.1.1, are N1, N2, N3, N4 independent?

5.4.3• The 4-dimensional random vector X has PDF

fX (x) =
{

1 0 ≤ xi ≤ 1, i = 1, 2, 3, 4
0 otherwise.

Are the four components of X independent random
variables?

5.4.4• As in Example 5.4, the random vector X has PDF

fX (x) =
{

6e−a′x x ≥ 0
0 otherwise

where a = [
1 2 3

]′. Are the components of X
independent random variables?

5.4.5• The PDF of the 3-dimensional random vector X is

fX (x) =
{

e−x3 0 ≤ x1 ≤ x2 ≤ x3,

0 otherwise.

Are the components of X independent random vari-
ables?

5.4.6
�

The random vector X has PDF

fX (x) =
{

e−x3 0 ≤ x1 ≤ x2 ≤ x3,

0 otherwise.

Find the marginal PDFs fX1 (x1), fX2(x2), and
fX3 (x3).

5.4.7
��

Given the set {U1, . . . , Un} of iid uniform (0, T )

random variables, we define

Xk = smallk(U1, . . . , Un)

as the kth “smallest” element of the set. That is, X1
is the minimum element, X2 is the second smallest,
and so on, up to Xn which is the maximum element
of {U1, . . . , Un}. Note that X1, . . . , Xn are known
as the order statistics of U1, . . . , Un . Prove that

fX1,...,Xn (x1, . . . , xn)

=
{

n!/T n 0 ≤ x1 < · · · < xn ≤ T,

0 otherwise.

5.5.1• Discrete random vector X has PMF PX(x). Prove
that for an invertible matrix A, Y = AX + b has
PMF

PY (y) = PX

(
A−1(y − b)

)
.

5.5.2
�

In the message transmission problem, Prob-
lem 5.3.2, the PMF for the number of transmissions
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when message i is received successfully is

PK (k) =
⎧⎨
⎩

p3(1 − p)k3−3 k1 < k2 < k3;
ki ∈ {1, 2 . . .} ,

0 otherwise.

Let J3 = K3 − K2, the number of transmissions of
message 3; J2 = K2 − K1, the number of transmis-
sions of message 2; and J1 = K1, the number of
transmissions of message 1. Derive a formula for
PJ(j), the PMF of the number of transmissions of
individual messages.

5.5.3
�

In an automatic geolocation system, a dispatcher
sends a message to six trucks in a fleet asking their
locations. The waiting times for responses from
the six trucks are iid exponential random variables,
each with expected value 2 seconds.

(a) What is the probability that all six responses will
arrive within 5 seconds?

(b) If the system has to locate all six vehicles within
3 seconds, it has to reduce the expected response
time of each vehicle. What is the maximum ex-
pected response time that will produce a location
time for all six vehicles of 3 seconds or less with
probability of at least 0.9?

5.5.4
�

In a race of 10 sailboats, the finishing times of all
boats are iid Gaussian random variables with ex-
pected value 35 minutes and standard deviation 5
minutes.

(a) What is the probability that the winning boat will
finish the race in less than 25 minutes?

(b) What is the probability that the last boat will
cross the finish line in more than 50 minutes?

(c) Given this model, what is the probability that a
boat will finish before it starts (negative finishing
time)?

5.5.5
��

In a weekly lottery, each $1 ticket sold adds 50 cents
to the jackpot that starts at $1 million before any
tickets are sold. The jackpot is announced each
morning to encourage people to play. On the morn-
ing of the i th day before the drawing, the current
value of the jackpot Ji is announced. On that day,
the number of tickets sold, Ni , is a Poisson random
variable with expected value Ji . Thus six days be-
fore the drawing, the morning jackpot starts at $1
million and N6 tickets are sold that day. On the day
of the drawing, the announced jackpot is J0 dollars
and N0 tickets are sold before the evening drawing.

What are the expected value and variance of J , the
value of the jackpot the instant before the drawing?
Hint: Use conditional expectations.

5.5.6
��

Let X1, . . . , Xn denote n iid random variables with
PDF fX (x) and CDF FX (x). What is the probabil-
ity P[Xn = max{X1, . . . , Xn}]?

5.6.1• Random variables X1 and X2 have zero expected
value and variances Var[X1] = 4 and Var[X2] = 9.
Their covariance is Cov[X1, X2] = 3.

(a) Find the covariance matrix of X = [X1 X2
]′.

(b) X1 and X2 are transformed to new variables Y1
and Y2 according to

Y1 = X1 − 2X2

Y2 = 3X1 + 4X2

Find the covariance matrix of Y = [Y1 Y2
]′.

5.6.2• Let X1, . . . , Xn be iid random variables with
expected value 0, variance 1, and covariance
Cov[Xi , X j ] = ρ. Use Theorem 5.13 to find
the expected value and variance of the sum Y =
X1 + · · · + Xn .

5.6.3• The 2-dimensional random vector X and the 3-
dimensional random vector Y are independent and
E[Y] = 0. What is the vector cross-correlation
RXY?

5.6.4• The 4-dimensional random vector X has PDF

fX (x) =
{

1 0 ≤ xi ≤ 1, i = 1, 2, 3, 4
0 otherwise.

Find the expected value vector E[X], the correlation
matrix RX, and the covariance matrix CX.

5.6.5• In the message transmission system in Prob-
lem 5.3.2, the solution to Problem 5.5.2 is a formula
for the PMF of J, the number of transmissions of in-
dividual messages. For p = 0.8, find the expected
value vector E[J], the correlation matrix RJ, and
the covariance matrix CJ.

5.6.6
�

In the message transmission system in Prob-
lem 5.3.2,

PK (k) =
⎧⎨
⎩

p3(1 − p)k3−3; k1 < k2 < k3;
ki ∈ {1, 2, . . .}

0 otherwise.

For p = 0.8, find the expected value vector E[K],
the covariance matrix CK, and the correlation ma-
trix RK.
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5.6.7
�

As in Quiz 5.1 and Example 5.5, the 4-dimensional
random vector Y has PDF

fY (y) =
⎧⎨
⎩

4 0 ≤ y1 ≤ y2 ≤ 1;
0 ≤ y3 ≤ y4 ≤ 1,

0 otherwise.

Find the expected value vector E[Y], the correlation
matrix RY, and the covariance matrix CY.

5.6.8
�

The 2-dimensional random vector Y has PDF

fY (y) =
{

2 0 ≤ [1 1
]

y ≤ 1,

0 otherwise.

Find the expected value vector E[Y], the correlation
matrix RY, and the covariance matrix CY.

5.6.9
�

Let X be a random vector with correlation matrix
RX and covariance matrix CX. Show that RX and
CX are both positive semidefinite by showing that
for any nonzero vector a,

a′RXa ≥ 0,

a′CXa ≥ 0.

5.7.1• X is the 3-dimensional Gaussian random vector with
expected value μX = [4 8 6

]′ and covariance

CX =
⎡
⎣ 4 −2 1

−2 4 −2
1 −2 4

⎤
⎦ .

Calculate

(a) the correlation matrix, RX,

(b) the PDF of the first two components of X,
fX1,X2(x1, x2),

(c) the probability that X1 > 8.

.

5.7.2• Given the Gaussian random vector X in Prob-
lem 5.7.1, Y = AX + b, where

A =
[

1 1/2 2/3
1 −1/2 2/3

]

and b = [−4 −4 −4
]′. Calculate

(a) the expected value μY,

(b) the covariance CY,

(c) the correlation RY,

(d) the probability that −1 ≤ Y2 ≤ 1.

5.7.3• Let X be a Gaussian (μX, CX) random vector.
Given a vector a, find the expected value and vari-
ance of Y = a′X. Is Y a Gaussian random variable?

5.7.4
�

Let X be a Gaussian random vector with expected
value

[
μ1 μ2

]′ and covariance matrix

CX =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
.

Show that X has PDF fX(x) = fX1,X2(x1, x2)

given by the bivariate Gaussian PDF of Defini-
tion 4.17.

5.7.5
�

Let X be a Gaussian (μX, CX) random vector. Let
Y = AX where A is an m × n matrix of rank m. By
Theorem 5.16, Y is a Gaussian random vector. Is

W =
[

X
Y

]

a Gaussian random vector?

5.7.6
�

The 2 × 2 matrix

Q =
[

cos θ − sin θ

sin θ cos θ

]

is called a rotation matrix because y = Qx is the ro-
tation of x by the angle θ . Suppose X = [X1 X2

]′
is a Gaussian (0, CX) vector where

CX =
[
σ 2

1 0
0 σ 2

2

]
.

and σ 2
2 ≥ σ 2

1 . Let Y = QX.

(a) Find the covariance of Y1 and Y2. Show that Y1
and Y2 are independent for all θ if σ 2

1 = σ 2
2 .

(b) Suppose σ 2
2 > σ 2

1 . For what values θ are Y1 and
Y2 independent?

5.7.7
�

X = [
X1 X2

]′ is a Gaussian (0, CX) vector
where

CX =
[

1 ρ

ρ 1

]
.

Thus, depending on the value of the correlation co-
efficient ρ, the joint PDF of X1 and X2 may resem-
ble one of the graphs of Figure 4.5 with X1 = X
and X2 = Y . Show that X = QY where Q is the
θ = 45◦ rotation matrix (see Problem 5.7.6) and Y
is a Gaussian (0, CY) vector such that

CY =
[

1 + ρ 0
0 1 − ρ

]
.
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This result verifies, for ρ �= 0, that the the PDF of
X1 and X2 shown in Figure 4.5, is the joint PDF of
two independent Gaussian random variables (with
variances 1 + ρ and 1 − ρ) rotated by 45 degrees.

5.7.8
�

An n-dimensional Gaussian vector W has a block
diagonal covariance matrix

CW =
[

CX 0
0 CY

]

where CX is m × m, CY is (n − m) × (n − m).
Show that W can be written in terms of component
vectors X and Y in the form

W =
[

X
Y

]

such that X and Y are independent Gaussian random
vectors.

5.7.9
��

In this problem, we extend the proof of Theo-
rem 5.16 to the case when A is m × n with m < n.
For this proof, we assume X is an n-dimensional
Gaussian vector and that we have proven Theo-
rem 5.16 for the case m = n. Since the case m = n
is sufficient to prove that Y = X + b is Gaussian,
it is sufficient to show for m < n that Y = AX is
Gaussian in the case when μX = 0.

(a) Prove there exists an (n − m) × n matrix Ã of
rank n−m with the property that ÃA′ = 0. Hint:
Review the Gram-Schmidt procedure.

(b) Let Â = ÃC−1
X and define the random vector

Ȳ =
[

Y
Ŷ

]
=
[

A
Â

]
X.

Use Theorem 5.16 for the case m = n to argue
that Ȳ is a Gaussian random vector.

(c) Find the covariance matrix C̄ of Ȳ. Use the re-
sult of Problem 5.7.8 to show that Y and Ŷ are
independent Gaussian random vectors.

5.8.1• Consider the vector X in Problem 5.7.1 and define
the average to be Y = (X1 + X2 + X3)/3. What is
the probability that Y > 4?

5.8.2
�

A better model for the sailboat race of Problem 5.5.4
accounts for the fact that all boats are subject to the
same randomness of wind and tide. Suppose in the
race of ten sailboats, the finishing times Xi are iden-
tical Gaussian random variables with expected value
35 minutes and standard deviation 5 minutes. How-
ever, for every pair of boats i and j , the finish times
Xi and X j have correlation coefficient ρ = 0.8.

(a) What is the covariance matrix of X =[
X1 · · · X10

]′?
(b) Let

Y = X1 + X2 + · · · + X10

10
denote the average finish time. What are the
expected value and variance of Y ? What is
P[Y ≤ 25]?

5.8.3
�

For the vector of daily temperatures[
T1 · · · T31

]′ and average temperature Y mod-
eled in Quiz 5.8, we wish to estimate the probability
of the event

A =
{

Y ≤ 82, min
i

Ti ≥ 72

}

To form an estimate of A, generate 10,000 inde-
pendent samples of the vector T and calculate the
relative frequency of A in those trials.

5.8.4
�

We continue Problem 5.8.2 where the vector X of
finish times has correlated components. Let W de-
note the finish time of the winning boat. We wish to
estimate P[W ≤ 25], the probability that the win-
ning boat finishes in under 25 minutes. To do this,
simulate m = 10,000 races by generating m samp-
les of the vector X of finish times. Let Y j = 1
if the winning time in race i is under 25 minutes;
otherwise, Y j = 0. Calculate the estimate

P [W ≤ 25] ≈ 1

m

m∑
j=1

Y j .

5.8.5
��

Write a Matlab program that simulates m runs of
the weekly lottery of Problem 5.5.5. For m = 1000
sample runs, form a histogram for the jackpot J .  



6
Sums of Random Variables

Random variables of the form

Wn = X1 + · · · + Xn (6.1)

appear repeatedly in probability theory and applications. We could in principle derive the
probability model of Wn from the PMF or PDF of X1, . . . , Xn . However, in many practical
applications, the nature of the analysis or the properties of the random variables allow
us to apply techniques that are simpler than analyzing a general n-dimensional probability
model. In Section 6.1 we consider applications in which our interest is confined to expected
values related to Wn , rather than a complete model of Wn . Subsequent sections emphasize
techniques that apply when X1, . . . , Xn are mutually independent. A useful way to analyze
the sum of independent random variables is to transform the PDF or PMF of each random
variable to a moment generating function.

The central limit theorem reveals a fascinating property of the sum of independent random
variables. It states that the CDF of the sum converges to a Gaussian CDF as the number of
terms grows without limit. This theorem allows us to use the properties of Gaussian random
variables to obtain accurate estimates of probabilities associated with sums of other random
variables. In many cases exact calculation of these probabilities is extremely difficult.

6.1 Expected Values of Sums

The theorems of Section 4.7 can be generalized in a straightforward manner to describe
expected values and variances of sums of more than two random variables.

Theorem 6.1 For any set of random variables X1, . . . , Xn, the expected value of Wn = X1 + · · · + Xn is

E [Wn] = E [X1] + E [X2] + · · · + E [Xn] .

Proof We prove this theorem by induction on n. In Theorem 4.14, we proved E[W2] = E[X1] +
243
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E[X2]. Now we assume E[Wn−1] = E[X1]+· · ·+ E[Xn−1]. Notice that Wn = Wn−1 + Xn . Since
Wn is a sum of the two random variables Wn−1 and Xn , we know that E[Wn] = E[Wn−1]+E[Xn] =
E[X1] + · · · + E[Xn−1] + E[Xn].

Keep in mind that the expected value of the sum equals the sum of the expected values
whether or not X1, . . . , Xn are independent. For the variance of Wn , we have the general-
ization of Theorem 4.15:

Theorem 6.2 The variance of Wn = X1 + · · · + Xn is

Var[Wn] =
n∑

i=1

Var[Xi ] + 2
n−1∑
i=1

n∑
j=i+1

Cov
[
Xi , X j

]
.

Proof From the definition of the variance, we can write Var[Wn] = E[(Wn − E[Wn])2]. For
convenience, let μi denote E[Xi ]. Since Wn = ∑n

i=1 Xn and E[Wn] = ∑n
i=1 μi , we can write

Var[Wn] = E

⎡
⎢⎣
⎛
⎝ n∑

i=1

(Xi − μi )

⎞
⎠

2
⎤
⎥⎦ = E

⎡
⎣ n∑

i=1

(Xi − μi )

n∑
j=1

(
X j − μ j

)⎤⎦ (6.2)

=
n∑

i=1

n∑
j=1

Cov
[
Xi , X j

]
. (6.3)

In terms of the random vector X = [
X1 · · · Xn

]′, we see that Var[Wn] is the sum of all the
elements of the covariance matrix CX. Recognizing that Cov[Xi , Xi ] = Var[X] and Cov[Xi , X j ] =
Cov[X j , Xi ], we place the diagonal terms of CX in one sum and the off-diagonal terms (which occur
in pairs) in another sum to arrive at the formula in the theorem.

When X1, . . . , Xn are uncorrelated, Cov[Xi , X j ] = 0 for i �= j and the variance of the
sum is the sum of the variances:

Theorem 6.3 When X1, . . . , Xn are uncorrelated,

Var[Wn] = Var[X1] + · · · + Var[Xn].

Example 6.1 X0, X1, X2, . . . is a sequence of random variables with expected values E[Xi ] = 0
and covariances, Cov[Xi , X j ] = 0.8|i− j |. Find the expected value and variance of
a random variable Yi defined as the sum of three consecutive values of the random
sequence

Yi = Xi + Xi−1 + Xi−2. (6.4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem 6.1 implies that

E
[
Yi

] = E
[
Xi

] + E
[
Xi−1

] + E
[
Xi−2

] = 0. (6.5)
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Applying Theorem 6.2, we obtain for each i ,

Var[Yi ] = Var[Xi ] + Var[Xi−1] + Var[Xi−2]
+ 2 Cov

[
Xi , Xi−1

] + 2 Cov
[
Xi , Xi−2

] + 2 Cov
[
Xi−1, Xi−2

]
. (6.6)

We next note that Var[Xi ] = Cov[Xi , Xi ] = 0.8i−i = 1 and that

Cov
[
Xi , Xi−1

] = Cov
[
Xi−1, Xi−2

] = 0.81, Cov
[
Xi , Xi−2

] = 0.82. (6.7)

Therefore
Var[Yi ] = 3 × 0.80 + 4 × 0.81 + 2 × 0.82 = 7.48. (6.8)

The following example shows how a puzzling problem can be formulated as a question
about the sum of a set of dependent random variables.

Example 6.2 At a party of n ≥ 2 people, each person throws a hat in a common box. The box is
shaken and each person blindly draws a hat from the box without replacement. We
say a match occurs if a person draws his own hat. What are the expected value and
variance of Vn , the number of matches?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let Xi denote an indicator random variable such that

Xi =
{

1 person i draws his hat,
0 otherwise.

(6.9)

The number of matches is Vn = X1 + · · · + Xn . Note that the Xi are generally not
independent. For example, with n = 2 people, if the first person draws his own hat,
then the second person must also draw her own hat. Note that the i th person is
equally likely to draw any of the n hats, thus PXi (1) = 1/n and E[Xi ] = PXi (1) = 1/n.
Since the expected value of the sum always equals the sum of the expected values,

E [Vn] = E
[
X1

] + · · · + E [Xn] = n(1/n) = 1. (6.10)

To find the variance of Vn , we will use Theorem 6.2. The variance of Xi is

Var[Xi ] = E
[

X2
i

]
− (

E
[
Xi

])2 = 1

n
− 1

n2
. (6.11)

To find Cov[Xi , X j ], we observe that

Cov
[
Xi , X j

] = E
[
Xi X j

] − E
[
Xi

]
E
[
X j

]
. (6.12)

Note that Xi X j = 1 if and only if Xi = 1 and X j = 1, and that Xi X j = 0 otherwise.
Thus

E
[
Xi X j

] = PXi ,X j (1, 1) = PXi |X j (1|1) PX j (1) . (6.13)

Given X j = 1, that is, the j th person drew his own hat, then Xi = 1 if and only if the
i th person draws his own hat from the n −1 other hats. Hence PXi |X j (1|1) = 1/(n −1)

and

E
[
Xi X j

] = 1

n(n − 1)
, Cov

[
Xi , X j

] = 1

n(n − 1)
− 1

n2
. (6.14)
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Finally, we can use Theorem 6.2 to calculate

Var[Vn] = n Var[Xi ] + n(n − 1) Cov
[
Xi , X j

] = 1. (6.15)

That is, both the expected value and variance of Vn are 1, no matter how large n is!

Example 6.3 Continuing Example 6.2, suppose each person immediately returns to the box the hat
that he or she drew. What is the expected value and variance of Vn , the number of
matches?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this case the indicator random variables Xi are iid because each person draws from
the same bin containing all n hats. The number of matches Vn = X1 + · · · + Xn is the
sum of n iid random variables. As before, the expected value of Vn is

E [Vn] = nE
[
Xi

] = 1. (6.16)

In this case, the variance of Vn equals the sum of the variances,

Var[Vn] = n Var[Xi ] = n

(
1

n
− 1

n2

)
= 1 − 1

n
. (6.17)

The remainder of this chapter examines tools for analyzing complete probability models
of sums of random variables, with the emphasis on sums of independent random variables.

Quiz 6.1 Let Wn denote the sum of n independent throws of a fair four-sided die. Find the expected
value and variance of Wn.

6.2 PDF of the Sum of Two Random Variables

X

Y

w

w

X+Y w£

Before analyzing the probability model of the sum of n random
variables, it is instructive to examine the sum W = X + Y of two
continuous random variables. As we see in Theorem 6.4, the PDF
of W depends on the joint PDF fX,Y (x, y). In particular, in the
proof of the theorem, we find the PDF of W using the two-step
procedure in which we first find the CDF FW (w) by integrating the
joint PDF fX,Y (x, y) over the region X + Y ≤ w as shown.

Theorem 6.4 The PDF of W = X + Y is

fW (w) =
∫ ∞

−∞
fX,Y (x, w − x) dx =

∫ ∞

−∞
fX,Y (w − y, y) dy.

Proof

FW (w) = P [X + Y ≤ w] =
∫ ∞
−∞

(∫ w−x

−∞
fX,Y (x, y) dy

)
dx. (6.18)
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Taking the derivative of the CDF to find the PDF, we have

fW (w) = d FW (w)

dw
=

∫ ∞
−∞

(
d

dw

(∫ w−x

−∞
fX,Y (x, y) dy

))
dx (6.19)

=
∫ ∞
−∞

fX,Y (x, w − x) dx. (6.20)

By making the substitution y = w − x , we obtain

fW (w) =
∫ ∞
−∞

fX,Y (w − y, y) dy. (6.21)

Example 6.4 Find the PDF of W = X + Y when X and Y have the joint PDF

fX,Y (x, y) =
{

2 0 ≤ y ≤ 1, 0 ≤ x ≤ 1, x + y ≤ 1,

0 otherwise.
(6.22)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x

y

1

1

y=w-x
w

w

The PDF of W = X + Y can be found using Theorem 6.4.
The possible values of X, Y are in the shaded triangular
region where 0 ≤ X + Y = W ≤ 1. Thus fW (w) = 0 for
w < 0 or w > 1. For 0 ≤ w ≤ 1, applying Theorem 6.4
yields

fW (w) =
∫ w

0
2 dx = 2w, 0 ≤ w ≤ 1. (6.23)

The complete expression for the PDF of W is

fW (w) =
{

2w 0 ≤ w ≤ 1,

0 otherwise.
(6.24)

When X and Y are independent, the joint PDF of X and Y can be written as the product
of the marginal PDFs fX,Y (x, y) = fX (x) fY (y). In this special case, Theorem 6.4 can be
restated.

Theorem 6.5 When X and Y are independent random variables, the PDF of W = X + Y is

fW (w) =
∫ ∞

−∞
fX (w − y) fY (y) dy =

∫ ∞

−∞
fX (x) fY (w − x) dx .

In Theorem 6.5, we combine two univariate functions, fX (·) and fY (·), in order to produce
a third function, fW (·). The combination in Theorem 6.5, referred to as a convolution,
arises in many branches of applied mathematics.
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When X and Y are independent integer-valued discrete random variables, the PMF of
W = X + Y is a convolution (Problem 4.10.9).

PW (w) =
∞∑

k=−∞
PX (k) PY (w − k) . (6.25)

You may have encountered convolutions already in studying linear systems. Sometimes,
we use the notation fW (w) = fX (x) ∗ fY (y) to denote convolution.

Quiz 6.2 Let X and Y be independent exponential random variables with expected values E[X] =
1/3 and E[Y ] = 1/2. Find the PDF of W = X + Y .

6.3 Moment Generating Functions

The PDF of the sum of independent random variables X1, . . . , Xn is a sequence of convo-
lutions involving PDFs fX1(x), fX2(x), and so on. In linear system theory, convolution in
the time domain corresponds to multiplication in the frequency domain with time functions
and frequency functions related by the Fourier transform. In probability theory, we can, in
a similar way, use transform methods to replace the convolution of PDFs by multiplication
of transforms. In the language of probability theory, the transform of a PDF or a PMF is a
moment generating function.

Definition 6.1 Moment Generating Function (MGF)
For a random variable X, the moment generating function (MGF) of X is

φX (s) = E
[
es X

]
.

Definition 6.1 applies to both discrete and continuous random variables X . What changes
in going from discrete X to continuous X is the method of calculating the expected value.
When X is a continuous random variable,

φX (s) =
∫ ∞

−∞
esx fX (x) dx . (6.26)

For a discrete random variable Y , the MGF is

φY (s) =
∑

yi∈SY

esyi PY (yi ) . (6.27)

Equation (6.26) indicates that the MGF of a continuous random variable is similar to the
Laplace transform of a time function. The primary difference is that the MGF is defined
for real values of s. For a given random variable X , there is a range of possible values of s
for which φX (s) exists. The set of values of s for which φX (s) exists is called the region of
convergence. For example, if X is a nonnegativerandom variable, the region of convergence
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Random Variable PMF or PDF MGF φX (s)

Bernoulli (p) PX (x) =
⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

1 − p + pes

Binomial (n, p) PX (x) =
(

n

x

)
px(1 − p)n−x (1 − p + pes)n

Geometric (p) PX (x) =
{

p(1 − p)x−1 x = 1, 2, . . .

0 otherwise
pes

1 − (1 − p)es

Pascal (k, p) PX (x) =
(

x − 1

k − 1

)
pk(1 − p)x−k (

pes

1 − (1 − p)es
)k

Poisson (α) PX (x) =
{

αx e−α/x ! x = 0, 1, 2, . . .

0 otherwise
eα(es−1)

Disc. Uniform (k, l) PX (x) =
{ 1

l−k+1 x = k, k + 1, . . . , l
0 otherwise

esk − es(l+1)

1 − es

Constant (a) fX (x) = δ(x − a) esa

Uniform (a, b) fX (x) =
{ 1

b−a a < x < b
0 otherwise

ebs − eas

s(b − a)

Exponential (λ) fX (x) =
{

λe−λx x ≥ 0
0 otherwise

λ

λ − s

Erlang (n, λ) fX (x) =
{

λn xn−1e−λx

(n−1)! x ≥ 0
0 otherwise

(
λ

λ − s
)n

Gaussian (μ, σ ) fX (x) = 1
σ
√

2π
e−(x−μ)2/2σ 2

esμ+s2σ 2/2

Table 6.1 Moment generating function for families of random variables.

includes all s ≤ 0. Because the MGF and PMF or PDF form a transform pair, the MGF
is also a complete probability model of a random variable. Given the MGF, it is possible
to compute the PDF or PMF. The definition of the MGF implies that φX (0) = E[e0] = 1.
Moreover, the derivatives of φX (s) evaluated at s = 0 are the moments of X .
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Theorem 6.6 A random variable X with MGF φX (s) has nth moment

E
[
Xn] = dnφX (s)

dsn

∣∣∣∣
s=0

.

Proof The first derivative of φX (s) is

dφX (s)

ds
= d

ds

(∫ ∞
−∞

esx fX (x) dx

)
=

∫ ∞
−∞

xesx fX (x) dx. (6.28)

Evaluating this derivative at s = 0 proves the theorem for n = 1.

dφX (s)

ds

∣∣∣∣
s=0

=
∫ ∞
−∞

x fX (x) dx = E [X] . (6.29)

Similarly, the nth derivative of φX (s) is

dnφX (s)

dsn =
∫ ∞
−∞

xnesx fX (x) dx. (6.30)

The integral evaluated at s = 0 is the formula in the theorem statement.

Typically it is easier to calculate the moments of X by finding the MGF and differentiating
than by integrating xn fX (x).

Example 6.5 X is an exponential random variable with MGF φX (s) = λ/(λ − s). What are the first
and second moments of X? Write a general expression for the nth moment.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The first moment is the expected value:

E [X] = dφX (s)

ds

∣∣∣∣
s=0

= λ

(λ − s)2

∣∣∣∣
s=0

= 1

λ
. (6.31)

The second moment of X is the mean square value:

E
[

X2
]

= d2φX (s)

ds2

∣∣∣∣∣
s=0

= 2λ

(λ − s)3

∣∣∣∣
s=0

= 2

λ2
. (6.32)

Proceeding in this way, it should become apparent that the nth moment of X is

E
[
Xn] = dnφX (s)

dsn

∣∣∣∣
s=0

= n!λ
(λ − s)n+1

∣∣∣∣
s=0

= n!
λn . (6.33)

Table 6.1 presents the MGF for the families of random variables defined in Chapters 2
and 3. The following theorem derives the MGF of a linear transformation of a random
variable X in terms of φX (s).

Theorem 6.7 The MGF of Y = a X + b is φY (s) = esbφX (as).

Proof From the definition of the MGF,
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φY (s) = E
[
es(a X+b)

]
= esb E

[
e(as)X

]
= esbφX (as). (6.34)

Quiz 6.3 Random variable K has PMF

PK (k) =
{

0.2 k = 0, . . . , 4,

0 otherwise.
(6.35)

Use the MGF φK (s) to find the first, second, third, and fourth moments of K .

6.4 MGF of the Sum of Independent Random Variables

Moment generating functions are particularly useful for analyzing sums of independent
random variables, because if X and Y are independent, the MGF of W = X + Y is the
product:

φW (s) = E
[
es XesY

]
= E

[
es X

]
E
[
esY

]
= φX (s)φY (s). (6.36)

Theorem 6.8 generalizes this result to a sum of n independent random variables.

Theorem 6.8 For a set of independent random variables X1, . . . , Xn, the moment generating function of
W = X1 + · · · + Xn is

φW (s) = φX1(s)φX2(s) · · ·φXn (s).

When X1, . . . , Xn are iid, each with MGF φXi (s) = φX (s),

φW (s) = [φX (s)]n .

Proof From the definition of the MGF,

φW (s) = E
[
es(X1+···+Xn )

]
= E

[
es X1 es X2 · · · es Xn

]
. (6.37)

Here, we have the expected value of a product of functions of independent random variables. Theo-
rem 5.9 states that this expected value is the product of the individual expected values:

E
[
g1(X1)g2(X2) · · · gn(Xn)

] = E
[
g1(X1)

]
E
[
g2(X2)

] · · · E [gn(Xn)] . (6.38)

By Equation (6.38) with gi (Xi ) = es Xi , the expected value of the product is

φW (s) = E
[
es X1

]
E
[
es X2

]
· · · E

[
es Xn

]
= φX1(s)φX2(s) · · ·φXn (s). (6.39)

When X1, . . . , Xn are iid, φXi (s) = φX (s) and thus φW (s) = (φW (s))n .
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Moment generating functions provide a convenient way to study the properties of sums
of independent finite discrete random variables.

Example 6.6 J and K are independent random variables with probability mass functions

PJ ( j) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 j = 1,

0.6 j = 2,

0.2 j = 3,

0 otherwise,

PK (k) =
⎧⎨
⎩

0.5 k = −1,

0.5 k = 1,

0 otherwise.

(6.40)

Find the MGF of M = J + K ? What are E[M3] and PM (m)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J and K have have moment generating functions

φJ (s) = 0.2es + 0.6e2s + 0.2e3s , φK (s) = 0.5e−s + 0.5es . (6.41)

Therefore, by Theorem 6.8, M = J + K has MGF

φM (s) = φJ (s)φK (s) = 0.1 + 0.3es + 0.2e2s + 0.3e3s + 0.1e4s . (6.42)

To find the third moment of M, we differentiate φM (s) three times:

E
[

M3
]

= d3φM (s)

ds3

∣∣∣∣∣
s=0

(6.43)

= 0.3es + 0.2(23)e2s + 0.3(33)e3s + 0.1(43)e4s
∣∣∣
s=0

= 16.4. (6.44)

The value of PM (m) at any value of m is the coefficient of ems in φM (s):

φM (s) = E
[
es M

]
= 0.1︸︷︷︸

PM (0)

+ 0.3︸︷︷︸
PM (1)

es + 0.2︸︷︷︸
PM (2)

e2s + 0.3︸︷︷︸
PM (3)

e3s + 0.1︸︷︷︸
PM (4)

e4s . (6.45)

The complete expression for the PMF of M is

PM (m) =

⎧⎪⎪⎨
⎪⎪⎩

0.1 m = 0, 4,

0.3 m = 1, 3,

0.2 m = 2,

0 otherwise.

(6.46)

Besides enabling us to calculate probabilities and moments for sums of discrete random
variables, we can also use Theorem 6.8 to derive the PMF or PDF of certain sums of iid
random variables. In particular, we use Theorem 6.8 to prove that the sum of indepen-
dent Poisson random variables is a Poisson random variable, and the sum of independent
Gaussian random variables is a Gaussian random variable.

Theorem 6.9 If K1, . . . , Kn are independent Poisson random variables, W = K1 +· · ·+ Kn is a Poisson
random variable.

Proof We adopt the notation E[Ki ] = αi and note in Table 6.1 that Ki has MGF φKi (s) = eαi (es−1).
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By Theorem 6.8,

φW (s) = eα1(es−1)eα2(es−1) · · · eαn (es−1) = e(α1+···+αn)(es−1) = e(αT )(es−1) (6.47)

where αT = α1 + · · · + αn . Examining Table 6.1, we observe that φW (s) is the moment generating
function of the Poisson (αT ) random variable. Therefore,

PW (w) =
{

αw
T e−α/w! w = 0, 1, . . . ,

0 otherwise.
(6.48)

Theorem 6.10 The sum of n independent Gaussian random variables W = X1 + · · · + Xn is a Gaussian
random variable.

Proof For convenience, let μi = E[Xi ] and σ 2
i = Var[Xi ]. Since the Xi are independent, we know

that

φW (s) = φX1(s)φX2 (s) · · ·φXn (s) (6.49)

= esμ1+σ 2
1 s2/2esμ2+σ 2

2 s2/2 · · · esμn+σ 2
n s2/2 (6.50)

= es(μ1+···+μn )+(σ 2
1 +···+σ 2

n )s2/2. (6.51)

From Equation (6.51), we observe that φW (s) is the moment generating function of a Gaussian random
variable with expected value μ1 + · · · + μn and variance σ 2

1 + · · · + σ 2
n .

In general, the sum of independent random variables in one family is a different kind of
random variable. The following theorem shows that the Erlang (n, λ) random variable is
the sum of n independent exponential (λ) random variables.

Theorem 6.11 If X1, . . . , Xn are iid exponential (λ) random variables, then W = X1 + · · · + Xn has the
Erlang PDF

fW (w) =
{

λnwn−1e−λw

(n−1)! w ≥ 0,

0 otherwise.

Proof In Table 6.1 we observe that each Xi has MGF φX (s) = λ/(λ − s). By Theorem 6.8, W has
MGF

φW (s) =
(

λ

λ − s

)n
. (6.52)

Returning to Table 6.1, we see that W has the MGF of an Erlang (n, λ) random variable.

Similar reasoning demonstrates that the sum of n Bernoulli (p) random variables is the
binomial (n, p) random variable, and that the sum of k geometric (p) random variables is
a Pascal (k, p) random variable.
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Quiz 6.4
(A) Let K1, K2, . . . , Km be iid discrete uniform random variables with PMF

PK (k) =
{

1/n k = 1, 2, . . . , n,

0 otherwise.
(6.53)

Find the MGF of J = K1 + · · · + Km.

(B) Let X1, . . . , Xn be independent Gaussian random variables with E[Xi = 0] and
Var[Xi ] = i . Find the PDF of

W = αX1 + α2 X2 + · · · + αn Xn . (6.54)

6.5 Random Sums of Independent Random Variables

Many practical problems can be analyzed by reference to a sum of iid random variables in
which the number of terms in the sum is also a random variable. We refer to the resultant
random variable, R, as a random sum of iid random variables. Thus, given a random
variable N and a sequence of iid random variables X1, X2, . . ., let

R = X1 + · · · + X N . (6.55)

The following two examples describe experiments in which the observations are random
sums of random variables.

Example 6.7 At a bus terminal, count the number of people arriving on buses during one minute. If
the number of people on the i th bus is Ki and the number of arriving buses is N , then
the number of people arriving during the minute is

R = K1 + · · · + KN . (6.56)

In general, the number N of buses that arrive is a random variable. Therefore, R is a
random sum of random variables.

Example 6.8 Count the number N of data packets transmitted over a communications link in one
minute. Suppose each packet is successfully decoded with probability p, independent
of the decoding of any other packet. The number of successfully decoded packets in
the one-minute span is

R = X1 + · · · + X N . (6.57)

where Xi is 1 if the i th packet is decoded correctly and 0 otherwise. Because the
number N of packets transmitted is random, R is not the usual binomial random
variable.

In the preceding examples we can use the methods of Chapter 4 to find the joint PMF
PN,R (n, r ). However, we are not able to find a simple closed form expression for the PMF
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PR(r). On the other hand, we see in the next theorem that it is possible to express the
probability model of R as a formula for the moment generating function φR(s).

Theorem 6.12 Let {X1, X2, . . .} be a collection of iid random variables, each with MGF φX (s), and let N
be a nonnegative integer-valued random variable that is independent of {X1, X2, . . .}. The
random sum R = X1 + · · · + X N has moment generating function

φR(s) = φN (ln φX (s)).

Proof To find φR(s) = E[es R], we first find the conditional expected value E[es R |N = n]. Because
this expected value is a function of n, it is a random variable. Theorem 4.26 states that φR(s) is the
expected value, with respect to N , ofE[es R |N = n]:

φR(s) =
∞∑

n=0

E
[
es R |N = n

]
PN (n) =

∞∑
n=0

E
[
es(X1+···+X N )|N = n

]
PN (n) . (6.58)

Because the Xi are independent of N ,

E
[
es(X1+···+X N )|N = n

]
= E

[
es(X1+···+Xn)

]
= E

[
esW

]
= φW (s). (6.59)

In Equation (6.58), W = X1 + · · · + Xn . From Theorem 6.8, we know that φW (s) = [φX (s)]n ,
implying

φR(s) =
∞∑

n=0

[φX (s)]n PN (n) . (6.60)

We observe that we can write [φX (s)]n = [eln φX (s)]n = e[ln φX (s)]n . This implies

φR(s) =
∞∑

n=0

e[ln φX (s)]n PN (n) . (6.61)

Recognizing that this sum has the same form as the sum in Equation (6.27), we infer that the sum is
φN (s) evaluated at s = ln φX (s). Therefore, φR(s) = φN (ln φX (s)).

In the following example, we find the MGF of a random sum and then transform it to the
PMF.

Example 6.9 The number of pages N in a fax transmission has a geometric PMF with expected
value 1/q = 4. The number of bits K in a fax page also has a geometric distribution
with expected value 1/p = 105 bits, independent of the number of bits in any other
page and independent of the number of pages. Find the MGF and the PMF of B, the
total number of bits in a fax transmission.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
When the i th page has Ki bits, the total number of bits is the random sum B =
K1 + · · · + KN . Thus φB(s) = φN (ln φK (s)). From Table 6.1,

φN (s) = qes

1 − (1 − q)es , φK (s) = pes

1 − (1 − p)es . (6.62)

To calculate φB(s), we substitute ln φK (s) for every occurrence of s in φN (s). Equiva-
lently, we can substitute φK (s) for every occurrence of es in φN (s). This substitution
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yields

φB (s) =
q
(

pes

1−(1−p)es

)
1 − (1 − q)

(
pes

1−(1−p)es

) = pqes

1 − (1 − pq)es . (6.63)

By comparing φK (s) and φB (s), we see that B has the MGF of a geometric (pq =
2.5 × 10−5) random variable with expected value 1/(pq) = 400,000 bits. Therefore, B
has the geometric PMF

PB (b) =
{

pq(1 − pq)b−1 b = 1, 2, . . . ,

0 otherwise,
(6.64)

Using Theorem 6.12, we can take derivatives of φN (ln φX (s)) to find simple expressions
for the expected value and variance of R.

Theorem 6.13 For the random sum of iid random variables R = X1 + · · · + X N ,

E [R] = E [N] E [X] , Var[R] = E [N] Var[X] + Var[N] (E [X])2 .

Proof By the chain rule for derivatives,

φ′
R(s) = φ′

N (ln φX (s))
φ′

X (s)

φX (s)
. (6.65)

Since φX (0) = 1, φ′
N (0) = E[N], and φ′

X (0) = E[X], evaluating the equation at s = 0 yields

E [R] = φ′
R(0) = φ′

N (0)
φ′

X (0)

φX (0)
= E [N] E [X] . (6.66)

For the second derivative of φX (s), we have

φ′′
R(s) = φ′′

N (ln φX (s))

(
φ′

X (s)

φX (s)

)2

+ φ′
N (ln φX (s))

φX (s)φ′′
X (s) − [

φ′
X (s)

]2

[φX (s)]2
. (6.67)

The value of this derivative at s = 0 is

E
[

R2
]

= E
[

N2
]
μ2

X + E [N]
(

E
[

X2
]

− μ2
X

)
. (6.68)

Subtracting (E[R])2 = (μN μX )2 from both sides of this equation completes the proof.

We observe that Var[R] contains two terms: the first term, μN Var[X], results from the
randomness of X , while the second term, Var[N]μ2

X , is a consequence of the randomness
of N . To see this, consider these two cases.

• Suppose N is deterministic such that N = n every time. In this case, μN = n and
Var[N] = 0. The random sum R is an ordinary deterministic sum R = X1 +· · ·+ Xn

and Var[R] = n Var[X].
• Suppose N is random, but each Xi is a deterministic constant x . In this instance,

μX = x and Var[X] = 0. Moreover, the random sum becomes R = Nx and
Var[R] = x2 Var[N].
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We emphasize that Theorems 6.12 and 6.13 require that N be independent of the random
variables X1, X2, . . .. That is, the number of terms in the random sum cannot depend on
the actual values of the terms in the sum.

Example 6.10 Let X1, X2 . . . be a sequence of independent Gaussian (100,10) random variables. If
K is a Poisson (1) random variable independent of X1, X2 . . ., find the expected value
and variance of R = X1 + · · · + X K .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The PDF and MGF of R are complicated. However, Theorem 6.13 simplifies the
calculation of the expected value and the variance. From Appendix A, we observe
that a Poisson (1) random variable also has variance 1. Thus

E [R] = E [X] E [K ] = 100, (6.69)

and

Var[R] = E [K ] Var[X] + Var[K ] (E [X])2 = 100 + (100)2 = 10, 100. (6.70)

We see that most of the variance is contributed by the randomness in K . This is
true because K is very likely to take on the values 0 and 1, and those two choices
dramatically affect the sum.

Quiz 6.5 Let X1, X2, . . . denote a sequence of iid random variables with exponential PDF

fX (x) =
{

e−x x ≥ 0,

0 otherwise.
(6.71)

Let N denote a geometric (1/5) random variable.

(1) What is the MGF of R = X1 + · · · + X N ?

(2) Find the PDF of R.

6.6 Central Limit Theorem

Probability theory provides us with tools for interpreting observed data. In many practical
situations, both discrete PMFs and continuous PDFs approximately follow a bell-shaped
curve. For example, Figure 6.1 shows the binomial (n, 1/2) PMF for n = 5, n = 10 and
n = 20. We see that as n gets larger, the PMF more closely resembles a bell-shaped curve.
Recall that in Section 3.5, we encountered a bell-shaped curve as the PDF of a Gaussian
random variable. The central limit theorem explains why so many practical phenomena
produce data that can be modeled as Gaussian random variables.

We will use the central limit theorem to estimate probabilities associated with the iid
sum Wn = X1 + · · · + Xn . However, as n approaches infinity, E[Wn] = nμX and
Var[Wn] = n Var[X] approach infinity, which makes it difficult to make a mathematical
statement about the convergence of the CDF FWn (w). Hence our formal statement of the

 



258 CHAPTER 6 SUMS OF RANDOM VARIABLES

0 5
0

0.2

0.4

x

P
X
(x

)

0 5 10
0

0.2

0.4

x

P
X
(x

)

0 10 20
0

0.1

0.2

x

P
X
(x

)

n = 5 n = 10 n = 20

Figure 6.1 The PMF of the X , the number of heads in n coin flips for n = 5, 10, 20. As n increases,
the PMF more closely resembles a bell-shaped curve.

central limit theorem will be in terms of the standardized random variable

Zn =
∑n

i=1 Xi − nμX√
nσ 2

X

. (6.72)

We say the sum Zn is standardized since for all n

E [Zn] = 0, Var[Zn] = 1. (6.73)

Theorem 6.14 Central Limit Theorem
Given X1, X2, . . ., a sequence of iid random variables with expected value μX and variance
σ 2

X , the CDF of Zn = (
∑n

i=1 Xi − nμX )/
√

nσ 2
X has the property

lim
n→∞ FZn (z) = �(z).

The proof of this theorem is beyond the scope of this text. In addition to Theorem 6.14,
there are other central limit theorems, each with its own statement of the sums Wn . One
remarkable aspect of Theorem 6.14 and its relatives is the fact that there are no restrictions
on the nature of the random variables Xi in the sum. They can be continuous, discrete, or
mixed. In all cases the CDF of their sum more and more resembles a Gaussian CDF as the
number of terms in the sum increases. Some versions of the central limit theorem apply to
sums of sequences Xi that are not even iid.

To use the central limit theorem, we observe that we can express the iid sum Wn =
X1 + · · · + Xn as

Wn =
√

nσ 2
X Zn + nμX . (6.74)

The CDF of Wn can be expressed in terms of the CDF of Zn as

FWn (w) = P
[√

nσ 2
X Zn + nμX ≤ w

]
= FZn

(
w − nμX√

nσ 2
X

)
. (6.75)

For large n, the central limit theorem says that FZn (z) ≈ �(z). This approximation is the
basis for practical applications of the central limit theorem.
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Figure 6.2 The PDF of Wn , the sum of n uniform (0, 1) random variables, and the corresponding
central limit theorem approximation for n = 1, 2, 3, 4. The solid — line denotes the PDF fWn (w),
while the − · − line denotes the Gaussian approximation.

Definition 6.2 Central Limit Theorem Approximation
Let Wn = X1 + · · · + Xn be the sum of n iid random variables, each with E[X] = μX and
Var[X] = σ 2

X . The central limit theorem approximation to the CDF of Wn is

FWn (w) ≈ �

(
w − nμX√

nσ 2
X

)
.

We often call Definition 6.2 a Gaussian approximation for Wn .

Example 6.11 To gain some intuition into the central limit theorem, consider a sequence of iid con-
tinuous random variables Xi , where each random variable is uniform (0,1). Let

Wn = X1 + · · · + Xn . (6.76)

Recall that E[X] = 0.5 and Var[X] = 1/12. Therefore, Wn has expected value E[Wn] =
n/2 and variance n/12. The central limit theorem says that the CDF of Wn should
approach a Gaussian CDF with the same expected value and variance. Moreover,
since Wn is a continuous random variable, we would also expect that the PDF of Wn
would converge to a Gaussian PDF. In Figure 6.2, we compare the PDF of Wn to the
PDF of a Gaussian random variable with the same expected value and variance. First,
W1 is a uniform random variable with the rectangular PDF shown in Figure 6.2(a).
This figure also shows the PDF of W1, a Gaussian random variable with expected
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Figure 6.3 The binomial (n, p) CDF and the corresponding central limit theorem approximation
for n = 4, 8, 16, 32, and p = 1/2.

value μ = 0.5 and variance σ 2 = 1/12. Here the PDFs are very dissimilar. When we
consider n = 2, we have the situation in Figure 6.2(b). The PDF of W2 is a triangle with
expected value 1 and variance 2/12. The figure shows the corresponding Gaussian
PDF. The following figures show the PDFs of W3, . . . , W6. The convergence to a bell
shape is apparent.

Example 6.12 Now suppose Wn = X1 + · · · + Xn is a sum of independent Bernoulli (p) random
variables. We know that Wn has the binomial PMF

PWn (w) =
(

n

w

)
pw(1 − p)n−w. (6.77)

No matter how large n becomes, Wn is always a discrete random variable and would
have a PDF consisting of impulses. However, the central limit theorem says that the
CDF of Wn converges to a Gaussian CDF. Figure 6.3 demonstrates the convergence
of the sequence of binomial CDFs to a Gaussian CDF for p = 1/2 and four values
of n, the number of Bernoulli random variables that are added to produce a binomial
random variable. For n ≥ 32, Figure 6.3 suggests that approximations based on the
Gaussian distribution are very accurate.

Quiz 6.6 The random variable X milliseconds is the total access time (waiting time + read time) to
get one block of information from a computer disk. X is uniformly distributed between 0 and
12 milliseconds. Before performing a certain task, the computer must access 12 different
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blocks of information from the disk. (Access times for different blocks are independent of one
another.) The total access time for all the information is a random variable A milliseconds.

(1) What is E[X], the expected value of the access time?

(2) What is Var[X], the variance of the access time?

(3) What is E[A], the expected value of the total access time?

(4) What is σA, the standard deviation of the total access time?

(5) Use the central limit theorem to estimate P[A > 75 ms], the probability that the total
access time exceeds 75 ms.

(6) Use the central limit theorem to estimate P[A < 48 ms], the probability that the total
access time is less than 48 ms.

6.7 Applications of the Central Limit Theorem

In addition to helping us understand why we observe bell-shaped curves in so many situ-
ations, the central limit theorem makes it possible to perform quick, accurate calculations
that would otherwise be extremely complex and time consuming. In these calculations,
the random variable of interest is a sum of other random variables, and we calculate the
probabilities of events by referring to the corresponding Gaussian random variable. In the
following example, the random variable of interest is the average of eight iid uniform random
variables. The expected value and variance of the average are easy to obtain. However, a
complete probability model is extremely complex (it consists of segments of eighth-order
polynomials).

Example 6.13 A compact disc (CD) contains digitized samples of an acoustic waveform. In a CD
player with a “one bit digital to analog converter,” each digital sample is represented
to an accuracy of ±0.5 mV. The CD player “oversamples” the waveform by making
eight independent measurements corresponding to each sample. The CD player
obtains a waveform sample by calculating the average (sample mean) of the eight
measurements. What is the probability that the error in the waveform sample is greater
than 0.1 mV?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The measurements X1, X2, . . . , X8 all have a uniform distribution between v −0.5 mV
and v + 0.5 mV, where v mV is the exact value of the waveform sample. The compact
disk player produces the output U = W8/8, where

W8 =
8∑

i=1

Xi . (6.78)

To find P[|U − v| > 0.1] exactly, we would have to find an exact probability model for
W8, either by computing an eightfold convolution of the uniform PDF of Xi or by using
the moment generating function. Either way, the process is extremely complex. Al-
ternatively, we can use the central limit theorem to model W8 as a Gaussian random
variable with E[W8] = 8μX = 8v mV and variance Var[W8] = 8 Var[X] = 8/12.
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Therefore, U is approximately Gaussian with E[U ] = E[W8]/8 = v and variance
Var[W8]/64 = 1/96. Finally, the error, U − v in the output waveform sample is approx-
imately Gaussian with expected value 0 and variance 1/96. It follows that

P [|U − v| > 0.1] = 2
[
1 − �

(
0.1/

√
1/96

)]
= 0.3272. (6.79)

The central limit theorem is particularly useful in calculating events related to binomial
random variables. Figure 6.3 from Example 6.12 indicates how the CDF of a sum of n
Bernoulli random variables converges to a Gaussian CDF. When n is very high, as in the
next two examples, probabilities of events of interest are sums of thousands of terms of a
binomial CDF. By contrast, each of the Gaussian approximations requires looking up only
one value of the Gaussian CDF �(x).

Example 6.14 A modem transmits one million bits. Each bit is 0 or 1 independently with equal
probability. Estimate the probability of at least 502,000 ones.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let Xi be the value of bit i (either 0 or 1). The number of ones in one million bits is W =∑106

i=1 Xi . Because Xi is a Bernoulli (0.5) random variable, E[Xi ] = 0.5 and Var[Xi ] =
0.25 for all i . Note that E[W ] = 106 E[Xi ] = 500,000 and Var[W ] = 106 Var[Xi ] =
250,000. Therefore, σW = 500. By the central limit theorem approximation,

P [W ≥ 502,000] = 1 − P [W ≤ 502,000] (6.80)

≈ 1 − �

(
502,000 − 500,000

500

)
= 1 − �(4). (6.81)

Using Table 3.1, we observe that 1 − �(4) = Q(4) = 3.17 × 10−5.

Example 6.15 Transmit one million bits. Let A denote the event that there are at least 499,000 ones
but no more than 501,000 ones. What is P[A]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As in Example 6.14, E[W ] = 500,000 and σW = 500. By the central limit theorem
approximation,

P [A] = P [W ≤ 501,000] − P [W < 499,000] (6.82)

≈ �

(
501,000 − 500,000

500

)
− �

(
499,000 − 500,000

500

)
(6.83)

= �(2) − �(−2) = 0.9544 (6.84)

These examples of using a Gaussian approximation to a binomial probability model contain
events that consist of thousands of outcomes. When the events of interest contain a small
number of outcomes, the accuracy of the approximation can be improved by accounting
for the fact that the Gaussian random variable is continuous whereas the corresponding
binomial random variable is discrete.

In fact, using a Gaussian approximation to a discrete random variable is fairly common.
We recall that the sum of n Bernoulli random variables is binomial, the sum of n geometric
random variables is Pascal, and the sum of n Bernoulli random variables (each with success
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probability λ/n) approaches a Poisson random variable in the limit as n → ∞. Thus a
Gaussian approximation can be accurate for a random variable K that is binomial, Pascal,
or Poisson.

In general, suppose K is a discrete random variable and that the range of K is SK ⊂
{nτ |n = 0,±1,±2 . . .}. For example, when K is binomial, Poisson, or Pascal, τ = 1 and
SK = {0, 1, 2 . . .}. We wish to estimate the probability of the event A = {k1 ≤ K ≤ k2},
where k1 and k2 are integers. A Gaussian approximation to P[A] is often poor when k1 and
k2 are close to one another. In this case, we can improve our approximation by accounting
for the discrete nature of K . Consider the Gaussian random variable, X with expected value
E[K ] and variance Var[K ]. An accurate approximation to the probability of the event A is

P [A] ≈ P [k1 − τ/2 ≤ X ≤ k2 + τ/2] (6.85)

= �

(
k2 + τ/2 − E [K ]√

Var[K ]
)

− �

(
k1 − τ/2 − E [K ]√

Var[K ]
)

. (6.86)

When K is a binomial random variable for n trials and success probability p, E[K ] = np,
and Var[K ] = np(1 − p). The formula that corresponds to this statement is known as the
De Moivre–Laplace formula. It corresponds to the formula for P[A] with τ = 1.

Definition 6.3 De Moivre–Laplace Formula
For a binomial (n, p) random variable K ,

P [k1 ≤ K ≤ k2] ≈ �

(
k2 + 0.5 − np√

np(1 − p)

)
− �

(
k1 − 0.5 − np√

np(1 − p)

)
.

To appreciate why the ±0.5 terms increase the accuracy of approximation, consider the
following simple but dramatic example in which k1 = k2.

Example 6.16 Let K be a binomial (n = 20, p = 0.4) random variable. What is P[K = 8]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since E[K ] = np = 8 and Var[K ] = np(1 − p) = 4.8, the central limit theorem
approximation to K is a Gaussian random variable X with E[X] = 8 and Var[X] = 4.8.
Because X is a continuous random variable, P[X = 8] = 0, a useless approximation
to P[K = 8]. On the other hand, the De Moivre–Laplace formula produces

P [8 ≤ K ≤ 8] ≈ P [7.5 ≤ X ≤ 8.5] (6.87)

= �

(
0.5√
4.8

)
− �

(−0.5√
4.8

)
= 0.1803. (6.88)

The exact value is
(20

8
)
(0.4)8(1 − 0.4)12 = 0.1797.

Example 6.17 K is the number of heads in 100 flips of a fair coin. What is P[50 ≤ K ≤ 51]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since K is a binomial (n = 100, p = 1/2) random variable,

P [50 ≤ K ≤ 51] = PK (50) + PK (51) (6.89)

=
(

100

50

)(
1

2

)100
+

(
100

51

)(
1

2

)100
= 0.1576. (6.90)
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Since E[K ] = 50 and σK = √
np(1 − p) = 5, the ordinary central limit theorem

approximation produces

P [50 ≤ K ≤ 51] ≈ �

(
51 − 50

5

)
− �

(
50 − 50

5

)
= 0.0793. (6.91)

This approximation error of roughly 50% occurs because the ordinary central limit
theorem approximation ignores the fact that the discrete random variable K has two
probability masses in an interval of length 1. As we see next, the De Moivre–Laplace
approximation is far more accurate.

P [50 ≤ K ≤ 51] ≈ �

(
51 + 0.5 − 50

5

)
− �

(
50 − 0.5 − 50

5

)
(6.92)

= �(0.3) − �(−0.1) = 0.1577. (6.93)

Although the central limit theorem approximation provides a useful means of calculating
events related to complicated probability models, it has to be used with caution. When the
events of interest are confined to outcomes at the edge of the range of a random variable,
the central limit theorem approximation can be quite inaccurate. In all of the examples in
this section, the random variable of interest has finite range. By contrast, the corresponding
Gaussian models have finite probabilities for any range of numbers between −∞ and ∞.
Thus in Example 6.13, P[U − v > 0.5] = 0, while the Gaussian approximation suggests
that P[U − v > 0.5] = Q(0.5/

√
1/96) ≈ 5 × 10−7. Although this is a low probability,

there are many applications in which the events of interest have very low probabilities
or probabilities very close to 1. In these applications, it is necessary to resort to more
complicated methods than a central limit theorem approximation to obtain useful results.
In particular, it is often desirable to provide guarantees in the form of an upper bound rather
than the approximation offered by the central limit theorem. In the next section, we describe
one such method based on the moment generating function.

Quiz 6.7 Telephone calls can be classified as voice (V ) if someone is speaking or data (D) if there
is a modem or fax transmission. Based on a lot of observations taken by the telephone
company, we have the following probability model: P[V ] = 3/4, P[D] = 1/4. Data calls
and voice calls occur independently of one another. The random variable Kn is the number
of voice calls in a collection of n phone calls.

(1) What is E[K48], the expected number of voice calls in a set of 48 calls?

(2) What is σK48 , the standard deviation of the number of voice calls in a set of 48 calls?

(3) Use the central limit theorem to estimate P[30 ≤ K48 ≤ 42], the probability of be-
tween 30 and 42 voice calls in a set of 48 calls.

(4) Use the De Moivre–Laplace formula to estimate P[30 ≤ K48 ≤ 42].
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6.8 The Chernoff Bound

We now describe an inequality called the Chernoff bound. By referring to the MGF of a
random variable, the Chernoff bound provides a way to guarantee that the probability of an
unusual event is small.

Theorem 6.15 Chernoff Bound
For an arbitrary random variable X and a constant c,

P [X ≥ c] ≤ min
s≥0

e−scφX (s).

Proof In terms of the unit step function, u(x), we observe that

P [X ≥ c] =
∫ ∞

c
fX (x) dx =

∫ ∞
−∞

u(x − c) fX (x) dx. (6.94)

For all s ≥ 0, u(x − c) ≤ es(x−c). This implies

P [X ≥ c] ≤
∫ ∞
−∞

es(x−c) fX (x) dx = e−sc
∫ ∞
−∞

esx fX (x) dx = e−scφX (s). (6.95)

This inequality is true for any s ≥ 0. Hence the upper bound must hold when we choose s to minimize
e−scφX (s).

The Chernoff bound can be applied to any random variable. However, for small values
of c, e−scφX (s) will be minimized by a negative value of s. In this case, the minimizing
nonnegative s is s = 0 and the Chernoff bound gives the trivial answer P[X ≥ c] ≤ 1.

Example 6.18 If the height X , measured in feet, of a randomly chosen adult is a Gaussian (5.5, 1)
random variable, use the Chernoff bound to find an upper bound on P[X ≥ 11].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Table 6.1 the MGF of X is

φX (s) = e(11s+s2)/2. (6.96)

Thus the Chernoff bound is

P [X ≥ 11] ≤ min
s≥0

e−11se(11s+s2)/2 = min
s≥0

e(s2−11s)/2. (6.97)

To find the minimizing s, it is sufficient to choose s to minimize h(s) = s2 −11s. Setting
the derivative dh(s)/ds = 2s − 11 = 0 yields s = 5.5. Applying s = 5.5 to the bound
yields

P [X ≥ 11] ≤ e(s2−11s)/2
∣∣∣
s=5.5

= e−(5.5)2/2 = 2.7 × 10−7. (6.98)

Based on our model for adult heights, the actual probability (not shown in Table 3.2)
is Q(11 − 5.5) = 1.90 × 10−8.

Even though the Chernoff bound is 14 times higher than the actual probability, it still
conveys the information that the chance of observing someone over 11 feet tall is ex-
tremely unlikely. Simpler approximations in Chapter 7 provide bounds of 1/2 and 1/30 for
P[X ≥ 11].
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Quiz 6.8 In a subway station, there are exactly enough customers on the platform to fill three trains.
The arrival time of the nth train is X1 + · · · + Xn where X1, X2, . . . are iid exponential
random variables with E[Xi ] = 2 minutes. Let W equal the time required to serve the
waiting customers. For P[W > 20], the probability W is over twenty minutes,
(1) Use the central limit theorem to find

an estimate.
(2) Use the Chernoff bound to find an

upper bound.

(3) Use Theorem 3.11 for an exact cal-
culation.

6.9 Matlab

As in Sections 4.12 and 5.8, we illustrate two ways of using Matlab to study random
vectors. We first present examples of programs that calculate values of probability functions,
in this case the PMF of the sums of independent discrete random variables. Then we present
a program that generates sample values of the Gaussian (0,1) random variable without using
the built-in function randn.

Probability Functions

The following example produces a Matlab program for calculating the convolution of
two PMFs.

Example 6.19 X1 and X2 are independent discrete random variables with PMFs

PX1 (x) =
{

0.04 x = 1, 2, . . . , 25,

0 otherwise,
(6.99)

PX2 (x) =
{

x/550 x = 10, 20, . . . , 100,

0 otherwise.
(6.100)

What is the PMF of W = X1 + X2?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

%sumx1x2.m
sx1=(1:25);
px1=0.04*ones(1,25);
sx2=10*(1:10);px2=sx2/550;
[SX1,SX2]=ndgrid(sx1,sx2);
[PX1,PX2]=ndgrid(px1,px2);
SW=SX1+SX2;PW=PX1.*PX2;
sw=unique(SW);
pw=finitepmf(SW,PW,sw);
pmfplot(sw,pw,...

’\itw’,’\itP_W(w)’);

The script sumx1x2.m is a solution. As in
Example 4.27, we use ndgrid to gener-
ate a grid for all possible pairs of X1 and
X2. The matrix SW holds the sum x1 + x2
for each possible pair x1, x2. The probabil-
ity PX1,X2(x1, x2) of each such pair is in the
matrix PW. Lastly, for each unique w gen-
erated by pairs x1 + x2, the finitepmf
function finds the probability PW (w). The
graph of PW (w) appears in Figure 6.4.
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Figure 6.4 The PMF PW (w) for Example 6.19.

The preceding technique extends directly to n independent finite random variables
X1, . . . , Xn because the ndgrid function can be employed to generate n-dimensional
grids. For example, the sum of three random variables can be calculated via

[SX1,SX2,SX3]=ndgrid(sx1,sx2,sx3);
[PX1,PX2,PX3]=ndgrid(px1,px2,px2);
SW=SX1+SX2+SX3;
PW=PX1.*PX2.*PX3.*PX3;
sw=unique(SW);
pw=finitepmf(SW,PW,sw);

This technique suffers from the disadvantage that it can generate large matrices. For n
random variables such that Xi takes on ni possible distinct values, SW and PW are square
matrices of size n1 × n2 × · · · nm . A more efficient technique is to iteratively calculate
the PMF of W2 = X1 + X2 followed by W3 = W2 + X3, W4 = W3 + X3. At each step,
extracting only the unique values in the range SWn can economize significantly on memory
and computation time.

Sample Values of Gaussian Random Variables

The central limit theorem suggests a simple way to generate samples of the Gaussian (0,1)
random variable in computers or calculators without built-in functions like randn. The
technique relies on the observation that the sum of 12 independent uniform (0,1) random
variables Ui has expected value 12E[Ui ] = 6 and variance 12 Var[Ui ] = 1. According to
the central limit theorem, X = ∑12

i=1 Ui − 6 is approximately Gaussian (0,1).

Example 6.20 Write a Matlab program to generate m = 10,000 samples of the random variable
X = ∑12

i=1 Ui − 6. Use the data to find the relative frequencies of the following events
{X ≤ T } for T = −3, −2 . . . , 3. Calculate the probabilities of these events when X is
a Gaussian (0, 1) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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» uniform12(10000);
ans =
-3.0000 -2.0000 -1.0000 0 1.0000 2.0000 3.0000
0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987
0.0005 0.0203 0.1605 0.5027 0.8393 0.9781 0.9986

» uniform12(10000);
ans =
-3.0000 -2.0000 -1.0000 0 1.0000 2.0000 3.0000
0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987
0.0015 0.0237 0.1697 0.5064 0.8400 0.9778 0.9993

Figure 6.5 Two sample runs of uniform12.m.

function FX=uniform12(m);
T=(-3:3);
x=sum(rand(12,m))-6;
FX=(count(x,T)/m)’;
CDF=phi(T);
[T;CDF;FX]

In uniform12(m), x holds the m samples
of X . The function n=count(x,T) returns
n(i) as the number of elements of x less
than or equal to T(i). The output is a three-
row table: T on the first row, the true prob-
abilities P[X ≤ T ] = �(T ) second, and the
relative frequencies third.

Two sample runs of uniform12 are shown in Figure 6.5. We see that the relative
frequencies and the probabilities diverge as T moves further from zero. In fact this
program will never produce a value of |X | > 6, no matter how many times it runs. By
contrast, Q(6) = 9.9 × 10−10. This suggests that in a set of one billion independent
samples of the Gaussian (0, 1) random variable, we can expect two samples with
|X | > 6, one sample with X < −6, and one sample with X > 6.

Quiz 6.9 Let X be a binomial (100, 0.5) random variable and let Y be a discrete uniform (0, 100)

random variable. Calculate and graph the PMF of W = X + Y .

Chapter Summary

Many probability problems involve sums of independent random variables. This chapter
presents techniques for analyzing probability models of independent sums.

• The expected value of a sum of any random variables is the sum of the expected values.

• The variance of the sum of independent random variables is the sum of the variances.
If the random variables in the sum are not independent, then the variance of the sum is
the sum of all the covariances.

• The PDF of the sum of independent random variables is the convolution of the individual
PDFs.

• The moment generating function (MGF) provides a transform domain method for cal-
culating the moments of a random variable.
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• The MGF of the sum of independent random variables is the product of the individual
MGFs.

• Certain sums of iid random variables are familiar random variables themselves. When
W = X1 + · · · + Xn is a sum of n iid random variables:

– If Xi is Bernoulli (p), W is binomial (n, p).

– If Xi is Poisson (α), W is Poisson (nα).

– If Xi is geometric (p), W is Pascal (n, p).

– If Xi is exponential (λ), W is Erlang (n, λ).

– If Xi is Gaussian (μ, σ ), W is Gaussian (nμ,
√

nσ).

• A random sum of random variables R = X1 + · · · + RN occurs when N , the number
of terms in a sum, is a random variable. The most tractable case occurs when N is
independent of each Xi and the Xi are iid. For this case, there are concise formulas for
the MGF, the expected value, and the variance of R.

• The central limit theorem states that the CDF of the the sum of n independent random
variables converges to a Gaussian CDF as n approaches infinity.

• A consequence of the central limit theorem is that we often approximate Wn , a finite sum
of n random variables, by a Gaussian random variable with the same expected value and
variance as Wn .

• The De Moivre–Laplace formula is an improved central limit theorem approximation
for binomial random variables.

• Further Reading: [Dur94] contains a concise, rigorous presentation and proof of the
central limit theorem.

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

6.1.1• Flip a biased coin 100 times. On each flip, P[H ] =
p. Let Xi denote the number of heads that occur on
flip i . What is PX33 (x)? Are X1 and X2 indepen-
dent? Define

Y = X1 + X2 + · · · + X100.

Describe Y in words. What is PY (y)? Find E[Y ]
and Var[Y ].

6.1.2• Let X1 and X2 denote a sequence of indepen-
dent samples of a random variable X with variance
Var[X].
(a) What is E[X1 − X2], the expected difference

between two outcomes?

(b) What is Var[X1 − X2], the variance of the dif-
ference between two outcomes?

6.1.3
�

A radio program gives concert tickets to the fourth
caller with the right answer to a question. Of the
people who call, 25% know the answer. Phone
calls are independent of one another. The random
variable Nr indicates the number of phone calls
taken when the r th correct answer arrives. (If the
fourth correct answer arrives on the eighth call, then
N4 = 8.)

(a) What is the PMF of N1, the number of phone
calls needed to obtain the first correct answer?

(b) What is E[N1], the expected number of phone
calls needed to obtain the first correct answer?

(c) What is the PMF of N4, the number of phone
calls needed to obtain the fourth correct answer?
Hint: See Example 2.15.
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(d) What is E[N4]. Hint: N4 can be written as the
independent sum N4 = K1 + K2 + K3 + K4,
where each Ki is distributed identically to N1.

6.1.4
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

2 x ≥ 0, y ≥ 0, x + y ≤ 1,

0 otherwise.

What is the variance of W = X + Y ?

6.1.5
�

The input to a digital filter is a random sequence
. . . , X−1, X0, X1, . . . with E[Xi ] = 0 and autoco-
variance function

CX [m, k] =
⎧⎨
⎩

1 k = 0,

1/4 |k| = 1,

0 otherwise.

A smoothing filter produces the output sequence

Yn = (Xn + Xn−1 + Xn−2)/3

Find the following properties of the output se-
quence: E[Yn], Var[Yn].

6.2.1
�

Find the PDF of W = X + Y when X and Y have
the joint PDF

fX,Y (x, y) =
{

2 0 ≤ x ≤ y ≤ 1,

0 otherwise.

6.2.2
�

Find the PDF of W = X + Y when X and Y have
the joint PDF

fX,Y (x, y) =
{

1 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

6.2.3
�

Random variables X and Y are independent ex-
ponential random variables with expected values
E[X] = 1/λ and E[Y ] = 1/μ. If μ �= λ, what
is the PDF of W = X + Y ? If μ = λ, what is
fW (w)?

6.2.4
�

Random variables X and Y have joint PDF

fX,Y (x, y) =
{

8xy 0 ≤ y ≤ x ≤ 1,

0 otherwise.

What is the PDF of W = X + Y ?

6.2.5
�

Continuous random variables X and Y have joint
PDF fX,Y (x, y). Show that W = X − Y has PDF

fW (w) =
∫ ∞
−∞

fX,Y (y + w, y) dy.

Use a variable substitution to show

fW (w) =
∫ ∞
−∞

fX,Y (x, x − w) dx.

6.2.6
�

In this problem we show directly that the sum of
independent Poisson random variables is Poisson.
Let J and K be independent Poisson random vari-
ables with expected values α and β respectively, and
show that N = J + K is a Poisson random variable
with expected value α + β. Hint: Show that

PN (n) =
n∑

m=0

PK (m) PJ (n − m) ,

and then simplify the summation by extracting the
sum of a binomial PMF over all possible values.

6.3.1• For a constant a > 0, a Laplace random variable X
has PDF

fX (x) = a

2
e−a|x |, −∞ < x < ∞.

Calculate the moment generating function φX (s).

6.3.2
�

Random variables J and K have the joint probabil-
ity mass function

PJ,K ( j, k) k = −1 k = 0 k = 1
j = −2 0.42 0.12 0.06
j = −1 0.28 0.08 0.04

(a) What is the moment generating function of J ?

(b) What is the moment generating function of K ?

(c) What is the probability mass function of M =
J + K ?

(d) What is E[M4]?

6.3.3
�

Continuous random variable X has a uniform dis-
tribution over [a, b]. Find the MGF φX (s). Use the
MGF to calculate the first and second moments of
X .

6.3.4
�

Let X be a Gaussian (0, σ ) random variable. Use
the moment generating function to show that

E[X] = 0, E[X2] = σ 2,

E[X3] = 0, E[X4] = 3σ 4.
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Let Y be a Gaussian (μ, σ ) random variable. Use
the moments of X to show that

E
[
Y 2

]
= σ 2 + μ2,

E
[
Y 3

]
= 3μσ 2 + μ3,

E
[
Y 4

]
= 3σ 4 + 6μσ 2 + μ4.

6.3.5
��

Random variable K has a discrete uniform (1, n)

PMF. Use the MGF φK (s) to find E[K ] and E[K 2].
Use the first and second moments of K to derive
well-known expressions for the sums

∑n
k=1 k and∑n

k=1 k2.

6.4.1• N is a binomial (n = 100, p = 0.4) random var-
iable. M is a binomial (n = 50, p = 0.4) random
variable. Given that M and N are independent, what
is the PMF of L = M + N?

6.4.2• Random variable Y has the moment generating
function φY (s) = 1/(1 − s). Random variable
V has the moment generating function φV (s) =
1/(1− s)4. Y and V are independent. W = Y + V .

(a) What are E[Y ], E[Y 2], and E[Y 3]?
(b) What is E[W 2]?

6.4.3• Let K1, K2, . . . denote a sequence of iid Bernoulli
(p) random variables. Let M = K1 + · · · + Kn .

(a) Find the MGF φK (s).

(b) Find the MGF φM (s).

(c) Use the MGF φM (s) to find the expected value
E[M] and the variance Var[M].

6.4.4• Suppose you participate in a chess tournament in
which you play n games. Since you are a very aver-
age player, each game is equally likely to be a win,
a loss, or a tie. You collect 2 points for each win, 1
point for each tie, and 0 points for each loss. The
outcome of each game is independent of the out-
come of every other game. Let Xi be the number of
points you earn for game i and let Y equal the total
number of points earned over the n games.

(a) Find the moment generating functions φXi (s)
and φY (s).

(b) Find E[Y ] and Var[Y ].
6.4.5• At time t = 0, you begin counting the arrivals of

buses at a depot. The number of buses Ki that arrive
between time i − 1 minutes and time i minutes, has

the Poisson PMF

PKi (k) =
{

2k e−2/k! k = 0, 1, 2, . . . ,

0 otherwise.

and K1, K2, . . . are an iid random sequence. Let
Ri = K1 + K2 + · · · + Ki denote the number of
buses arriving in the first i minutes.

(a) What is the moment generating functionφKi (s)?

(b) Find the MGF φRi (s).

(c) Find the PMF PRi (r). Hint: Compare φRi (s)
and φKi (s).

(d) Find E[Ri ] and Var[Ri ].
6.4.6• Suppose that during the i th day of December, the

energy Xi stored by a solar collector is well mod-
eled by a Gaussian random variable with expected
value 32 − i/4 kW-hr and standard deviation of 10
kW-hr. Assuming the energy stored each day is in-
dependent of any other day, what is the PDF of Y ,
the total energy stored in the 31 days of December?

6.4.7
�

Let K1, K2, . . . denote independent samples of a
random variable K . Use the MGF of M = K1 +
· · · + Kn to prove that

(a) E[M] = nE[K ]
(b) E[M2] = n(n − 1)(E[K ])2 + nE[K 2]

6.5.1
�

Let X1, X2, . . . be a sequence of iid random vari-
ables each with exponential PDF

fX (x) =
{

λe−λx x ≥ 0,

0 otherwise.

(a) Find φX (s).

(b) Let K be a geometric random variable with PMF

PK (k) =
{

(1 − q)qk−1 k = 1, 2, . . . ,

0 otherwise.

Find the MGF and PDF of V = X1 +· · ·+ X K .

6.5.2
�

In any game, the number of passes N that Donovan
McNabb will throw has a Poisson distribution with
expected value μ = 30. Each pass is a completed
with probability q = 2/3, independent of any other
pass or the number of passes thrown. Let K equal
the number of completed passes McNabb throws in
a game. What are φK (s), E[K ], and Var[K ]? What
is the PMF PK (k)?

6.5.3
�

Suppose we flip a fair coin repeatedly. Let Xi equal
1 if flip i was heads (H) and 0 otherwise. Let N
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denote the number of flips needed until H has oc-
curred 100 times. Is N independent of the random
sequence X1, X2, . . .? Define Y = X1 +· · ·+ X N .
Is Y an ordinary random sum of random variables?
What is the PMF of Y ?

6.5.4
�

In any game, Donovan McNabb completes a num-
ber of passes K that is Poisson distributed with ex-
pected value α = 20. If NFL yardage were mea-
sured with greater care (as opposed to always being
rounded to the nearest yard), officials might dis-
cover that each completion results in a yardage gain
Y that has an exponential distribution with expected
value γ = 15 yards. Let V equal McNabb’s to-
tal passing yardage in a game. Find φV (s), E[V ],
Var[V ], and (if possible) the PDF fV (v).

6.5.5
�

This problem continues the lottery of Problem 2.7.8
in which each ticket has 6 randomly marked num-
bers out of 1, . . . , 46. A ticket is a winner if the six
marked numbers match 6 numbers drawn at random
at the end of a week. Suppose that following a week
in which the pot carried over was r dollars, the num-
ber of tickets sold in that week, K , has a Poisson
distribution with expected value r . What is the PMF
of the number of winning tickets? Hint: What is the
probability q that an arbitrary ticket is a winner?

6.5.6
�

Suppose X is a Gaussian (1, 1) random variable and
K is an independent discrete random variable with
PMF

PK (k) =
{

q(1 − q)k k = 0, 1, . . . ,

0 otherwise.

Let X1, X2, . . . denote a sequence of iid random
variables each with the same distribution as X .

(a) What is the MGF of K ?

(b) What is the MGF of R = X1 +· · ·+ X K ? Note
that R = 0 if K = 0.

(c) Find E[R] and Var[R].
6.5.7
��

Let X1, . . . , Xn denote a sequence of iid Bernoulli
(p) random variables and let K = X1+· · ·+Xn . In
addition, let M denote a binomial random variable,
independent of X1, . . . , Xn , with expected value
np. Do the random variables U = X1 + · · · + X K
and V = X1 + · · · + X M have the same expected
value? Hint: Be careful, U is not an ordinary
random sum of random variables.

6.5.8
��

Suppose you participate in a chess tournament in
which you play until you lose a game. Since you are
a very average player, each game is equally likely

to be a win, a loss, or a tie. You collect 2 points
for each win, 1 point for each tie, and 0 points for
each loss. The outcome of each game is indepen-
dent of the outcome of every other game. Let Xi
be the number of points you earn for game i and
let Y equal the total number of points earned in the
tournament.

(a) Find the moment generating function φY (s).
Hint: What is E[es Xi |N = n]? This is not the
usual random sum of random variables problem.

(b) Find E[Y ] and Var[Y ].
6.6.1• The waiting time W for accessing one record from

a computer database is a random variable uniformly
distributed between 0 and 10 milliseconds. The read
time R (for moving the information from the disk to
main memory) is 3 milliseconds. The random var-
iable X milliseconds is the total access time (waiting
time + read time) to get one block of information
from the disk. Before performing a certain task, the
computer must access 12 different blocks of infor-
mation from the disk. (Access times for different
blocks are independent of one another.) The total
access time for all the information is a random var-
iable A milliseconds.

(a) What is E[X], the expected value of the access
time?

(b) What is Var[X], the variance of the access time?

(c) What is E[A], the expected value of the total
access time?

(d) What is σA , the standard deviation of the total
access time?

(e) Use the central limit theorem to estimate
P[A > 116ms], the probability that the total ac-
cess time exceeds 116 ms.

(f) Use the central limit theorem to estimate
P[A < 86ms], the probability that the total ac-
cess time is less than 86 ms.

6.6.2• Telephone calls can be classified as voice (V ) if
someone is speaking, or data (D) if there is a mo-
dem or fax transmission. Based on a lot of obser-
vations taken by the telephone company, we have
the following probability model: P[V ] = 0.8,
P[D] = 0.2. Data calls and voice calls occur in-
dependently of one another. The random variable
Kn is the number of data calls in a collection of n
phone calls.
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(a) What is E[K100], the expected number of voice
calls in a set of 100 calls?

(b) What is σK100 , the standard deviation of the
number of voice calls in a set of 100 calls?

(c) Use the central limit theorem to estimate
P[K100 ≥ 18], the probability of at least 18
voice calls in a set of 100 calls.

(d) Use the central limit theorem to estimate
P[16 ≤ K100 ≤ 24], the probability of between
16 and 24 voice calls in a set of 100 calls.

6.6.3• The duration of a cellular telephone call is an ex-
ponential random variable with expected value 150
seconds. A subscriber has a calling plan that in-
cludes 300 minutes per month at a cost of $30.00
plus $0.40 for each minute that the total calling time
exceeds 300 minutes. In a certain month, the sub-
scriber has 120 cellular calls.

(a) Use the central limit theorem to estimate the
probability that the subscriber’s bill is greater
than $36. (Assume that the durations of all
phone calls are mutually independent and that
the telephone company measures call duration
exactly and charges accordingly, without round-
ing up fractional minutes.)

(b) Suppose the telephone company does charge a
full minute for each fractional minute used. Re-
calculate your estimate of the probability that the
bill is greater than $36.

6.7.1• Let K1, K2, . . . be an iid sequence of Pois-
son random variables, each with expected value
E[K ] = 1. Let Wn = K1 + · · · + Kn . Use the
improved central limit theorem approximation to
estimate P[Wn = n]. For n = 4, 25, 64, compare
the approximation to the exact value of P[Wn = n].

6.7.2• In any one-minute interval, the number of requests
for a popular Web page is a Poisson random variable
with expected value 300 requests.

(a) A Web server has a capacity of C requests per
minute. If the number of requests in a one-
minute interval is greater than C , the server is
overloaded. Use the central limit theorem to
estimate the smallest value of C for which the
probability of overload is less than 0.05.

(b) Use Matlab to calculate the actual probability
of overload for the value of C derived from the
central limit theorem.

(c) For the value of C derived from the central limit
theorem, what is the probability of overload in a
one-second interval?

(d) What is the smallest value of C for which the
probability of overload in a one-second interval
is less than 0.05?

(e) Comment on the application of the central limit
theorem to estimate overload probability in a
one-second interval and overload probability in
a one-minute interval.

6.7.3• Integrated circuits from a certain factory pass a cer-
tain quality test with probability 0.8. The outcomes
of all tests are mutually independent.

(a) What is the expected number of tests necessary
to find 500 acceptable circuits?

(b) Use the central limit theorem to estimate the
probability of finding 500 acceptable circuits in
a batch of 600 circuits.

(c) Use Matlab to calculate the actual probability
of finding 500 acceptable circuits in a batch of
600 circuits.

(d) Use the central limit theorem to calculate the
minimum batch size for finding 500 acceptable
circuits with probability 0.9 or greater.

6.8.1
�

Use the Chernoff bound to show that the Gaussian
(0, 1) random variable Z satisfies

P [Z ≥ c] ≤ e−c2/2.

For c = 1, 2, 3, 4, 5, use Table 3.1 and Table 3.2
to compare the Chernoff bound to the true value:
P[Z ≥ c] = Q(c).

6.8.2
�

Use the Chernoff bound to show for a Gaussian
(μ, σ ) random variable X that

P [X ≥ c] ≤ e−(c−μ)2/2σ 2
.

Hint: Apply the result of Problem 6.8.1.

6.8.3
�

Let K be a Poisson random variable with expected
value α. Use the Chernoff bound to find an upper
bound to P[K ≥ c]. For what values of c do we
obtain the trivial upper bound P[K ≥ c] ≤ 1?

6.8.4
�

In a subway station, there are exactly enough cus-
tomers on the platform to fill three trains. The
arrival time of the nth train is X1 + · · · + Xn
where X1, X2, . . . are iid exponential random vari-
ables with E[Xi ] = 2 minutes. Let W equal the
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time required to serve the waiting customers. Find
P[W > 20].

6.8.5
�

Let X1, . . . , Xn be independent samples of a
random variable X . Use the Chernoff bound to show
that M = (X1 + · · · + Xn)/n satisfies

P [Mn(X) ≥ c] ≤
(

min
s≥0

e−scφX (s)

)n
.

6.9.1• Let Wn denote the number of ones in 10n in-
dependent transmitted bits with each bit equally
likely to be a 0 or 1. For n = 3, 4, . . ., use the
binomialpmf function for an exact calculation
of

P

[
0.499 ≤ Wn

10n ≤ 0.501

]
.

What is the largest value of n for which your Mat-
lab installation can perform the calculation? Can
you perform the exact calculation of Example 6.15?

6.9.2• Use the Matlab plot function to compare the
Erlang (n, λ) PDF to a Gaussian PDF with the
same expected value and variance for λ = 1 and

n = 4, 20, 100. Why are your results not surpris-
ing?

6.9.3• Recreate the plots of Figure 6.3. On the same plots,
superimpose the PDF of Yn , a Gaussian random var-
iable with the same expected value and variance. If
Xn denotes the binomial (n, p) random variable,
explain why for most integers k,

PXn (k) ≈ fY (k) .

6.9.4
�

X1, X2, and X3 are independent random variables
such that Xk has PMF

PXk (x) =
{

1/(10k) x = 1, 2, . . . , 10k,

0 otherwise.

Find the PMF of W = X1 + X2 + X3.

6.9.5
�

Let X and Y denote independent finite random vari-
ables described by the probability vectors px and
py and range vectors sx and sy. Write a Matlab
function
[pw,sw]=sumfinitepmf(px,sx,py,sy)
such that finite random variable W = X + Y is
described by pw and sw.

 



7
Parameter Estimation Using

the Sample Mean
Earlier chapters of this book present the properties of probability models. In referring to
applications of probability theory, we have assumed prior knowledge of the probability
model that governs the outcomes of an experiment. In practice, however, we encounter
many situations in which the probability model is not known in advance and experimenters
collect data in order to learn about the model. In doing so, they apply principles of statistical
inference, a body of knowledge that governs the use of measurements to discover the
properties of a probability model. This chapter focuses on the properties of the sample
mean of a set of data. We refer to independent trials of one experiment, with each trial
producing one sample value of a random variable. The sample mean is simply the sum of
the sample values divided by the number of trials. We begin by describing the relationship
of the sample mean of the data to the expected value of the random variable. We then
describe methods of using the sample mean to estimate the expected value.

7.1 Sample Mean: Expected Value and Variance

In this section, we define the sample mean of a random variable and identify its expected
value and variance. Later sections of this chapter show mathematically how the sample
mean converges to a constant as the number of repetitions of an experiment increases. This
chapter, therefore, provides the mathematical basis for the statement that although the result
of a single experiment is unpredictable, predictable patterns emerge as we collect more and
more data.

To define the sample mean, consider repeated independent trials of an experiment. Each
trial results in one observation of a random variable, X . After n trials, we have sample
values of the n random variables X1, . . . , Xn , all with the same PDF as X . The sample
mean is the numerical average of the observations:

275
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Definition 7.1 Sample Mean
For iid random variables X1, . . . , Xn with PDF fX (x), the sample mean of X is the random
variable

Mn(X) = X1 + · · · + Xn

n
.

The first thing to notice is that Mn(X) is a function of the random variables X1, . . . , Xn

and is therefore a random variable itself. It is important to distinguish the sample mean,
Mn(X), from E[X], which we sometimes refer to as the mean value of random variable X .
While Mn(X) is a random variable, E[X] is a number. To avoid confusion when studying
the sample mean, it is advisable to refer to E[X] as the expected value of X , rather than
the mean of X . The sample mean of X and the expected value of X are closely related.
A major purpose of this chapter is to explore the fact that as n increases without bound,
Mn(X) predictably approaches E[X]. In everyday conversation, this phenomenon is often
called the law of averages.

The expected value and variance of Mn(X) reveal the most important properties of the
sample mean. From our earlier work with sums of random variables in Chapter 6, we have
the following result.

Theorem 7.1 The sample mean Mn(X) has expected value and variance

E [Mn(X)] = E [X] , Var[Mn(X)] = Var[X]
n

.

Proof From Definition 7.1, Theorem 6.1 and the fact that E[Xi ] = E[X] for all i ,

E [Mn (X)] = 1

n

(
E

[
X1

] + · · · + E [Xn]
) = 1

n
(E [X] + · · · + E [X]) = E [X] . (7.1)

Because Var[aY ] = a2 Var[Y ] for any random variable Y (Theorem 2.14), Var[Mn(X)] = Var[X1 +
· · · + Xn]/n2. Since the Xi are iid, we can use Theorem 6.3 to show

Var[X1 + · · · + Xn] = Var[X1] + · · · + Var[Xn] = n Var[X]. (7.2)

Thus Var[Mn(X)] = n Var[X]/n2 = Var[X]/n.

Recall that in Section 2.5, we refer to the expected value of a random variable as a typical
value. Theorem 7.1 demonstrates that E[X] is a typical value of Mn(X), regardless of n.
Furthermore, Theorem 7.1 demonstrates that as n increases without bound, the variance
of Mn(X) goes to zero. When we first met the variance, and its square root the standard
deviation, we said that they indicate how far a random variable is likely to be from its
expected value. Theorem 7.1 suggests that as n approaches infinity, it becomes highly
likely that Mn(X) is arbitrarily close to its expected value, E[X]. In other words, the
sample mean Mn(X) converges to the expected value E[X] as the number of samples n
goes to infinity. The rest of this chapter contains the mathematical analysis that describes
the nature of this convergence.
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Quiz 7.1 Let X be an exponential random variable with expected value 1. Let Mn(X) denote the
sample mean of n independent samples of X. How many samples n are needed to guarantee
that the variance of the sample mean Mn(X) is no more than 0.01?

7.2 Deviation of a Random Variable from the Expected Value

The analysis of the convergence of Mn(X) to E[X] begins with a study of the random
variable |Y − μY |, the absolute difference between an arbitrary random variable Y and
its expected value. This study leads to the Chebyshev inequality, which states that the
probability of a large deviation from the mean is inversely proportional to the square of the
deviation. The derivation of the Chebyshev inequality begins with the Markov inequality,
an upper bound on the probability that a sample value of a nonnegative random variable
exceeds the expected value by any arbitrary factor.

Theorem 7.2 Markov Inequality
For a random variable X such that P[X < 0] = 0 and a constant c,

P
[

X ≥ c2
]

≤ E [X]

c2
.

Proof Since X is nonnegative, fX (x) = 0 for x < 0 and

E [X] =
∫ c2

0
x fX (x) dx +

∫ ∞
c2

x fX (x) dx ≥
∫ ∞

c2
x fX (x) dx. (7.3)

Since x ≥ c2 in the remaining integral,

E [X] ≥ c2
∫ ∞

c2
fX (x) dx = c2 P

[
X ≥ c2

]
. (7.4)

Keep in mind that the Markov inequality is valid only for nonnegative random variables.
As we see in the next example, the bound provided by the Markov inequality can be very

loose.

Example 7.1 Let X represent the height (in feet) of a randomly chosen adult. If the expected height
is E[X] = 5.5, then the Markov inequality states that the probability an adult is at least
11 feet tall satisfies

P [X ≥ 11] ≤ 5.5/11 = 1/2. (7.5)

We say the Markov inequality is a loose bound because the probability that a person is taller
than 11 feet is essentially zero, while the inequality merely states that it is less than or equal
to 1/2. Although the bound is extremely loose for many random variables, it is tight (in
fact, an equation) with respect to some random variables.
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Example 7.2 Suppose random variable Y takes on the value c2 with probability p and the value 0
otherwise. In this case, E[Y ] = pc2 and the Markov inequality states

P
[
Y ≥ c2

]
≤ E [Y ] /c2 = p. (7.6)

Since P[Y ≥ c2] = p, we observe that the Markov inequality is in fact an equality in
this instance.

The Chebyshev inequality applies the Markov inequality to the nonnegative random
variable (Y − μY )2, derived from any random variable Y .

Theorem 7.3 Chebyshev Inequality
For an arbitrary random variable Y and constant c > 0,

P [|Y − μY | ≥ c] ≤ Var[Y ]
c2 .

Proof In the Markov inequality, Theorem 7.2, let X = (Y − μY )2. The inequality states

P
[

X ≥ c2
]

= P
[
(Y − μY )2 ≥ c2

]
≤

E
[
(Y − μY )2

]
c2

= Var[Y ]
c2

. (7.7)

The theorem follows from the fact that {(Y − μY )2 ≥ c2} = {|Y − μY | ≥ c}.

Unlike the Markov inequality, the Chebyshev inequality is valid for all random variables.
While the Markov inequality refers only to the expected value of a random variable, the
Chebyshev inequality also refers to the variance. Because it uses more information about
the random variable, the Chebyshev inequality generally provides a tighter bound than the
Markov inequality. In particular, when the variance of Y is very small, the Chebyshev
inequality says it is unlikely that Y is far away from E[Y ].

Example 7.3 If the height X of a randomly chosen adult has expected value E[X] = 5.5 feet and
standard deviation σX = 1 foot, use the Chebyshev inequality to to find an upper
bound on P[X ≥ 11].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since a height X is nonnegative, the probability that X ≥ 11 can be written as

P [X ≥ 11] = P [X − μX ≥ 11 − μX ] = P [|X − μX | ≥ 5.5] . (7.8)

Now we use the Chebyshev inequality to obtain

P [X ≥ 11] = P [|X − μX | ≥ 5.5] ≤ Var[X]/(5.5)2 = 0.033 ≈ 1/30. (7.9)

Although this bound is better than the Markov bound, it is also loose. In fact, P[X ≥ 11]
is orders of magnitude lower than 1/30. Otherwise, we would expect often to see a
person over 11 feet tall in a group of 30 or more people!
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Quiz 7.2 Elevators arrive randomly at the ground floor of an office building. Because of a large
crowd, a person will wait for time W in order to board the third arriving elevator. Let
X1 denote the time (in seconds) until the first elevator arrives and let Xi denote the time
between the arrival of elevator i − 1 and i . Suppose X1, X2, X3 are independent uniform
(0, 30) random variables. Find upper bounds to the probability W exceeds 75 seconds
using
(1) the Markov inequality, (2) the Chebyshev inequality.

7.3 Point Estimates of Model Parameters

In the remainder of this chapter, we consider experiments performed in order to obtain infor-
mation about a probability model. To do so, investigators usually derive probability models
from practical measurements. Later, they use the models in ways described throughout this
book. How to obtain a model in the first place is a major subject in statistical inference.
In this section we briefly introduce the subject by studying estimates of the expected value
and the variance of a random variable.

The general problem is estimation of a parameter of a probability model. A parameter
is any number that can be calculated from the probability model. For example, for an
arbitrary event A, P[A] is a model parameter. The techniques we study in this chapter rely
on the properties of the sample mean Mn(X). Depending on the definition of the random
variable X , we can use the sample mean to describe any parameter of a probability model.
To explore P[A] for an arbitrary event A, we define the indicator random variable

X A =
{

1 if event A occurs,
0 otherwise.

(7.10)

Since X A is a Bernoulli random variable with success probability P[A], E[X A] = P[A].
Since general properties of the expected value of a random variable apply to E[X A], we
see that techniques for estimating expected values will also let us estimate the probabilities
of arbitrary events. In particular, for an arbitrary event A, consider the sample mean of the
indicator X A:

P̂n(A) = Mn(X A) = X A1 + X A2 + · · · + X An

n
. (7.11)

Since X Ai just counts whether event A occured on trial i , P̂n(A) is the relative frequency of
event A in n trials. Since P̂n(A) is the sample mean of X A , we will see that the properties
of the sample mean explain the mathematical connection between relative frequencies and
probabilities.

We consider two types of estimates: A point estimate is a single number that is as close
as possible to the parameter to be estimated, while a confidence interval estimate is a range
of numbers that contains the parameter to be estimated with high probability.
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Properties of Point Estimates

Before presenting estimation methods based on the sample mean, we introduce three prop-
erties of point estimates: bias, consistency, and accuracy. We will see that the sample
mean is an unbiased, consistent estimator of the expected value of a random variable. By
contrast, we will find that the sample variance is a biased estimate of the variance of a
random variable. One measure of the accuracy of an estimate is the mean square error, the
expected squared difference between an estimate and the estimated parameter.

Consider an experiment that produces observations of sample values of the random
variable X . We perform an indefinite number of independent trials of the experiment.
The observations are sample values of the random variables X1, X2, . . ., all with the same
probability model as X . Assume that r is a parameter of the probability model. We use the
observations X1, X2, . . . to produce a sequence of estimates of r . The estimates R̂1, R̂2, . . .

are all random variables. R̂1 is a function of X1. R̂2 is a function of X1 and X2, and in
general R̂n is a function of X1, X2, . . . , Xn . When the sequence of estimates R̂1, R̂2, . . .

converges in probability to r , we say the estimator is consistent.

Definition 7.2 Consistent Estimator
The sequence of estimates R̂1, R̂2, . . . of the parameter r is consistent if for any ε > 0,

lim
n→∞ P

[∣∣∣R̂n − r
∣∣∣ ≥ ε

]
= 0.

Another property of an estimate, R̂, is bias. Remember that R̂ is a random variable.
Of course, we would like R̂ to be close to the true parameter value r with high probability.
In repeated experiments however, sometimes R̂ < r and other times R̂ > r . Although R̂
is random, it would be undesirable if R̂ was either typically less than r or typically greater
than r . To be precise, we would like R̂ to be unbiased.

Definition 7.3 Unbiased Estimator
An estimate, R̂, of parameter r is unbiased if E[R̂] = r; otherwise, R̂ is biased.

Unlike consistency, which is a property of a sequence of estimators, bias (or lack of bias)
is a property of a single estimator R̂. The concept of asymptotic bias applies to a sequence
of estimators R̂1, R̂2, . . . such that each R̂n is biased with the bias diminishing toward zero
for large n. This type of sequence is asymptotically unbiased.

Definition 7.4 Asymptotically Unbiased Estimator
The sequence of estimators R̂n of parameter r is asymptotically unbiased if

lim
n→∞ E[R̂n] = r.

The mean square error is an important measure of the accuracy of a point estimate.
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Definition 7.5 Mean Square Error
The mean square error of estimator R̂ of parameter r is

e = E
[
(R̂ − r)2

]
.

Note that when R̂ is an unbiased estimate of r and E[R̂] = r , the mean square error is
simply the variance of R̂. For a sequence of unbiased estimates, it is enough to show that
the mean square error goes to zero to prove that the estimator is consistent.

Theorem 7.4 If a sequence of unbiased estimates R̂1, R̂2, . . . of parameter r has mean square error
en = Var[R̂n] satisfying limn→∞ en = 0, then the sequence R̂n is consistent.

Proof Since E[R̂n] = r , we can apply the Chebyshev inequality to R̂n . For any constant ε > 0,

P
[∣∣∣R̂n − r

∣∣∣ ≥ ε
]

≤ Var[R̂n]
ε2

. (7.12)

In the limit of large n, we have

lim
n→∞ P

[∣∣∣R̂n − r
∣∣∣ ≥ ε

]
≤ lim

n→∞
Var[R̂n]

ε2
= 0. (7.13)

Example 7.4 In any interval of k seconds, the number Nk of packets passing through an Internet
router is a Poisson random variable with expected value E[Nk ] = kr packets. Let
R̂k = Nk/k denote an estimate of r . Is each estimate R̂k an unbiased estimate of r?
What is the mean square error ek of the estimate R̂k? Is the sequence of estimates
R̂1, R̂2, . . . consistent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First, we observe that R̂k is an unbiased estimator since

E[R̂k ] = E
[
Nk/k

] = E
[
Nk

]
/k = r. (7.14)

Next, we recall that since Nk is Poisson, Var[Nk ] = kr . This implies

Var[R̂k ] = Var

[
Nk

k

]
= Var

[
Nk

]
k2

= r

k
. (7.15)

Because R̂k is unbiased, the mean square error of the estimate is the same as its
variance: ek = r/k. In addition, since limk→∞ Var[R̂k ] = 0, the sequence of estima-
tors R̂k is consistent by Theorem 7.4.

Point Estimates of the Expected Value

To estimate r = E[X], we use R̂n = Mn(X), the sample mean. Since Theorem 7.1 tells
us that E[Mn(X)] = E[X], the sample mean is unbiased.
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Theorem 7.5 The sample mean Mn(X) is an unbiased estimate of E[X].

Because the sample mean is unbiased, the mean square difference between Mn(x) and E[X]
is Var[Mn(X)], given in Theorem 7.1:

Theorem 7.6 The sample mean estimator Mn(X) has mean square error

en = E
[
(Mn(X) − E [X])2

]
= Var[Mn(X)] = Var[X]

n
.

In the terminology of statistical inference,
√

en , the standard deviation of the sample mean,
is referred to as the standard error of the estimate. The standard error gives an indication of
how far we should expect the sample mean to deviate from the expected value. In particular,
when X is a Gaussian random variable (and Mn(X) is also Gaussian), Problem 7.3.1 asks
the reader to show that

P
[
E [X] − √

en ≤ Mn(X) ≤ E [X] + √
en

] = 2�(1) − 1 ≈ 0.68. (7.16)

In words, Equation (7.16) says there is roughly a two-thirds probability that the sample
mean is within one standard error of the expected value. This same conclusion is approxi-
mately true when n is large and the central limit theorem says that Mn(X) is approximately
Gaussian.

Example 7.5 How many independent trials n are needed to guarantee that P̂n(A), the relative fre-
quency estimate of P[A], has standard error less than 0.1?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since the indicator X A has variance Var[X A] = P[A](1 − P[A]), Theorem 7.6 implies
that the mean square error of Mn(X A) is

en = Var [X]

n
= P [A] (1 − P [A])

n
. (7.17)

We need to choose n large enough to guarantee
√

en ≤ 0.1 or en ≤= 0.01, even
though we don’t know P[A]. We use the fact that p(1 − p) ≤ 0.25 for all 0 ≤ p ≤ 1.
Thus en ≤ 0.25/n. To guarantee en ≤ 0.01, we choose n = 25 trials.

Theorem 7.6 demonstrates that the standard error of the estimate of E[X] converges
to zero as n grows without bound. The proof of the following theorem shows that this is
enough to guarantee that the sequence of sample means is a consistent estimator of E[X].

Theorem 7.7 If X has finite variance, then the sample mean Mn(X) is a sequence of consistent estimates
of E[X].

Proof By Theorem 7.6, the mean square error of Mn(X) satisfies

lim
n→∞ Var[Mn(X)] = lim

n→∞
Var[X]

n
= 0. (7.18)

By Theorem 7.4, the sequence Mn(X) is consistent.
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Theorem 7.7 is better known as the weak law of large numbers, which we restate here in
two equivalent forms.

Theorem 7.8 Weak Law of Large Numbers
If X has finite variance, then for any constant c > 0,

(a) lim
n→∞ P[|Mn(X) − μX | ≥ c] = 0,

(b) lim
n→∞ P[|Mn(X) − μX | < c] = 1.

Theorem 7.8(a) is just the mathematical statement of Theorem 7.7 that the sample mean is
consistent. Theorems 7.8(a) and 7.8(b) are equivalent statements because

P [|Mn(X) − μX | ≥ c] = 1 − P [|Mn(X) − μX | < c] . (7.19)

In words, Theorem 7.8(b) says that the probability that the sample mean is within ±c units
of E[X] goes to one as the number of samples approaches infinity. Since c can be arbitrarily
small (e.g., 10−2000), Theorem 7.8(b) can be interpreted by saying that the sample mean
converges to E[X] as the number of samples increases without bound. The weak law of
large numbers is a very general result because it holds for all random variables X with
finite variance. Moreover, we do not need to know any of the parameters, such as mean or
variance, of random varaiable X .

As we see in the next theorem, the weak law of large numbers validates the relative
frequency interpretation of probabilities.

Theorem 7.9 As n → ∞, the relative frequency P̂n(A) converges to P[A]; for any constant c > 0,

lim
n→∞ P

[∣∣∣P̂n(A) − P [A]
∣∣∣ ≥ c

]
= 0.

Proof The proof follows from Theorem 7.4 since P̂n(A) = Mn (X A) is the sample mean of the
indicator X A, which has mean E[X A] = P[A] and finite variance Var[X A] = P[A](1 − P[A]).

Theorem 7.9 is a mathematical version of the statement that as the number of observations
grows without limit, the relative frequency of any event approaches the probability of the
event.

The adjective weak in the weak law of large numbers suggests that there is also a strong
law. They differ in the nature of the convergence of Mn(X) to μX . The convergence in
Theorem 7.8 is an example of convergence in probability.

Definition 7.6 Convergence in Probability
The random sequence Yn converges in probability to a constant y if for any ε > 0,

lim
n→∞ P [|Yn − y| ≥ ε] = 0.

The weak law of large numbers (Theorem 7.8) is an example of convergence in probability
in which Yn = Mn(X), y = E[X], and ε = c.
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The strong law of large numbers states that with probability 1, the sequence M1, M2, . . .

has the limit μX . Mathematicians use the terms convergence almost surely, convergence
almost always, and convergence almost everywhere as synonyms for convergence with
probability 1.The difference between the strong law and the weak law of large numbers is
subtle and rarely arises in practical applications of probability theory.

Point Estimates of the Variance

When the unknown parameter is r = Var[X], we have two cases to consider. Because
Var[X] = E[(X − μX )2] depends on the expected value, we consider separately the situa-
tion when E[X] is known and when E[X] is an unknown parameter estimated by Mn(X).

Suppose we know that X has zero mean. In this case, Var[X] = E[X2] and estimation
of the variance is straightforward. If we define Y = X2, we can view the estimation of
E[X2] from the samples Xi as the estimation of E[Y ] from the samples Yi = X2

i . That is,
the sample mean of Y can be written as

Mn(Y ) = 1

n

(
X2

1 + · · · + X2
n

)
. (7.20)

Assuming that Var[Y ] exists, the weak law of large numbers implies that Mn(Y ) is a con-
sistent, unbiased estimator of E[X2] = Var[X].

When E[X] is a known quantity μX , we know Var[X] = E[(X − μX )2]. In this case,
we can use the sample mean of W = (X − μX )2,

Mn(W ) = 1

n

n∑
i=1

(Xi − μX )2 . (7.21)

If Var[W ] exists, Mn(W ) is a consistent, unbiased estimate of Var[X].
When the expected value μX is unknown, the situation is more complicated because the

variance of X depends on μX . We cannot use Equation (7.21) if μX is unknown. In this
case, we replace the expected value μX by the sample mean Mn(X).

Definition 7.7 Sample Variance
The sample variance of a set of n independent observations of random variable X is

Vn(X) = 1

n

n∑
i=1

(Xi − Mn(X))2 .

In contrast to the sample mean, the sample variance is a biased estimate of Var[X].

Theorem 7.10

E [Vn(X)] = n − 1

n
Var[X].

Proof Substituting Definition 7.1 of the sample mean Mn(X) into Definition 7.7 of sample variance
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and expanding the sums, we derive

Vn = 1

n

n∑
i=1

X2
i − 1

n2

n∑
i=1

n∑
j=1

Xi X j . (7.22)

Because the Xi are iid, E[X2
i ] = E[X2] for all i , and E[Xi ]E[X j ] = μ2

X . By Theorem 4.16(a),

E[Xi X j ] = Cov[Xi , X j ]+ E[Xi ]E[X j ]. Thus, E[Xi X j ] = Cov[Xi , X j ]+μ2
X . Combining these

facts, the expected value of Vn in Equation (7.22) is

E [Vn] = E
[

X2
]

− 1

n2

n∑
i=1

n∑
j=1

(
Cov

[
Xi , X j

] + μ2
X

)
(7.23)

= Var[X] − 1

n2

n∑
i=1

n∑
j=1

Cov
[
Xi , X j

]
(7.24)

Note that since the double sum has n2 terms,
∑n

i=1
∑n

j=1 μ2
X = n2μ2

X . Of the n2 covariance terms,
there are n terms of the form Cov[Xi , Xi ] = Var[X], while the remaining covariance terms are all 0
because Xi and X j are independent for i �= j . This implies

E [Vn] = Var[X] − 1

n2
(n Var[X]) = n − 1

n
Var[X]. (7.25)

However, by Definition 7.4, Vn(X) is asymptotically unbiased because

lim
n→∞ E [Vn(X)] = lim

n→∞
n − 1

n
Var[X] = Var[X]. (7.26)

Although Vn(X) is a biased estimate, Theorem 7.10 suggests the derivation of an unbiased
estimate.

Theorem 7.11 The estimate

V ′
n(X) = 1

n − 1

n∑
i=1

(Xi − Mn(X))2

is an unbiased estimate of Var[X].
Proof Using Definition 7.7, we have

V ′
n(X) = n

n − 1
Vn(X), (7.27)

and
E

[
V ′

n(X)
] = n

n − 1
E [Vn(X)] = Var[X]. (7.28)

Comparing the two estimates of Var[X], we observe that as n grows without limit,
the two estimates converge to the same value. However, for n = 1, M1(X) = X1 and
V1(X) = 0. By contrast, V ′

1(X) is undefined. Because the variance is a measure of the
spread of a probability model, it is impossible to obtain an estimate of the spread from
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only one observation. Thus the estimate V1(X) = 0 is completely illogical. On the
other hand, the unbiased estimate of variance based on two observations can be written
as V ′

2 = (X1 − X2)
2/2, which clearly reflects the spread (mean square difference) of the

observations.
To go further and evaluate the consistency of the sequence V ′

1(X), V ′
2(X), . . . is a sur-

prisingly difficult problem. It is explored in Problem 7.3.5.

Quiz 7.3 X is a uniform random variable between −1 and 1 with PDF

fX (x) =
{

0.5 −1 ≤ x ≤ 1,

0 otherwise.
(7.29)

What is the mean square error of V100(X), the estimate of Var[X] based on 100 independent
observations of X?

7.4 Confidence Intervals

Theorem 7.1 suggests that as the number of independent samples of a random variable
increases, the sample mean gets closer and closer to the expected value. Similarly, a law
of large numbers such as Theorem 7.8 refers to a limit as the number of observations
grows without bound. In practice, however, we observe a finite set of measurements. In
this section, we develop techniques to assess the accuracy of estimates based on a finite
collection of observations. We introduce two closely related quantities: the confidence
interval, related to the difference between a random variable and its expected value and the
confidence coefficient, related to the probability that a sample value of the random variable
will be within the confidence interval. We will see that the the Chebyshev inequality
provides the basic mathematics of confidence intervals.

Convergence of the Sample Mean to the Expected Value

When we apply the Chebyshev inequality to Y = Mn(X), we obtain useful insights into
the properties of independent samples of a random variable.

Theorem 7.12 For any constant c > 0,

(a) P[|Mn(X) − μX | ≥ c] ≤ Var[X]
nc2

= α,

(b) P[|Mn(X) − μX | < c] ≥ 1 − Var[X]
nc2

= 1 − α.

Proof Let Y = Mn (X). Theorem 7.1 states that

E [Y ] = E [Mn(X)] = μX Var[Y ] = Var[Mn(X)] = Var[X]/n. (7.30)
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Theorem 7.12(a) follows by applying the Chebyshev inequality (Theorem 7.3) to Y = Mn(X).
Theorem 7.12(b) is just a restatement of Theorem 7.12(a) since

P [|Mn(X) − μX | ≥ c] = 1 − P [|Mn(X) − μX | < c] . (7.31)

Theorem 7.12(b) contains two inequalities. One inequality,

|Mn(X) − μX | < c, (7.32)

defines an event. This event states that the sample mean is within ±c units of the expected
value. The length of the interval that defines this event,2c units, is referred to as a confidence
interval. The other inequality states that the probability that the sample mean is in the
confidence interval is at least 1 − α. We refer to the quantity 1 − α as the confidence
coefficient. If α is small, we are highly confident that Mn(X) is in the interval (μX −
c, μX + c). In Theorem 7.12(b) we observe that for any positive number c, no matter
how small, we can make α as small as we like by choosing n large enough. In a practical
application, c indicates the desired accuracy of an estimate of μX, α indicates our confidence
that we have achieved this accuracy, and n tells us how many samples we need to achieve
the desired α. Alternatively, given Var[X], n, and α, Theorem 7.12(b) tells us the size c of
the confidence interval.

Example 7.6 Suppose we perform n independent trials of an experiment and we use the relative
frequency P̂n(A) to estimate P[A]. Use the Chebyshev inequality to calculate the
smallest n such that P̂n(A) is in a confidence interval of length 0.02 with confidence
0.999.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recall that P̂n(A) is the sample mean of the indicator random variable X A. Since X A is
Bernoulli with success probability P[A], E[X A] = P[A] and Var[X A] = P[A](1−P[A]).
Since E[ P̂n(A)] = P[A], Theorem 7.12(b) says

P
[∣∣∣P̂n(A) − P [A]

∣∣∣ < c
]

≥ 1 − P [A] (1 − P [A])

nc2
. (7.33)

In Example 7.8, we observed that p(1−p) ≤ 0.25 for 0 ≤ p ≤ 1. Thus P[A](1−P[A]) ≤
1/4 for any value of P[A] and

P
[∣∣∣P̂n(A) − P [A]

∣∣∣ < c
]

≥ 1 − 1

4nc2
. (7.34)

For a confidence interval of length 0.02, we choose c = 0.01. We are guaranteed to
meet our constraint if

1 − 1

4n(0.01)2
≥ 0.999. (7.35)

Thus we need n ≥ 2.5 × 106 trials.

In the next example, we see that if we need a good estimate of the probability of a rare
event A, then the number of trials will be large. For example, if event A has probability
P[A] = 10−4, then estimating P[A] within ±0.01 is meaningless. Accurate estimates of
rare events require significantly more trials.
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Example 7.7 Suppose we perform n independent trials of an experiment. For an event A of the
experiment, use the Chebyshev inequality to calculate the number of trials needed to
guarantee that the probability the relative frequency of A differs from P[A] by more
than 10% is less than 0.001.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Example 7.6, we were asked to guarantee that the relative frequency P̂n(A) was
within c = 0.01 of P[A]. This problem is different only in that we require P̂n(A) to be
within 10% of P[A]. As in Example 7.6, we can apply Theorem 7.12(a) and write

P
[∣∣∣P̂n(A) − P [A]

∣∣∣ ≥ c
]

≤ P [A] (1 − P [A])

nc2
. (7.36)

We can ensure that P̂n(A) is within 10% of P[A] by choosing c = 0.1P[A]. This yields

P
[∣∣∣P̂n(A) − P [A]

∣∣∣ ≥ 0.1P [A]
]

≤ (1 − P [A])

n(0.1)2 P [A]
≤ 100

n P [A]
, (7.37)

since 1 − P[A] ≤ 1. Thus the number of trials required for the relative frequency
to be within a certain percent of the true probability is inversely proportional to that
probability.

In the following example,we obtain an estimate and a confidence interval but we must de-
termine the confidence coefficient associated with the estimate and the confidence interval.

Example 7.8 Theorem 7.12(b) gives rise to statements we hear in the news, such as,

Based on a sample of 1103 potential voters, the percentage of people
supporting Candidate Jones is 58% with an accuracy of plus or minus 3
percentage points.

The experiment is to observe a voter at random and determine whether the voter
supports Candidate Jones. We assign the value X = 1 if the voter supports Candidate
Jones and X = 0 otherwise. The probability that a random voter supports Jones is
E[X] = p. In this case, the data provides an estimate Mn(X) = 0.58 as an estimate
of p. What is the confidence coefficient 1 − α corresponding to this statement?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since X is a Bernoulli (p) random variable, E[X] = p and Var[X] = p(1 − p). For
c = 0.03, Theorem 7.12(b) says

P [|Mn(X) − p| < 0.03] ≥ 1 − p(1 − p)

n(0.03)2
= 1 − α. (7.38)

We see that

α = p(1 − p)

n(0.03)2
. (7.39)

Keep in mind that we have great confidence in our result when α is small. However,
since we don’t know the actual value of p, we would like to have confidence in our
results regardless of the actual value of p. If we use calculus to study the function
x(1 − x) for x between 0 and 1, we learn that the maximum value of this function is
1/4, corresponding to x = 1/2. Thus for all values of p between 0 and 1, Var[X] =
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p(1 − p) ≤ 0.25. We can conclude that

α ≤ 0.25

n(0.03)2
= 277.778

n
. (7.40)

Thus for n = 1103 samples, α ≤ 0.25, or in terms of the confidence coefficient,
1 − α ≥ 0.75. This says that our estimate of p is within 3 percentage points of p with
a probability of at least 1 − α = 0.75.

Interval Estimates of Model Parameters

In Theorem 7.12 and Examples 7.6 and 7.7, the sample mean Mn(X) was a point estimate
of the model parameter E[X]. We examined how to guarantee that the sample mean was in
a confidence interval of size 2c with a confidence coefficient of 1−α. In this case, the point
estimate Mn(X) was a random variable and the confidence interval was a deterministic
interval.

In confidence interval estimation, we turn the confidence interval inside out. A confi-
dence interval estimate of a parameter consists of a range of values and a probability that
the parameter is in the stated range. If the parameter of interest is r , the estimate consists
of random variables A and B , and a number α, with the property

P [A ≤ r ≤ B] ≥ 1 − α. (7.41)

In this context, B− A is called the confidence interval and 1−α is the confidence coefficient.
Since A and B are random variables, the confidence interval is random. The confidence
coefficient is now the probability that the deterministic model parameter r is in the random
confidence interval. An accurate estimate is reflected in a low value of B − A and a high
value of 1 − α.

In most practical applications of confidence interval estimation, the unknown parameter
r is the expected value E[X] of a random variable X and the confidence interval is derived
from the sample mean, Mn(X), of data collected in n independent trials. In this context,
Theorem 7.12(b) can be rearranged to say that for any constant c > 0,

P [Mn(X) − c < E [X] < Mn(X) + c] ≥ 1 − Var[X]
nc2

. (7.42)

In comparing Equations (7.41) and (7.42), we see that A = Mn(X) − c, B = Mn(X) + c
and the confidence interval is the random interval (Mn(X) − c, Mn(X) + c). Just as in
Theorem 7.12, the confidence coefficient is still 1 − α where α = Var[X]/(nc2).

Equation (7.42) indicates that every confidence interval estimate is a compromise be-
tween the goals of achieving a narrow confidence interval and a high confidence coefficient.
Given any set of data, it is always possible simultaneously to increase both the confidence
coefficient and the size of the confidence interval, or to decrease them. It is also possible to
collect more data (increase n in Equation (7.42)) and improve both accuracy measures. The
number of trials necessary to achieve specified quality levels depends on prior knowledge
of the probability model. In the following example, the prior knowledge consists of the
expected value and standard deviation of the measurement error.
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Example 7.9 Suppose Xi is the i th independent measurement of the length (in cm) of a board
whose actual length is b cm. Each measurement Xi has the form

Xi = b + Zi , (7.43)

where the measurement error Zi is a random variable with expected value zero and
standard deviation σZ = 1 cm. Since each measurement is fairly inaccurate, we would
like to use Mn(X) to get an accurate confidence interval estimate of the exact board
length. How many measurements are needed for a confidence interval estimate of b
of length 2c = 0.2 cm to have confidence coefficient 1 − α = 0.99?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since E[Xi ] = b and Var[Xi ] = Var[Z ] = 1, Equation (7.42) states

P [Mn(X) − 0.1 < b < Mn(X) + 0.1] ≥ 1 − 1

n(0.1)2
= 1 − 100

n
. (7.44)

Therefore, P[Mn(X) − 0.1 < b < Mn(X) + 0.1] ≥ 0.99 if 100/n ≤ 0.01. This implies
we need to make n ≥ 10,000 measurements. We note that it is quite possible that
P[Mn(X) − 0.1 < b < Mn(X) + 0.1] is much less than 0.01. However, without knowing
more about the probability model of the random errors Zi , we need 10,000 measure-
ments to achieve the desired confidence.

It is often assumed that the sample mean Mn(X) is a Gaussian random variable, either
because each trial produces a sample of a Gaussian random variable, or because there is
enough data to justify a central limit theorem approximation. In the simplest applications,
the variance σ 2

X of each data sample is known and the estimate is symmetric about the
sample mean: A = Mn(X)−c and B = Mn(X)+c. This implies the following relationship
between c, α, and n, the number of trials used to obtain the sample mean.

Theorem 7.13 Let X be a Gaussian (μ, σ ) random variable. A confidence interval estimate of μ of the
form

Mn(X) − c ≤ μ ≤ Mn(X) + c

has confidence coefficient 1 − α where

α/2 = Q

(
c
√

n

σ

)
= 1 − �

(
c
√

n

σ

)
.

Proof We observe that

P [Mn(X) − c ≤ μX ≤ Mn (X) + c] = P [μX − c ≤ Mn(X) ≤ μX + c] (7.45)

= P [−c ≤ Mn(X) − μX ≤ c] . (7.46)

Since Mn(X) − μX is a zero mean Gaussian random variable with variance σ 2
X /n,

P [Mn (X) − c ≤ μX ≤ Mn (X) + c] = P

[ −c

σX /
√

n
≤ Mn (X) − μX

σX /
√

n
≤ c

σX /
√

n

]
(7.47)

= 1 − 2Q

(
c
√

n

σX

)
. (7.48)
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Thus 1 − α = 1 − 2Q(c
√

n/σX ).

Theorem 7.13 holds whenever Mn(X) is a Gaussian random variable. As stated in the the-
orem, this occurs whenever X is Gaussian. However, it is also a reasonable approximation
when n is large enough to use the central limit theorem.

Example 7.10 In Example 7.9, suppose we know that the measurement errors Zi are iid Gaussian
random variables. How many measurements are needed to guarantee that our con-
fidence interval estimate of length 2c = 0.2 has confidence coefficient 1 − α ≥ 0.99?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As in Example 7.9, we form the interval estimate

Mn(X) − 0.1 < b < Mn(X) + 0.1. (7.49)

The problem statement requires this interval estimate to have confidence coefficient
1 − α ≥ 0.99, implying α ≤ 0.01. Since each measurement Xi is a Gaussian (b, 1)

random variable, Theorem 7.13 says that α = 2Q(0.1
√

n) ≤ 0.01, or equivalently,

Q(
√

n/10) = 1 − �(
√

n/10) ≤ 0.005. (7.50)

In Table 3.1, we observe that �(x) ≥ 0.995 when x ≥ 2.58. Therefore, our confidence
coefficient condition is satisfied when

√
n/10 ≥ 2.58, or n ≥ 666.

In Example 7.9, with limited knowledge (only the expected value and variance) of the
probability model of measurement errors, we find that 10,000 measurements are needed
to guarantee an accuracy condition. When we learn the entire probability model (Exam-
ple 7.10), we find that only 666 measurements are necessary.

Example 7.11 Y is a Gaussian random variable with unknown expected value μ but known variance
σ 2

Y . Use Mn(Y ) to find a confidence interval estimate of μY with confidence 0.99. If
σ 2

Y = 10 and M100(Y ) = 33.2, what is our interval estimate of μ formed from 100
independent samples?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
With 1 − α = 0.99, Theorem 7.13 states that

P [Mn(Y ) − c ≤ μ ≤ Mn(Y ) + c] = 1 − α = 0.99 (7.51)

where

α/2 = 0.005 = 1 − �

(
c
√

n

σY

)
. (7.52)

This implies �(c
√

n/σY ) = 0.995. From Table 3.1, c = 2.58σY /
√

n. Thus we have the
confidence interval estimate

Mn (Y ) − 2.58σY√
n

≤ μ ≤ Mn (Y ) + 2.58σY√
n

. (7.53)

If σ 2
Y = 10 and M100(Y ) = 33.2, our interval estimate for the expected value μ is

32.384 ≤ μ ≤ 34.016.

Example 7.11 demonstrates that for a fixed confidence coefficient, the width of the interval
estimate shrinks as we increase the number n of independent samples. In particular, when
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the observations are Gaussian, the width of the interval estimate is inversely proportional
to

√
n.

Quiz 7.4 X is a Bernoulli random variable with unknown success probability p. Using n independent
samples of X and a central limit theorem approximation, find confidence interval estimates
of p with confidence levels 0.9 and 0.99. If M100(X) = 0.4, what is our interval estimate?

7.5 Matlab

The new ideas in this chapter – namely, the convergence of the sample mean, the Chebyshev
inequality, and the weak law of large numbers – are largely theoretical. The application of
these ideas relies on mathematical techniques for discrete and continuous random variables
and sums of random variables that were introduced in prior chapters. As a result, in terms
of Matlab, this chapter breaks little new ground. Nevertheless, it is instructive to use
Matlab to simulate the convergence of the sample mean Mn(X). In particular, for a
random variable X , we can view a set of iid samples X1, . . . , Xn as a random vector
X = [

X1 · · · Xn
]′. This vector of iid samples yields a vector of sample mean values

M(X) = [
M1(X) M2(X) · · · Mn(X)

]′
where

Mk(X) = X1 + · · · + Xk

k
(7.54)

We call a graph of the sequence Mk(X) versus k a sample mean trace. By graphing the
sample mean trace as a function of n we can observe the convergence of the point estimate
Mk(X) to E[X].

Example 7.12 Write a function bernoulliconfint(n,p) that graphs a sample mean trace of
length n as well as the 0.9 and 0.99 confidence interval estimates for a Bernoulli
(p = 0.5) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the solution to Quiz 7.4, we found that the 0.9 and 0.99 confidence interval estimates
could be expressed as

Mn(X) − γ√
n

≤ p ≤ Mn(X) + γ√
n

, (7.55)

where γ = 0.41 for confidence 0.9 and γ = 0.645 for confidence 0.99.

function MN=bernoulliconf(n,p);
x=bernoullirv(p,n);
nn=(1:n)’;
MN=cumsum(x)./((1:n)’);
nn=(10:n)’;
MN=MN(nn);
std90=(0.41)./sqrt(nn);
std99=(0.645/0.41)*std90;
y=[MN MN-std90 MN+std90];
y=[y MN-std99 MN+std99];
plot(nn,y);

In bernoulliconf(n,p), x is an
instance of a random vector X with
iid Bernoulli (p) components. Simi-
larly, MN is an instance of the vector
M(X). The output graphs MN as well
as the 0.9 and 0.99 confidence inter-
vals as a function of the number of
trials n.

 



7.5 MATLAB 293

20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

200 400 600 800 1000

0.3

0.4

0.5

0.6

0.7

n = 100, p = 1/2 n = 1000, p = 1/2

Figure 7.1 Two sample runs of bernoulliconf(n,p)

Each time bernoulliconf.m is run, a different graph will be generated. Fig-
ure 7.1 shows two sample graphs. Qualititively, both show that the sample mean is
converging to p as expected. Further, as n increases the confidence interval esti-
mates shrink.

By graphing multiple sample mean traces, we can observe the convergence properties of
the sample mean.

Example 7.13 Write a Matlab function bernoullitraces(n,m,p) to generate m sample mean
traces, each of length n, for the sample mean of a Bernoulli (p) random variable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function MN=bernoullitraces(n,m,p);
x=reshape(bernoullirv(p,m*n),n,m);
nn=(1:n)’*ones(1,m);
MN=cumsum(x)./nn;
stderr=sqrt(p*(1-p))./sqrt((1:n)’);
plot(1:n,0.5+stderr,...

1:n,0.5-stderr,1:n,MN);

In bernoullitraces, each
column of x is an instance
of a random vector X with
iid Bernoulli (p) components.
Similarly, each column of MN is
an instance of the vector M(X).

The output graphs each column of MN as a function of the number of trials n.
In addition, we calculate the standard error

√
ek and overlay graphs of p − √

ek and
p + √

ek . Equation (7.16) says that at each step k, we should expect to see roughly
two-thirds of the sample mean traces in the range

p − √
ek ≤ Mk(X) ≤ p + √

ek . (7.56)

A sample graph of bernoullitraces(100,40,0.5) is shown in Figure 7.2. The
figure shows how at any given step, roughly two-thirds of the sample mean traces are
within one standard error of the expected value.

Quiz 7.5 Generate m = 1000 traces (each of length n = 100) of the sample mean of a Bernoulli
(p) random variable. At each step k, calculate Mk , the number of traces, such that Mk is
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Figure 7.2 Sample output of bernoullitraces.m, including the deterministic standard error
graphs. The graph shows how at any given step, roughly two-thirds of the sample means are within
one standard error of the true mean.

within a standard error of the expected value p. Graph Tk = Mk/m as a function of k.
Explain your results.

Chapter Summary

This chapter introduces the sample mean of a set of independent observations of a random
variable. As the number of observations increases, the sample mean approaches the expected
value. Statistical inference techniques use the sample mean to estimate the expected value.
When we choose this random variable to be the indicator of an event, the sample mean is
the relative frequency of the event. In this case, convergence of the sample mean validates
the relative frequency interpretation of probability.

• The sample mean Mn(X) = (X1+· · ·+ Xn)/n of n independent observations of random
variable X is a random variable.

• The Markov inequality is a weak upper bound on the probability P[X ≥ c] for nonneg-
ative random variables X .

• The Chebyshev inequality is an upper bound on the probability P[|X − μX | > c]. If the
variance of X is small, then X is close to E[X] with high probability.

• An estimate of a parameter, r , of a probability model is unbiased if E[R̂] = r . A
sequence of estimates R̂1, R̂2, . . . is consistent if limn→∞ R̂n = r .

• The sample mean of X is an unbiased consistent estimator of E[X]. This is commonly
stated in the form of the weak law of large numbers which says that for any c > 0,
limn→∞ P[|Mn(X) − μX | > c] = 0.

• The sample variance of X is a consistent, asymptotically unbiased estimate of Var[X].
• A confidence interval estimate of a parameter produces a range of numbers and the

probability that the parameter is within that range.
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• Further Reading: [Dur94] contains concise, rigorous presentations and proofs of the
laws of large numbers. [WS01] covers parameter estimation for both scalar and vector
random variables and stochastic processes.

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

7.1.1• X1, . . . , Xn is an iid sequence of exponential
random variables, each with expected value 5.

(a) What is Var[M9(X)], the variance of the sample
mean based on nine trials?

(b) What is P[X1 > 7], the probability that one out-
come exceeds 7?

(c) Estimate P[M9(X) > 7], the probability that
the sample mean of nine trials exceeds 7? Hint:
Use the central limit theorem.

7.1.2• X1, . . . , Xn are independent uniform random vari-
ables, all with expected value μX = 7 and variance
Var[X] = 3.

(a) What is the PDF of X1?

(b) What is Var[M16(X)], the variance of the sample
mean based on 16 trials?

(c) What is P[X1 > 9], the probability that one out-
come exceeds 9?

(d) Would you expect P[M16(X) > 9] to be bigger
or smaller than P[X1 > 9]? To check your in-
tuition, use the central limit theorem to estimate
P[M16(X) > 9].

7.1.3
�

X is a uniform (0, 1) random variable. Y = X2.
What is the standard error of the estimate of μY
based on 50 independent samples of X?

7.1.4
�

Let X1, X2, . . . denote a sequence of indepen-
dent samples of a random variable X with vari-
ance Var[X]. We define a new random sequence
Y1, Y2, . . . as

Y1 = X1 − X2

and

Yn = X2n−1 − X2n

(a) What is E[Yn]?
(b) What is Var[Yn]?
(c) What are the mean and variance of Mn (Y )?

7.2.1• The weight of a randomly chosen Maine black bear
has expected value E[W ] = 500 pounds and stan-
dard deviation σW = 100 pounds. Use the Cheby-
shev inequality to upper bound the probability that
the weight of a randomly chosen bear is more than
200 pounds from the expected value of the weight.

7.2.2• For an arbitrary random variable X , use the Cheby-
shev inequality to show that the probability that X
is more than k standard deviations from its expected
value E[X] satisfies

P[|X − E[X]| ≥ kσ ] ≤ 1

k2

For a Gaussian random variable Y , use the �(·)
function to calculate the probability that Y is more
than k standard deviations from its expected value
E[Y ]. Compare the result to the upper bound based
on the Chebyshev inequality.

7.2.3
�

Let X equal the arrival time of the third elevator
in Quiz 7.2. Find the exact value of P[W ≥ 60].
Compare your answer to the upper bounds derived
in Quiz 7.2.

7.2.4
�

In a game with two dice, the event snake eyes refers
to both dice showing one spot. Let R denote the
number of dice rolls needed to observe the third oc-
currence of snake eyes. Find

(a) the upper bound to P[R ≥ 250] based on the
Markov inequality,

(b) the upper bound to P[R ≥ 250] based on the
Chebyshev inequality,

(c) the exact value of P[R ≥ 250].
7.3.1• When X is Gaussian, verify the claim of Equa-

tion (7.16) that the sample mean is within one stan-
dard error of the expected value with probability
0.68.

7.3.2
�

Suppose the sequence of estimates R̂n is biased but
asymptotically unbiased. If limn→∞ Var[R̂n] = 0,
is the sequence R̂n consistent?
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7.3.3
�

An experimental trial produces random variables
X1 and X2 with correlation r = E[X1 X2]. To es-
timate r , we perform n independent trials and form
the estimate

R̂n = 1

n

n∑
i=1

X1(i)X2(i)

where X1(i) and X2(i) are samples of X1 and X2
on trial i . Show that if Var[X1 X2] is finite, then
R̂1, R̂2, . . . is an unbiased, consistent sequence of
estimates of r .

7.3.4
�

An experiment produces random vector X =[
X1 · · · Xk

]′ with expected value μX =[
μ1 · · · μk

]′. The i th component of X has vari-

ance Var[Xi ] = σ 2
i . To estimate μX, we perform n

independent trials such that X(i) is the sample of X
on trial i , and we form the vector mean

M(n) = 1

n

n∑
i=1

X(i).

(a) Show M(n) is unbiased by showing E[M(n)] =
μX.

(b) Show that the sequence of estimates Mn is con-
sistent by showing that for any constant c > 0,

lim
n→∞ P

[
max

j=1,...,k

∣∣M j (n) − μ j
∣∣ ≥ c

]
= 0.

Hint: Let Ai = {|Xi − μi | ≤ c} and apply
the union bound (see Problem 1.4.5) to upper
bound P[A1 ∪ A2 ∪ · · · ∪ Ak]. Then apply the
Chebyshev inequality.

7.3.5
�

Given the iid samples X1, X2, . . . of X , define the
sequence Y1, Y2, . . . by

Yk =
(

X2k−1 − X2k−1 + X2k

2

)2

+
(

X2k − X2k−1 + X2k

2

)2
.

Note that each Yk is an example of V ′
2, an esti-

mate of the variance of X using two samples, given
in Theorem 7.11. Show that if E[Xk] < ∞ for
k = 1, 2, 3, 4, then the sample mean Mn(Y ) is a
consistent, unbiased estimate of Var[X].

7.3.6
�

In this problem, we develop a weak law of large
numbers for a correlated sequence X1, X2, . . . of

identical random variables. In particular, each Xi
has expected value E[Xi ] = μ, and the random
sequence has covariance function

CX [m, k] = Cov
[
Xm , Xm+k

] = σ 2a|k|

where a is a constant such that |a| < 1. For this cor-
related random sequence, we can define the sample
mean of n samples as

M(X1, . . . , Xn) = X1 + · · · + Xn

n
.

(a) Use Theorem 6.2 to show that

Var[X1 + · · · Xn] ≤ nσ 2
(

1 + a

1 − a

)
.

(b) Use the Chebyshev inequality to show that for
any c > 0,

P
[|M(X1, . . . , Xn) − μ| ≥ c

] ≤ σ 2(1 + a)

n(1 − a)c2
.

(c) Use part (b) to show that for any c > 0,

lim
n→∞ P

[|M(X1, . . . , Xn) − μ| ≥ c
] = 0.

7.3.7
��

An experiment produces a zero mean Gaussian
random vector X = [

X1 · · · Xk
]′ with corre-

lation matrix R = E[XX′]. To estimate R, we per-
form n independent trials, yielding the iid sample
vectors X(1), X(2), . . . , X(n), and form the sample
correlation matrix

R̂(n) =
n∑

m=1

X(m)X′(m).

(a) Show R̂(n) is unbiased by showing E[R̂(n)] =
R.

(b) Show that the sequence of estimates R̂(n) is con-
sistent by showing that every element R̂i j (n) of

the matrix R̂ converges to Ri j . That is, show
that for any c > 0,

lim
n→∞ P

[
max
i, j

∣∣∣R̂i j − Ri j

∣∣∣ ≥ c

]
= 0.

Hint: Extend the technique used in Prob-
lem 7.3.4. You will need to use the result of
Problem 4.11.8 to show that Var[Xi X j ] is finite.
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7.4.1• X1, . . . , Xn are n independent identically dis-
tributed samples of random variable X with PMF

PX (x) =
⎧⎨
⎩

0.1 x = 0,

0.9 x = 1,

0 otherwise.

(a) How is E[X] related to PX (1)?

(b) Use Chebyshev’s inequality to find the confi-
dence level α such that M90(X), the estimate
based on 90 observations, is within 0.05 of
PX (1). In other words, find α such that

P
[∣∣M90(X) − PX (1)

∣∣ ≥ 0.05
] ≤ α.

(c) Use Chebyshev’s inequality to find out how
many samples n are necessary to have Mn(X)

within 0.03 of PX (1) with confidence level 0.1.
In other words, find n such that

P [|Mn(X) − PX (1)| ≥ 0.03] ≤ 0.1.

7.4.2• Let X1, X2, . . . denote an iid sequence of random
variables, each with expected value 75 and standard
deviation 15.

(a) How many samples n do we need to guarantee
that the sample mean Mn(X) is between 74 and
76 with probability 0.99?

(b) If each Xi has a Gaussian distribution, how many
samples n′ would we need to guarantee Mn′ (X)

is between 74 and 76 with probability 0.99?

7.4.3• Let X A be the indicator random variable for event
A with probability P[A] = 0.8. Let P̂n(A) denote
the relative frequency of event A in n independent
trials.

(a) Find E[X A] and Var[X A].
(b) What is Var[ P̂n(A)]?
(c) Use the Chebyshev inequality to find the con-

fidence coefficient 1 − α such that P̂100(A) is
within 0.1 of P[A]. In other words, find α such
that

P
[∣∣∣P̂100(X) − P [A]

∣∣∣ ≤ 0.1
]

≥ 1 − α.

(d) Use the Chebyshev inequality to find out how
many samples n are necessary to have P̂n(A)

within 0.1 of P[A] with confidence coefficient
0.95. In other words, find n such that

P
[∣∣∣P̂n(A) − P [A]

∣∣∣ ≤ 0.1
]

≥ 0.95.

7.4.4• X is a Bernoulli random variable with unknown suc-
cess probability p. Using 100 independent samples
of X find a confidence interval estimate of p with
significance level 0.99. If M100(X) = 0.06, what
is our interval estimate?

7.4.5• In n independent experimental trials, the relative
frequency of event A is P̂n(A). How large should
n be to ensure that the confidence interval estimate

P̂n(A) − 0.05 ≤ P [A] ≤ P̂n(A) + 0.05

has confidence coefficient 0.9?

7.4.6
�

When we perform an experiment, event A occurs
with probability P[A] = 0.01. In this problem, we
estimate P[A] using P̂n(A), the relative frequency
of A over n independent trials.

(a) How many trials n are needed so that the interval
estimate

P̂n(A) − 0.001 < P [A] < P̂n(A) + 0.001

has confidence coefficient 1 − α = 0.99?

(b) How many trials n are needed so that the prob-
ability P̂n(A) differs from P[A] by more than
0.1% is less than 0.01?

7.4.7
�

In communication systems, the error probability
P[E] may be difficult to calculate; however it
may be easy to derive an upper bound of the form
P[E] ≤ ε. In this case, we may still want to esti-
mate P[E] using the relative frequency P̂n(E) of E
in n trials. In this case, show that

P
[∣∣∣P̂n(E) − P [E]

∣∣∣ ≥ c
]

≤ ε

nc2
.

7.5.1• Graph one trace of the sample mean of a Poisson
(α = 1) random variable. Calculate (using a central
limit theorem approximation) and graph the corre-
sponding 0.9 confidence interval estimate.

7.5.2• X is a Bernoulli (p = 1/2) random variable. The
sample mean Mn (X) has standard error

en =
√

Var[X]
n

= 1

2
√

n
,

The probability that Mn(X) is within one standard
error of p is

pn = P

[
1

2
− 1

2
√

n
≤ Mn(X) ≤ 1

2
+ 1

2
√

n

]
.
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Use the binomialcdf function to calculate the
exact probability pn as a function of n. Whhat is the
source of the unusual sawtooth pattern? Compare
your results to the solution of Quiz 7.5.

7.5.3
�

Recall that an exponential (λ) random variable X
has

E [X] = 1/λ,

Var[X] = 1/λ2.

Thus, to estimate λ from n independent samp-
les X1, . . . , Xn , either of the following techniques
should work.

(a) Calculate the sample mean Mn (X) and form the
estimate λ̂ = 1/Mn (X).

(b) Calculate the unbiased variance estimate V ′
n(X)

of Theorem 7.11 and form the estimate λ̃ =
1/

√
V ′

n(X).

Use Matlab to simulate the calculation λ̂ and λ̃ for
m = 1000 experimental trials to determine which
estimate is better.

7.5.4
�

X is 10-dimensional Gaussian (0, I) random vector.
Since X is zero mean, RX = CX = I. We will use
the method of Problem 7.3.7 and estimate RX using
the sample correlation matrix

R̂(n) =
n∑

m=1

X(m)X′(m).

For n ∈ {10, 100, 1000, 10,000}, construct a Mat-
lab simulation to estimate

P

[
max
i, j

∣∣∣R̂i j − Ii j

∣∣∣ ≥ 0.01

]
.

7.5.5
�

In terms of parameter a, random variable X has CDF

FX (x) =
{

0 x < a − 1,

1 − 1
[x−(a−2)]2 x ≥ a − 1.

(a) Show that E[X] = a by showing that
E[X − (a − 2)] = 2.

(b) Generate m = 100 traces of the sample mean
Mn(X) of length n = 1000. Do you observe
convergence of the sample mean to E[X] = a?

 



8
Hypothesis Testing

Some of the most important applications of probability theory involve reasoning in the
presence of uncertainty. In these applications, we analyze the observations of an experi-
ment in order to arrive at a conclusion. When the conclusion is based on the properties
of random variables, the reasoning is referred to as statistical inference. In Chapter 7,
we introduced two types of statistical inference for model parameters: point estimation
and confidence interval estimation. In this chapter, we introduce two more categories of
inference: significance testing and hypothesis testing.

Like probability theory, the theory of statistical inference refers to an experiment con-
sisting of a procedure and observations. In all statistical inference methods, there is also a
set of possible conclusions and a means of measuring the accuracy of a conclusion. A sta-
tistical inference method assigns a conclusion to each possible outcome of the experiment.
Therefore, a statistical inference method consists of three steps: perform an experiment;
observe an outcome; state a conclusion. The assignment of conclusions to outcomes is
based on probability theory. The aim of the assignment is to achieve the highest possible
accuracy.

This chapter contains brief introductions to two categories of statistical inference.

• Significance Testing

Conclusion Accept or reject the hypothesis that the observations result from a certain
probability model H0.

Accuracy Measure Probability of rejecting the hypothesis when it is true.

• Hypothesis Testing

Conclusion The observations result from one of M hypothetical probability models:
H0, H1, . . . , HM−1.

Accuracy Measure Probability that the conclusion is Hi when the true model is H j

for i, j = 0, 1, . . . , M − 1.

In the following example, we see that for the same experiment, each testing method addresses
a particular kind of question under particular assumptions.

299
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Example 8.1 Suppose X1, . . . , Xn are iid samples of an exponential (λ) random variable X with
unknown parameter λ. Using the observations X1, . . . , Xn , each of the statistical
inference methods can answer questions regarding the unknown λ. For each of the
methods, we state the underlying assumptions of the method and a question that can
be addressed by the method.

• Significance Test Assuming λ is a constant, should we accept or reject the hy-
pothesis that λ = 3.5?

• Hypothesis Test Assuming λ is a constant, does λ equal 2.5, 3.5, or 4.5?

To answer either of the questions in Example 8.1, we have to state in advance which values
of X1, . . . , Xn produce each possible answer. For a significance test, the answer must be
either accept or reject. For the hypothesis test, the answer must be one of the numbers 2.5,
3.5, or 4.5.

8.1 Significance Testing

A significance test begins with the hypothesis, H0, that a certain probability model describes
the observations of an experiment. The question addressed by the test has two possible
answers: accept the hypothesis or reject it. The significance level of the test is defined as
the probability of rejecting the hypothesis if it is true. The test divides S, the sample space
of the experiment, into an event space consisting of an acceptance set A and a rejection
set R = Ac. If the observation s ∈ A, we accept H0. If s ∈ R, we reject the hypothesis.
Therefore the significance level is

α = P [s ∈ R] . (8.1)

To design a significance test, we start with a value of α and then determine a set R that
satisfies Equation (8.1).

In many applications, H0 is referred to as the null hypothesis. In these applications, there
is a known probability model for an experiment. Then the conditions of the experiment
change and a significance test is performed to determine whether the original probability
model remains valid. The null hypothesis states that the changes in the experiment have
no effect on the probability model. An example is the effect of a diet pill on the weight of
people who test the pill. The following example applies to calls at a telephone switching
office.

Example 8.2 Suppose that on Thursdays between 9:00 and 9:30 at night, the number of call at-
tempts N at a telephone switching office is a Poisson random variable with expected
value 1000. Next Thursday, the President will deliver a speech at 9:00 that will be
broadcast by all radio and television networks. The null hypothesis, H0, is that the
speech does not affect the probability model of telephone calls. In other words, H0
states that on the night of the speech, N is a Poisson random variable with expected
value 1000. Design a significance test for hypothesis H0 at a significance level of
α = 0.05.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The experiment involves counting the call requests, N , between 9:00 and 9:30 on the
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night of the speech. To design the test, we need to specify a rejection set, R, such
that P[N ∈ R] = 0.05. There are many sets R that meet this condition. We do not
know whether the President’s speech will increase the number of phone calls (by peo-
ple deprived of their Thursday programs) or decrease the number of calls (because
many people who normally call listen to the speech). Therefore, we choose R to be
a symmetrical set {n : |n − 1000| ≥ c}. The remaining task is to choose c to satisfy
Equation (8.1). Under hypothesis H0, E[N] = Var[N] = 1000. The significance level
is

α = P [|N − 1000| ≥ c] = P

[∣∣∣∣N − E [N]

σN

∣∣∣∣ ≥ c

σN

]
. (8.2)

Since E[N] is large, we can use the central limit theorem and approximate (N −
E[N])/σN by the standard Gaussian random variable Z so that

α ≈ P

[
|Z | ≥ c√

1000

]
= 2

[
1 − �

(
c√

1000

)]
= 0.05. (8.3)

In this case, �(c/
√

1000) = 0.975 and c = 1.95
√

1000 = 61.7. Therefore, if we observe
more than 1000 + 61 calls or fewer than 1000 − 61 calls, we reject the null hypothesis
at significance level 0.05.

In a significance test, two kinds of errors are possible. Statisticians refer to them as
Type I errors and Type II errors with the following definitions:

• Type I errorFalse Rejection: Reject H0 when H0 is true.

• Type II errorFalse Acceptance: Accept H0 when H0 is false.

The hypothesis specified in a significance test makes it possible to calculate the probability
of a Type I error, α = P[s ∈ R]. In the absence of a probability model for the condition “H0
false,” there is no way to calculate the probability of a Type II error. A binary hypothesis
test, described in Section 8.2, includes an alternative hypothesis H1. Then it is possible to
use the probability model given by H1 to calculate the probability of a Type II error, which
is P[s ∈ A|H1].

Although a significance test does not specify a complete probability model as an alterna-
tive to the null hypothesis, the nature of the experiment influences the choice of the rejection
set, R. In Example 8.2, we implicitly assume that the alternative to the null hypothesis is
a probability model with an expected value that is either higher than 1000 or lower than
1000. In the following example, the alternative is a model with an expected value that is
lower than the original expected value.

Example 8.3 Before releasing a diet pill to the public, a drug company runs a test on a group of
64 people. Before testing the pill, the probability model for the weight of the people
measured in pounds, is a Gaussian (190, 24) random variable W . Design a test based
on the sample mean of the weight of the population to determine whether the pill has
a significant effect. The significance level is α = 0.01.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Under the null hypothesis, H0, the probability model after the people take the diet
pill, is a Gaussian (190, 24), the same as before taking the pill. The sample mean,
M64(X), is a Gaussian random variable with expected value 190 and standard deviation
24/

√
64 = 3. To design the significance test, it is necessary to find R such that
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P[M64(X) ∈ R] = 0.01. If we reject the null hypothesis, we will decide that the pill is
effective and release it to the public.

In this example, we want to know whether the pill has caused people to lose weight.
If they gain weight, we certainly do not want to declare the pill effective. Therefore, we
choose the rejection set R to consist entirely of weights below the original expected
value: R = {M64(X) ≤ r0}. We choose r0 so that the probability that we reject the null
hypothesis is 0.01:

P
[
M64(X) ∈ R

] = P
[
M64(X) ≤ r0

] = �

(
r0 − 190

3

)
= 0.01. (8.4)

Since �(−2.33) = Q(2.33) = 0.01, it follows that (r0 − 190)/3 = −2.33, or r0 = 183.01.
Thus we will reject the null hypothesis and accept that the diet pill is effective at
significance level 0.01 if the sample mean of the population weight drops to 183.01
pounds or less.

Note the difference between the symmetrical rejection set in Example 8.2 and the one-
sided rejection set in Example 8.3. We selected these sets on the basis of the application of
the results of the test. In the language of statistical inference, the symmetrical set is part of
a two-tail significance test, and the one-sided rejection set is part of a one-tail significance
test.

Quiz 8.1 Under hypothesis H0, the interarrival times between phone calls are independent and
identically distributed exponential (1) random variables. Given X, the maximum among 15
independent interarrival time samples X1, . . . , X15, design a significance test for hypothesis
H0 at a level of α = 0.01.

8.2 Binary Hypothesis Testing

In a binary hypothesis test, there are two hypothetical probability models, H0 and H1,
and two possible conclusions: accept H0 as the true model, and accept H1. There is
also a probability model for H0 and H1, conveyed by the numbers P[H0] and P[H1] =
1− P[H0]. These numbers are referred to as the a priori probabilities or prior probabilities
of H0 and H1. They reflect the state of knowledge about the probability model before an
outcome is observed. The complete experiment for a binary hypothesis test consists of two
subexperiments. The first subexperiment chooses a probability model from sample space
S′ = {H0, H1}. The probability models H0 and H1 have the same sample space, S. The
second subexperiment produces an observation corresponding to an outcome, s ∈ S. When
the observation leads to a random vector X, we call X the decision statistic. Often, the
decision statistic is simply a random variable X . When the decision statistic X is discrete,
the probability models are conditional probability mass functions PX|H0(x) and PX|H1(x).
When X is a continuous random vector, the probability models are conditional probability
density functions fX|H0(x) and fX|H1(x). In the terminology of statistical inference, these
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Figure 8.1 Continuous and discrete examples of a receiver operating curve (ROC).

functions are referred to as likelihood functions. For example, fX|H0(x) is the likelihood of
x given H0.

The test design divides S into two sets, A0 and A1 = Ac
0. If the outcome s ∈ A0, the

conclusion is accept H0. Otherwise, the conclusion is accept H1. The accuracy measure
of the test consists of two error probabilities. P[A1|H0] corresponds to the probability of
a Type I error. It is the probability of accepting H1 when H0 is the true probability model.
Similarly, P[A0|H1] is the probability of accepting H0 when H1 is the true probability
model. It corresponds to the probability of a Type II error.

One electrical engineering application of binary hypothesis testing relates to a radar
system. The transmitter sends out a signal, and it is the job of the receiver to decide whether
a target is present. To make this decision, the receiver examines the received signal to
determine whether it contains a reflected version of the transmitted signal. The hypothesis
H0 corresponds to the situation in which there is no target. H1 corresponds to the presence
of a target. In the terminology of radar, a Type I error (conclude target present when there
is no target) is referred to as a false alarm and a Type II error (conclude no target when
there is a target present) is referred to as a miss.

The design of a binary hypothesis test represents a trade-off between the two error
probabilities, PFA = P[A1|H0] and PMISS = P[A0|H1]. To understand the trade-off,
consider an extreme design in which A0 = S consists of the entire sample space and
A1 = φ is the empty set. In this case, PFA = 0 and PMISS = 1. Now let A1 expand
to include an increasing proportion of the outcomes in S. As A1 expands, PFA increases
and PMISS decreases. At the other extreme, A0 = φ, which implies PMISS = 0. In this
case, A1 = S and PFA = 1. A graph representing the possible values of PFA and PMISS is
referred to as a receiver operating curve (ROC). Examples appear in Figure 8.1. A receiver
operating curve displays PMISS as a function of PFA for all possible A0 and A1. The graph
on the left represents probability models with a continuous sample space S. In the graph
on the right, S is a discrete set and the receiver operating curve consists of a collection of
isolated points in the PFA, PMISS plane. At the top left corner of the graph, the point (0, 1)

corresponds to A0 = S and A1 = φ. When we move one outcome from A0 to A1, we move
to the next point on the curve. Moving downward along the curve corresponds to taking
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Figure 8.2 (a) The probability of a miss and the probability of a false alarm as a function the
threshold x0 for Example 8.4. (b) The corresponding receiver operating curve for the system. We
see that the ROC improves as v increases.

more outcomes from A0 and putting them in A1 until we arrive at the lower right corner
(1, 0) where all the outcomes are in A1.

Example 8.4 The noise voltage in a radar detection system is a Gaussian (0, 1) random variable,
N . When a target is present, the received signal is X = v + N volts with v ≥ 0.
Otherwise the received signal is X = N volts. Periodically, the detector performs a
binary hypothesis test with H0 as the hypothesis no target and H1 as the hypothesis
target present. The acceptance sets for the test are A0 = {X ≤ x0} and A1 = {X > x0}.
Draw the receiver operating curves of the radar system for the three target voltages
v = 0, 1, 2 volts.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To derive a receiver operating curve, it is necessary to find PMISS and PFA as functions
of x0. To perform the calculations, we observe that under hypothesis H0, X = N is
a Gaussian (0, σ ) random variable. Under hypothesis H1, X = v + N is a Gaussian
(v, σ ) random variable. Therefore,

PMISS = P
[
A0|H1

] = P
[
X ≤ x0|H1

] = �(x0 − v) (8.5)

PFA = P
[
A1|H0

] = P
[
X > x0|H0

] = 1 − �(x0). (8.6)

Figure 8.2(a) shows PMISS and PFA as functions of x0 for v = 0, v = 1, and v = 2 volts.
Note that there is a single curve for PFA since the probability of a false alarm does not
depend on v. The same data also appears in the corresponding receiver operating
curves of Figure 8.2(b). When v = 0, the received signal is the same regardless of
whether or not a target is present. In this case, PMISS = 1 − PFA. As v increases, it is
easier for the detector to distinguish between the two targets. We see that the ROC
improves as v increases. That is, we can choose a value of x0 such that both PMISS
and PFA are lower for v = 2 than for v = 1.

In a practical binary hypothesis test, it is necessary to adopt one test (a specific A0) and
a corresponding trade-off between PFA and PMISS. There are many approaches to selecting
A0. In the radar application, the cost of a miss (ignoring a threatening target) could be far
higher than the cost of a false alarm (causing the operator to take an unnecessary precaution).
This suggests that the radar system should operate with a low value of x0 to produce a low
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PMISS even though this will produce a relatively high PFA. The remainder of this section
describes four methods of choosing A0.

Maximum A posteriori Probability (MAP) Test

Example 8.5 A modem transmits a binary signal to another modem. Based on a noisy measure-
ment, the receiving modem must choose between hypothesis H0 (the transmitter sent
a 00 and hypothesis H1 (the transmiiter sent a 1). A false alarm occurs when a 0 is
sent but a 1 is detected at the receiver. A miss occurs when a 1 is sent but a 0 is
detected. For both types of error, the cost is the same; one bit is detected incorrectly.

The maximum a posteriori probability test minimizes PERR, the total probability of
error of a binary hypothesis test. The law of total probability, Theorem 1.8, relates PERR
to the a priori probabilities of H0 and H1 and to the two conditional error probabilities,
PFA = P[A1|H0] and PMISS = P[A0|H1]:

PERR = P [A1|H0] P [H0] + P [A0|H1] P [H1] . (8.7)

When the two types of errors have the same cost, as in Example 8.5, minimizing PERR is a
sensible strategy. The following theorem specifies the binary hypothesis test that produces
the minimum possible PERR.

Theorem 8.1 Maximum A posteriori Probability (MAP) Binary Hypothesis Test
Given a binary hypothesis testing experiment with outcome s, the following rule leads to
the lowest possible value of PERR:

s ∈ A0 if P [H0|s] ≥ P [H1|s] ; s ∈ A1 otherwise.

Proof To create the event space {A0, A1}, it is necessary to place every element s ∈ S in either
A0 or A1. Consider the effect of a specific value of s on the sum in Equation (8.7). Either s will
contribute to the first (A1) or second (A0) term in the sum. By placing each s in the term that has the
lower value for the specific outcome s, we create an event space that minimizes the entire sum. Thus
we have the rule

s ∈ A0 if P
[
s|H1

]
P
[
H1

] ≤ P
[
s|H0

]
P
[
H0

] ; s ∈ A1 otherwise. (8.8)

Applying Bayes’ theorem (Theorem 1.11), we see that the left side of the inequality is P[H1|s]P[s] and
the right side of the inequality is P[H0|s]P[s]. Therefore the inequality is identical to P[H0|s]P[s] ≥
P[H1|s]P[s], which is identical to the inequality in the theorem statement.

Note that P[H0|s] and P[H1|s] are referred to as the a posteriori probabilities of H0
and H1. Just as the a priori probabilities P[H0] and P[H1] reflect our knowledge of H0
and H1 prior to performing an experiment, P[H0|s] and P[H1|s] reflect our knowledge
after observing s. Theorem 8.1 states that in order to minimize PERR it is necessary to
accept the hypothesis with the higher a posteriori probability. A test that follows this rule
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is a maximum a posteriori probability (MAP) hypothesis test. In such a test, A0 contains
all outcomes s for which P[H0|s] > P[H1|s], and A1 contains all outcomes s for which
P[H1|s] > P[H0|s]. If P[H0|s] = P[H1|s], the assignment of s to either A0 or A1
does not affect PERR. In Theorem 8.1, we arbitrarily assign s to A0 when the a posteriori
probabilities are equal. We would have the same probability of error if we assign s to A1
for all outcomes that produce equal a posteriori probabilities or if we assign some outcomes
with equal a posteriori probabilities to A0 and others to A1.

Equation (8.8) is another statement of the MAP decision rule. It contains the three
probability models that are assumed to be known:

• The a priori probabilities of the hypotheses: P[H0] and P[H1],
• The likelihood function of H0: P[s|H0],
• The likelihood function of H1: P[s|H1].

When the outcomes of an experiment yield a random vector X as the decision statistic, we
can express the MAP rule in terms of conditional PMFs or PDFs. If X is discrete, we take
X = xi to be the outcome of the experiment. If the sample space S of the experiment
is continuous, we interpret the conditional probabilities by assuming that each outcome
corresponds to the random vector X in the small volume x ≤ X < x + dx with probability
fX(x)dx. Section 4.9 demonstrates that the conditional probabilities are ratios of probability
densities. Thus in terms of the random variable X , we have the following version of the
MAP hypothesis test.

Theorem 8.2 For an experiment that produces a random vector X, the MAP hypothesis test is

Discrete: x ∈ A0 if
PX|H0 (x)

PX|H1 (x)
≥ P [H1]

P [H0]
; x ∈ A1 otherwise,

Continuous: x ∈ A0 if
fX|H0 (x)

fX|H1 (x)
≥ P [H1]

P [H0]
; x ∈ A1 otherwise.

In these formulas, the ratio of conditional probabilities is referred to as a likelihood ratio.
The formulas state that in order to perform a binary hypothesis test, we observe the outcome
of an experiment, calculate the likelihood ratio on the left side of the formula, and compare
it with a constant on the right side of the formula. We can view the likelihood ratio as the
evidence, based on an observation, in favor of H0. If the likelihood ratio is greater than 1,
H0 is more likely than H1. The ratio of prior probabilities, on the right side, is the evidence,
prior to performing the experiment, in favor of H1. Therefore, Theorem 8.2 states that H0
is the better conclusion if the evidence in favor of H0, based on the experiment, outweighs
the prior evidence in favor of H1.

In many practical hypothesis tests, including the following example, it is convenient to
compare the logarithms of the two ratios.

Example 8.6 With probability p, a digital communications system transmits a 0. It transmits a 1 with
probability 1 − p. The received signal is either X = −v + N volts, if the transmitted
bit is 0; or v + N volts, if the transmitted bit is 1. The voltage ±v is the information
component of the received signal, and N , a Gaussian (0, σ ) random variable, is the
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noise component. Given the received signal X , what is the minimum probability of
error rule for deciding whether 0 or 1 was sent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
With 0 transmitted, X is the Gaussian (−v, σ ) random variable. With 1 transmitted,
X is the Gaussian (v, σ ) random variable. With Hi denoting the hypothesis that bit i
was sent, the likelihood functions are

fX |H0 (x) = 1√
2πσ 2

e−(x+v)2/2σ 2
, fX |H1 (x) = 1√

2πσ 2
e−(x−v)2/2σ 2

. (8.9)

Since P[H0] = p, the likelihood ratio test of Theorem 8.2 becomes

x ∈ A0 if
e−(x+v)2/2σ 2

e−(x−v)2/2σ 2 ≥ 1 − p

p
; x ∈ A1 otherwise. (8.10)

Taking the logarithm of both sides and simplifying yields

x ∈ A0 if x ≤ x∗ = σ 2

2v
ln

(
p

1 − p

)
; x ∈ A1 otherwise. (8.11)

When p = 1/2, the threshold x∗ = 0 and the conclusion depends only on whether
the evidence in the received signal favors 0 or 1, as indicated by the sign of x. When
p 	= 1/2, the prior information shifts the decision threshold x∗. The shift favors 1
(x∗ < 0) if p < 1/2. The shift favors 0 (x∗ > 0) if p > 1/2. The influence of the prior
information also depends on the signal-to-noise voltage ratio, 2v/σ . When the ratio is
relatively high, the information in the received signal is reliable and the received signal
has relatively more influence than the prior information (x∗ closer to 0). When 2v/σ is
relatively low, the prior information has relatively more influence.

In Figure 8.3, the threshold x∗ is the value of x for which the two likelihood functions,
each multiplied by a prior probability, are equal. The probability of error is the sum of
the shaded areas. Compared to all other decision rules, the threshold x∗ produces
the minimum possible PERR.

Example 8.7 Find the error probability of the communications system of Example 8.6.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Equation (8.7), we can write the probability of an error as

PERR = pP
[
X > x∗|H0

] + (1 − p)P
[
X < x∗|H1

]
. (8.12)

Given H0, X is Gaussian (−v, σ ). Given H1, X is Gaussian (v, σ ). Consequently,

PERR = pQ

(
x∗ + v

σ

)
+ (1 − p)�

(
x∗ − v

σ

)
(8.13)

= pQ

(
σ

2v
ln

p

1 − p
+ v

σ

)
+ (1 − p)�

(
σ

2v
ln

p

1 − p
− v

σ

)
. (8.14)

This equation shows how the prior information, represented by ln[(1 − p)/p], and the
power of the noise in the received signal, represented by σ , influence PERR.

Example 8.8 At a computer disk drive factory, the manufacturing failure rate is the probability that a
randomly chosen new drive fails the first time it is powered up. Normally the production
of drives is very reliable, with a failure rate q0 = 10−4. However, from time to time
there is a production problem that causes the failure rate to jump to q1 = 10−1. Let
Hi denote the hypothesis that the failure rate is qi .
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Figure 8.3 Decision regions for Example 8.6.

Every morning, an inspector chooses drives at random from the previous day’s
production and tests them. If a failure occurs too soon, the company stops production
and checks the critical part of the process. Production problems occur at random once
every ten days, so that P[H1] = 0.1 = 1 − P[H0]. Based on N , the number of drives
tested up to and including the first failure, design a MAP hypothesis test. Calculate
the conditional error probabilities PFA and PMISS and the total error probability PERR.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given a failure rate of qi , N is a geometric random variable (see Example 2.11) with
expected value 1/qi . That is, PN |Hi (n) = qi (1−qi )

n−1 for n = 1, 2, . . . and PN |Hi (n) =
0 otherwise. Therefore, by Theorem 8.2, the MAP design states

n ∈ A0 if
PN |H0 (n)

PN |H1 (n)
≥ P

[
H1

]
P
[
H0

] ; n ∈ A1 otherwise (8.15)

With some algebra, we find that the MAP design is:

n ∈ A0 if n ≥ n∗ = 1 +
ln
(

q1 P[H1]
q0 P[H0]

)
ln
(

1−q0
1−q1

) ; n ∈ A1 otherwise. (8.16)

Substituting q0 = 10−4, q1 = 10−1, P[H0] = 0.9, and P[H1] = 0.1, we obtain n∗ =
45.8. Therefore, in the MAP hypothesis test, A0 = {n ≥ 46}. This implies that the
inspector tests at most 45 drives in order to reach a conclusion about the failure rate.
If the first failure occurs before test 46, the company assumes that the failure rate is
10−2. If the first 45 drives pass the test, then N ≥ 46 and the company assumes that
the failure rate is 10−4. The error probabilities are:

PFA = P
[
N ≤ 45|H0

] = FN |H0 (45) = 1 − (1 − 10−4)45 = 0.0045, (8.17)

PMISS = P
[
N > 45|H1

] = 1 − FN |H1 (45) = (1 − 10−1)45 = 0.0087. (8.18)

The total probability of error is PERR = P[H0]PFA + P[H1]PMISS = 0.0049.

We will return to Example 8.8 when we examine other types of tests.

Minimum Cost Test
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The MAP test implicitly assumes that both types of errors (miss and false alarm) are equally
serious. As discussed in connection with the radar application earlier in this section, this is
not the case in many important situations. Consider an application in which C = C10 units
is the cost of a false alarm (decide H1 when H0 is correct) and C = C01 units is the cost of
a miss (decide H0 when H1 is correct). In this situation the expected cost of test errors is

E [C] = P [A1|H0] P [H0] C10 + P [A0|H1] P [H1] C01. (8.19)

Minimizing E[C] is the goal of the minimum cost hypothesis test. When the decision
statistic is a random vector X, we have the following theorem.

Theorem 8.3 Minimum Cost Binary Hypothesis Test
For an experiment that produces a random vector X, the minimum cost hypothesis test is

Discrete: x ∈ A0 if
PX|H0 (x)

PX|H1 (x)
≥ P [H1] C01

P [H0] C10
; x ∈ A1 otherwise,

Continuous: x ∈ A0 if
fX|H0 (x)

fX|H1 (x)
≥ P [H1] C01

P [H0] C10
; x ∈ A1 otherwise.

Proof The function to be minimized, Equation (8.19), is identical to the function to be minimized
in the MAP hypothesis test, Equation (8.7), except that P[H1]C01 appears in place of P[H1] and
P[H0]C10 appears in place of P[H0]. Thus the optimum hypothesis test is the test in Theorem 8.2
with P[H1]C01 replacing P[H1] and P[H0]C10 replacing P[H0].

In this test we note that only the relative cost C01/C10 influences the test, not the individual
costs or the units in which cost is measured. A ratio > 1 implies that misses are more costly
than false alarms. Therefore, a ratio > 1 expands A1, the acceptance set for H1, making it
harder to miss H1 when it is correct. On the other hand, the same ratio contracts H0 and
increases the false alarm probability, because a false alarm is less costly than a miss.

Example 8.9 Continuing the disk drive test of Example 8.8, the factory produces 1,000 disk drives
per hour and 10,000 disk drives per day. The manufacturer sells each drive for $100.
However, each defective drive is returned to the factory and replaced by a new drive.
The cost of replacing a drive is $200, consisting of $100 for the replacement drive and
an additional $100 for shipping, customer support, and claims processing. Further
note that remedying a production problem results in 30 minutes of lost production.
Based on the decision statistic N , the number of drives tested up to and including the
first failure, what is the minimum cost test?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Based on the given facts, the cost C10 of a false alarm is 30 minutes (5,000 drives)
of lost production, or roughly $50,000. On the other hand, the cost C01 of a miss is
that 10% of the daily production will be returned for replacement. For 1,000 drives
returned at $200 per drive, The expected cost is 200,000 dollars. The minimum cost
test is

n ∈ A0 if
PN |H0 (n)

PN |H1 (n)
≥ P

[
H1

]
C01

P
[
H0

]
C10

; n ∈ A1 otherwise. (8.20)
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Performing the same substitutions and simplifications as in Example 8.8 yields

n ∈ A0 if n ≥ n∗ = 1 +
ln
(

q1 P[H1]C01
q0 P[H0]C10

)
ln
(

1−q0
1−q1

) = 58.92; n ∈ A1 otherwise. (8.21)

Therefore, in the minimum cost hypothesis test, A0 = {n ≥ 59}. An inspector tests
at most 58 disk drives to reach a conclusion regarding the state of the factory. If 58
drives pass the test, then N ≥ 59, and the failure rate is assumed to be 10−4. The
error probabilities are:

PFA = P
[
N ≤ 58|H0

] = FN |H0 (58) = 1 − (1 − 10−4)58 = 0.0058, (8.22)

PMISS = P
[
N ≥ 59|H1

] = 1 − FN |H1 (58) = (1 − 10−1)58 = 0.0022. (8.23)

The average cost (in dollars) of this rule is

E [C] = P
[
H0

]
PFAC10 + P

[
H1

]
PMISSC01 (8.24)

= (0.9)(0.0058)(50,000) + (0.1)(0.0022)(200,000) = 305. (8.25)

By comparison, the MAP test, which minimizes the probability of an error, rather than
the expected cost, has an expected cost

E
[
CMAP

] = (0.9)(0.0046)(50,000) + (0.1)(0.0079)(200,000) = 365. (8.26)

A savings of $60 may not seem very large. The reason is that both the MAP test and
the minimum cost test work very well. By comparison, for a “no test” policy that skips
testing altogether, each day that the failure rate is q1 = 0.1 will result, on average, in
1,000 returned drives at an expected cost of $200,000. Since such days will occur
with probability P[H1] = 0.1, the expected cost of a “no test” policy is $20,000 per day.

Neyman-Pearson Test

Given an observation, the MAP test minimizes the probability of accepting the wrong
hypothesis and the minimum cost test minimizes the cost of errors. However, the MAP
test requires that we know the a priori probabilities P[Hi ] of the competing hypotheses,
and the minimum cost test requires that we know in addition the relative costs of the
two types of errors. In many situations, these costs and a priori probabilities are difficult
or even impossible to specify. In this case, an alternate approach would be to specify a
tolerable level for either the false alarm or miss probability. This idea is the basis for the
Neyman-Pearson test. The Neyman-Pearson test minimizes PMISS subject to the false alarm
probability constraint PFA = α, where α is a constant that indicates our tolerance of false
alarms. Because PFA = P[A1|H0] and PMISS = P[A0|H1] are conditional probabilities,
the test does not require the a priori probabilities P[H0] and P[H1]. We first describe the
Neyman-Pearson test when the decision statistic is a continous random vector X.

Theorem 8.4 Neyman-Pearson Binary Hypothesis Test
Based on the decision statistic X, a continuous random vector, the decision rule that mini-
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mizes PMISS, subject to the constraint PFA = α, is

x ∈ A0 if L(x) = fX|H0 (x)

fX|H1 (x)
≥ γ ; x ∈ A1 otherwise,

where γ is chosen so that
∫

L(x)<γ
fX|H0(x) dx = α.

Proof Using the Lagrange multiplier method, we define the Lagrange multiplier λ and the function

G = PMISS + λ(PFA − α) (8.27)

=
∫

A0

fX|H1 (x) dx + λ

(
1 −

∫
A0

fX|H0 (x) dx − α

)
(8.28)

=
∫

A0

(
fX|H1 (x) − λ fX|H0 (x)

)
dx + λ(1 − α) (8.29)

For a given λ and α, we see that G is minimized if A0 includes all x satisfying

fX|H1 (x) − λ fX|H0 (x) ≤ 0. (8.30)

Note that λ is found from the constraint PFA = α. Moreover, we observe that Equation (8.29) implies
λ > 0; otherwise, fX|H0(x) − λ fX|H1(x) > 0 for all x and A0 = φ, the empty set, would minimize
G. In this case, PFA = 1, which would violate the constraint that PFA = α. Since λ > 0, we can
rewrite the inequality (8.30) as L(x) ≥ 1/λ = γ .

In the radar system of Example 8.4, the decision statistic was a random variable X and
the receiver operating curves (ROCs) of Figure 8.2 were generated by adjusting a threshold
x0 that specified the sets A0 = {X ≤ x0} and A1 = {X > x0}. Example 8.4 did not question
whether this rule finds the best ROC, that is, the best trade-off between PMISS and PFA.
The Neyman-Pearson test finds the best ROC. For each specified value of PFA = α, the
Neyman-Pearson test identifies the decision rule that minimizes PMISS.

In the Neyman-Pearson test, an increase in γ decreases PMISS but increases PFA. When
the decision statistic X is a continuous random vector, we can choose γ so that false alarm
probability is exactly α. This may not be possible when X is discrete. In the discrete case,
we have the following version of the Neyman-Pearson test.

Theorem 8.5 Discrete Neyman-Pearson Test
Based on the decision statistic X, a decision random vector, the decision rule that minimizes
PMISS, subject to the constraint PFA ≤ α, is

x ∈ A0 if L(x) = PX|H0 (x)

PX|H1 (x)
≥ γ ; x ∈ A1 otherwise,

where γ is the largest possible value such that
∑

L(x)<γ PX|H0(x) dx ≤ α.

Example 8.10 Continuing the disk drive factory test of Example 8.8, design a Neyman-Pearson test
such that the false alarm probability satisfies PFA ≤ α = 0.01. Calculate the resulting

 



312 CHAPTER 8 HYPOTHESIS TESTING

miss and false alarm probabilities.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Neyman-Pearson test is

n ∈ A0 if L(n) = PN |H0 (n)

PN |H1 (n)
≥ γ ; n ∈ A1 otherwise. (8.31)

We see from Equation (8.15) that this is the same as the MAP test with P[H1]/P[H0]
replaced by γ . Thus, just like the MAP test, the Neyman-Pearson test must be a
threshold test of the form

n ∈ A0 if n ≥ n∗; n ∈ A1 otherwise. (8.32)

Some algebra would allow us to find the threshold n∗ in terms of the parameter γ .
However, this is unnecessary. It is simpler to choose n∗ directly so that the test meets
the false alarm probability constraint

PFA = P
[
N ≤ n∗ − 1|H0

] = FN |H0

(
n∗ − 1

) = 1 − (1 − q0)n∗−1 ≤ α. (8.33)

This implies

n∗ ≤ 1 + ln(1 − α)

ln(1 − q0)
= 1 + ln(0.99)

ln(0.9)
= 101.49. (8.34)

Thus, we can choose n∗ = 101 and still meet the false alarm probability constraint.
The error probabilities are:

PFA = P
[
N ≤ 100|H0

] = 1 − (1 − 10−4)100 = 0.00995, (8.35)

PMISS = P
[
N ≥ 101|H1

] = (1 − 10−1)100 = 2.66 · 10−5. (8.36)

We see that a one percent false alarm probability yields a dramatic reduction in the
probability of a miss. Although the Neyman-Pearson test minimizes neither the overall
probability of a test error nor the expected cost E[C], it may be preferable to either the
MAP test or the minimum cost test. In particular, customers will judge the quality of the
disk drives and the reputation of the factory based on the number of defective drives
that are shipped. Compared to the other tests, the Neyman-Pearson test results in a
much lower miss probability and far fewer defective drives being shipped.

Maximum Likelihood Test

Similar to the Neyman-Pearson test, the maximum likelihood (ML) test is another method
that avoids the need for a priori probabilities. Under the ML approach, we treat the hy-
pothesis as some sort of “unknown” and choose a hypothesis Hi for which P[s|Hi ], the
conditional probability of the outcome s given the hypothesis Hi is largest. The idea behind
choosing a hypothesis to maximize the probability of the observation is to avoid making
assumptions about the a priori probabilities P[Hi ]. The resulting decision rule, called the
maximum likelihood (ML) rule, can be written mathematically as:

Definition 8.1 Maximum Likelihood Decision Rule
For a binary hypothesis test based on the experimental outcome s ∈ S, the maximum
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likelihood (ML) decision rule is

s ∈ A0 if P [s|H0] ≥ P [s|H1] ; s ∈ A1 otherwise.

Comparing Theorem 8.1 and Definition 8.1, we see that in the absence of information about
the a priori probabilities P[Hi ], we have adopted a maximum likelihood decision rule that
is the same as the MAP rule under the assumption that hypotheses H0 and H1 occur with
equal probability. In essence, in the absence of a priori information, the ML rule assumes
that all hypotheses are equally likely. By comparing the likelihood ratio to a threshold equal
to 1, the ML hypothesis test is neutral about whether H0 has a higher probability than H1
or vice versa.

When the decision statistic of the experiment is a random vector X, we can express the
ML rule in terms of conditional PMFs or PDFs, just as we did for the MAP rule.

Theorem 8.6 If an experiment produces a random vector X, the ML decision rule states

Discrete: x ∈ A0 if
PX|H0 (x)

PX|H1 (x)
≥ 1; x ∈ A1 otherwise,

Continuous: x ∈ A0 if
fX|H0 (x)

fX|H1 (x)
≥ 1; x ∈ A1 otherwise.

Comparing Theorem 8.6 to Theorem 8.4, when X is continuous, or Theorem 8.5, when X
is discrete, we see that the maximum likelihood test is the same as the Neyman-Pearson
test with parameter γ = 1. This guarantees that the maximum likelihood test is optimal in
the limited sense that no other test can reduce PMISS for the same PFA.

In practice, we use a ML hypothesis test in many applications. It is almost as effective
as the MAP hypothesis test when the experiment that produces outcome s is reliable in
the sense that PERR for the ML test is low. To see why this is true, examine the decision
rule in Example 8.6. When the signal-to-noise ratio 2v/σ is high, the threshold (of the
log-likelihood ratio) is close to 0, which means that the result of the MAP hypothesis test
is close to the result of a ML hypothesis test, regardless of the prior probability p.

Example 8.11 Continuing the disk drive test of Example 8.8, design the maximum likelihood test for
the factory state based on the decision statistic N , the number of drives tested up to
and including the first failure.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The ML hypothesis test corresponds to the MAP test with P[H0] = P[H1] = 0.5. In
ths icase, Equation (8.16) implies n∗ = 66.62 or A0 = {n ≥ 67}. The conditional error
probabilities under the ML rule are

PFA = P
[
N ≤ 66|H0

] = 1 − (1 − 10−4)66 = 0.0066, (8.37)

PMISS = P
[
N ≥ 67|H1

] = (1 − 10−1)66 = 9.55 · 10−4. (8.38)

For the ML test, PERR = 0.0060. Comparing the MAP rule with the ML rule, we see
that the prior information used in the MAP rule makes it more difficult to reject the null
hypothesis. We need only 46 good drives in the MAP test to accept H0, while in the
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ML test, the first 66 drives have to pass. The ML design, which does not take into
account the fact that the failure rate is usually low, is more susceptible to false alarms
than the MAP test. Even though the error probability is higher for the ML test, it might
be a good idea to use this test in the drive company because the miss probability
is very low. The consequence of a false alarm is likely to be an examination of the
manufacturing process to find out if something is wrong. A miss, on the other hand
(deciding the failure rate is 10−4 when it is really 10−1), would cause the company to
ship an excessive number of defective drives.

Quiz 8.2 In an optical communications system, the photodetector output is a Poisson random variable
K either with an expected value of 10,000 photons (hypothesis H0) or with an expected
value of 1,000,000 photons (hypothesis H1). Given that both hypotheses are equally likely,
design a MAP hypothesis test using observed values of random variable K .

8.3 Multiple Hypothesis Test

There are many applications in which an experiment can conform to more than two known
probability models, all with the same sample space S. A multiple hypothesis test is a
generalization of a binary hypothesis test. There are M hypothetical probability models:
H0, H1, · · · , HM−1. We perform an experiment and based on the outcome, we come to the
conclusion that a certain Hm is the true probability model. The design of the experiment
consists of dividing S into an event space consisting of mutually exclusive, collectively
exhaustive sets, A0, A1, · · · , AM−1, such that the conclusion is accept Hi if s ∈ Ai . The
accuracy measure of the experiment consists of M2 conditional probabilities, P[Ai |H j ],
i, j = 0, 1, 2, · · · , M − 1. The M probabilities, P[Ai |Hi ], i = 0, 1, · · · , M − 1 are
probabilities of correct decisions. The remaining probabilities are error probabilities.

Example 8.12 A computer modem is capable of transmitting 16 different signals. Each signal repre-
sents a sequence of four bits in the digital bit stream at the input to the modem. The
modem receiver examines the received signal and produces four bits in the bit stream
at the output of the modem. The design of the modem considers the task of the re-
ceiver to be a test of 16 hypotheses H0, H1, . . . , H15, where H0 represents 0000, H1
represents 0001, · · · and H15 represents 1111. The sample space of the experiment
is an ensemble of possible received signals. The test design places each outcome
s in a set Ai such that the event s ∈ Ai leads to the output of the four-bit sequence
corresponding to Hi .

For a multiple hypothesis test, the MAP hypothesis test and the ML hypothesis test are
generalizations of the tests in Theorem 8.1 and Definition 8.1. Minimizing the probability
of error corresponds to maximizing the probability of a correct decision,

PCORRECT =
M−1∑
i=0

P [Ai |Hi ] P [Hi ] . (8.39)
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Theorem 8.7 MAP Multiple Hypothesis Test
maximum a posteriori probabilityGiven a multiple hypothesis testing experiment with out-
come s, the following rule leads to the highest possible value of PCORRECT:

s ∈ Am if P [Hm|s] ≥ P
[
H j |s

]
for all j = 0, 1, 2, . . . , M − 1.

As in binary hypothesis testing, we can apply Bayes’ theorem to derive a decision rule based
on the probability models (likelihood functions) corresponding to the hypotheses and the
a priori probabilities of the hypotheses. Therefore, corresponding to Theorem 8.2, we have
the following generalization of the MAP binary hypothesis test.

Theorem 8.8 For an experiment that produces a random variable X, the MAP multiple hypothesis test is

Discrete: xi ∈ Am if P [Hm] PX |Hm (xi ) ≥ P
[
H j

]
PX |Hj (xi ) for all j,

Continuous: x ∈ Am if P [Hm] fX |Hm (x) ≥ P
[
H j

]
fX |Hj (x) for all j .

If information about the a priori probabilities of the hypotheses is not available, a maxi-
mum likelihood hypothesis test is appropriate:

Definition 8.2 Maximum Likelihood (ML) Multiple Hypothesis Test
A maximum likelihood test of multiple hypotheses has the decision rule

s ∈ Am if P [s|Hm] ≥ P
[
s|H j

]
for all j .

The ML hypothesis test corresponds to the MAP hypothesis test when all hypotheses Hi
have equal probability.

Example 8.13 In a quaternary phase shift keying (QPSK) communications system, the transmitter
sends one of four equally likely symbols {s0, s1, s2, s3}. Let Hi denote the hypothesis
that the transmitted signal was si . When si is transmitted, a QPSK receiver produces
the vector X = [

X1 X2
]′ such that

X1 = √
E cos(iπ/2 + π/4) + N1, X2 = √

E sin(iπ/2 + π/4) + N2, (8.40)

where N1 and N2 are iid Gaussian (0, σ ) random variables that characterize the re-
ceiver noise and E is the average energy per symbol. Based on the receiver output
X, the receiver must decide which symbol was transmitted. Design a hypothesis test
that maximizes the probability of correctly deciding which symbol was sent.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since the four hypotheses are equally likely, both the MAP and ML tests maximize
the probability of a correct decision. To derive the ML hypothesis test, we need to
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X1

X2

s0s1

s2 s3

A0A1

A2 A3

Figure 8.4 For the QPSK receiver of Example 8.13, the four quadrants (with boundaries marked
by shaded bars) are the four acceptance sets {A0, A1, A2, A3}.

calculate the conditional joint PDFs fX|Hi (x). Given Hi , N1 and N2 are independent
and thus X1 and X2 are independent. That is, using θi = iπ/2 + π/4, we can write

fX|Hi (x) = fX1|Hi (x1) fX2|Hi (x2) (8.41)

= 1

2πσ 2
e−(x1−

√
E cos θi )

2/2σ 2
e−(x2−

√
E sin θi )

2/2σ 2
(8.42)

= 1

2πσ 2
e−[(x1−

√
E cos θi )

2+(x2−
√

E sin θi )
2]/2σ 2

. (8.43)

We must assign each possible outcome x to an acceptance set Ai . From Definition 8.2,
the acceptance sets Ai for the ML multiple hypothesis test must satisfy

x ∈ Ai if fX|Hi (x) ≥ fX|Hj (x) for all j . (8.44)

Equivalently, the ML acceptance sets are given by the rule that x ∈ Ai if for all j ,

(x1 − √
E cos θi )

2 + (x2 − √
E sin θi )

2 ≤ (x1 − √
E cos θ j )

2 + (x2 − √
E sin θ j )

2.

Defining the signal vectors si = [√
E cos θi

√
E sin θi

]′, we can write the ML rule as

x ∈ Ai if ‖x − si ‖2 ≤ ∥∥x − s j
∥∥2 (8.45)

where ‖u‖2 = u2
1 + u2

2 denotes the square of the Euclidean length of two-dimensional
vector u. In short, the acceptance set Ai is the set of all vectors x that are closest
to the vector si . These acceptance sets are shown in Figure 8.4. In communica-
tions textbooks, the space of vectors x is called the signal space, the set of vectors
{s1, . . . , s4} is called the signal constellation, and the acceptance sets Ai are called
decision regions.

Quiz 8.3 For the QPSK communications system of Example 8.13, what is the probability that the
receiver makes an error and decodes the wrong symbol?
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8.4 Matlab

In the examples of this chapter, we have chosen experiments with simple probability models
in order to highlight the concepts and characteristic properties of hypothesis tests. Matlab
greatly extends our ability to design and evaluate hypothesis tests, especially in practical
problems where a complete analysis becomes too complex. For example, Matlab can
easily perform probability of error calculations and graph receiver operating curves. In addi-
tion, there are many cases in which analysis can identify the acceptance sets of a hypothesis
test but calculation of the error probabilities is overly complex. In this case, Matlab can
simulate repeated trials of the hypothesis test. The following example presents a situation
frequently encountered by communications engineers. Details of a practical system create
probability models that are hard to analyze mathematically. Instead, engineers use Mat-
lab and other software tools to simulate operation of the systems of interest. Simulation
data provides estimates of system performance for each of several design alternatives. This
example is similar to Example 8.6 with the added complication that an amplifier in the
receiver produces a fraction of the square of the signal plus noise.

Example 8.14 A digital communications system transmits either a bit B = 0 or B = 1 with probability
1/2. The internal circuitry of the receiver results in a “squared distortion” such that
received signal (measured in volts) is either:

X =
{ −v + N + d(−v + N)2 B = 0,

v + N + d(v + N)2 B = 1,
(8.46)

where N , the noise is Gaussian (0, 1). For each bit transmitted, the receiver produces
an output B̂ = 0 if X ≤ T and an output B̂ = 1, otherwise. Simulate the transmission of
20, 000 bits through this system with v = 1.5 volts, d = 0.5 and the following values of
the decision threshold: T = −0.5,−0.2, 0, 0.2, 0.5 volts. Which choice of T produces
the lowest probability of error? Can you find a value of T that does a better job?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since each bit is transmitted and received independently of the others, the program
sqdistor transmits m = 10, 000 zeroes to estimate P[B̂ = 1|B = 0], the probabilityof
1 received given 0 transmitted, for each of the thresholds. It then transmits m = 10, 000
ones to estimate P[B̂ = 0|B = 1]. The average probability of error is

PERR = 0.5P
[

B̂ = 1|B = 0
]

+ 0.5P
[

B̂ = 0|B = 1
]
. (8.47)

function y=sqdistor(v,d,m,T)
%P(error) for m bits tested
%transmit +v or -v volts,
%add N volts, N is Gauss(0,1)
%add d(v+N)ˆ2 distortion
%receive 1 if x>T, otherwise 0
x=(v+randn(m,1));
[XX,TT]=ndgrid(x,T(:));
P01=sum((XX+d*(XX.ˆ2)< TT),1)/m;
x= -v+randn(m,1);
[XX,TT]=ndgrid(x,T(:));
P10=sum((XX+d*(XX.ˆ2)>TT),1)/m;
y=0.5*(P01+P10);

By defining the grid matrices XX
and TT, we can test each candi-
date value of T for the same set
of noise variables. We observe the
output in Figure 8.5. Because of
the bias induced by the squared
distortion term, T = 0.5 is best
among the candidate values of T .
However, the data suggests that a
value of T greater than 0.5 might
work better. Problem 8.4.3 exam-
ines this possibility.
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» T
T =

-0.5000 -0.2000 0 0.2000 0.5000
» Pe=sqdistor(1.5,0.5,10000,T)
Pe =

0.5000 0.2733 0.2265 0.1978 0.1762

Figure 8.5 Average error rate for the squared distortion communications system of Example 8.14.

The problems for this section include a collection of hypothesis testing problems that
can be solved using Matlab but are too difficult to solve by hand. The solutions are built
on the Matlab methods developed in prior chapters; however, the necessary Matlab
calculations and simulations are typically problem specific.

Quiz 8.4 For the communications system of Example 8.14 with squared distortion, we can define the
miss and false alarm probabilities as

PMISS = P01 = P
[

B̂ = 0|B = 1
]
, PFA = P10 = P

[
B̂ = 1|B = 0

]
. (8.48)

Modify the program sqdistor in Example 8.14 to produce receiver operating curves
for the parameters v = 3volts and d = 0.1, 0.2, and 0.3. Hint: The points on the ROC
correspond to different values of the threshold T volts.

Chapter Summary

This chapter develops techniques for using observations to determine the probability model
that produces the observations.

• A hypothesis is a candidate probability model.

• A significance test specifies a set of outcomes corresponding to the decision to accept a
hypothesis about a probability model.

• A multiple hypothesis test creates an event space for an experiment. Each set in the event
space is associated with its own hypothesis about a probability model. Observing an
outcome in a set corresponds to accepting the hypothesis associated with the set.

• The a posteriori probability of a hypothesis is the conditional probability of a hypothesis,
given an event.

• A maximum a posteriori hypothesis test creates an event space that minimizes the prob-
ability of error of a multiple hypothesis test. The outcomes in each set of the event space
maximize the a posteriori probability of one hypothesis.

• A minimum cost hypothesis test creates an event space that minimizes the expected cost
of choosing an incorrect hypothesis.
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• The Neyman-Pearson hypothesis test is the decision rule that minimizes the miss prob-
ability subject to a constraint on the false alarm probability.

• The likelihood of a hypothesis is the conditional probability of an event, given the
hypothesis.

• A maximum likelihood hypothesis test creates an event space in which the outcomes in
each set maximize the likelihood of one hypothesis.

• Further Reading: [Kay98] provides detailed, readable coverage of hypothesis testing.
[Hay01] presents detection of digital communications signals as a hypothesis test. A
collection of challenging homework problems for sections 8.3 and 8.4 are based on bit
detection for code division multiple access (CDMA) communications systems. The
authoritative treatment of this subject can be found in [Ver98].

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

8.1.1• Let L equal the number of flips of a coin up to and in-
cluding the first flip of heads. Devise a significance
test for L at level α = 0.05 to test the hypothesis H
that the coin is fair. What are the limitations of the
test?

8.1.2
�

Let K be the number of heads in n = 100 flips of
a coin. Devise significance tests for the hypothesis
H that the coin is fair such that

(a) The significance level α = 0.05 and the rejec-
tion set R has the form {|K − E[K ]| > c}.

(b) The significance level α = 0.01 and the rejec-
tion set R has the form {K > c′}.

8.1.3
�

When a chip fabrication facility is operating nor-
mally, the lifetime of a microchip operated at tem-
perature T , measured in degrees Celsius, is given
by an exponential (λ) random variable X with ex-
pected value E[X] = 1/λ = (200/T )2 years. Oc-
casionally, the chip fabrication plant has contam-
ination problems and the chips tend to fail much
more rapidly. To test for contamination problems,
each day m chips are subjected to a one-day test
at T = 100◦C . Based on the number N of chips
that fail in one day, design a significance test for the
null hypothesis test H0 that the plant is operating
normally.

(a) Suppose the rejection set of the test is R =
{N > 0}. Find the significance level of the test
as a function of m, the number of chips tested.

(b) How many chips must be tested so that the sig-
nificance level is α = 0.01.

(c) If we raise the temperature of the test, does the
number of chips we need to test increase or de-
crease?

8.1.4• The duration of a voice telephone call is an ex-
ponential random variable T with expected value
E[T ] = 3 minutes. Data calls tend to be longer
than voice calls on average. Observe a call and re-
ject the null hypothesis that the call is a voice call if
the duration of the call is greater than t0 minutes.

(a) Write a formula for α, the significance of the test
as a function of t0.

(b) What is the value of t0 that produces a signifi-
cance level α = 0.05?

8.1.5
�

When a pacemaker factory is operating normally
(the null hypothesis H0), a randomly selected pace-
maker fails a test with probability q0 = 10−4. Each
day, an inspector randomly tests pacemakers. De-
sign a significance test for the null hypothesis with
significance level α = 0.01. Note that testing pace-
makers is expensive because the pacemakers that are
tested must be discarded. Thus the significance test
should try to minimize the number of pacemakers
tested.

8.1.6
�

A class has 2n (a large number) students The stu-
dents are separated into two groups A and B each
with n students. Group A students take exam A
and earn iid scores X1, . . . , Xn . Group B students
take exam B, earning iid scores Y1, . . . , Yn . The
two exams are similar but different; however, the
exams were designed so that a student’s score X on
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exam A or Y on exam B have the same mean and
variance σ 2 = 100. For each exam, we form the
sample mean statistic

MA = X1 + · · · + Xn

n
, MB = Y1 + · · · + Yn

n
.

Based on the statistic D = MA − MB , use the cen-
tral limit theorem to design a significance test at
significance level α = 0.05 for the hypothesis H0
that a students score on the two exams has the same
mean μ and variance σ 2 = 100. What is the re-
jection region if n = 100? Make sure to specify
any additional assumptions that you need to make;
however, try to make as few additional assumptions
as possible.

8.2.1• In a random hour, the number of call attempts N at
a telephone switch has a Poisson distribution with
a mean of either α0 (hypothesis H0) or α1 (hypoth-
esis H1). For a priori probabilities P[Hi ], find the
MAP and ML hypothesis testing rules given the ob-
servation of N .

8.2.2
�

The duration of a voice telephone call is an ex-
ponential random variable V with expected value
E[V ] = 3 minutes. The duration of a data call is an
exponential random variable D with expected value
E[D] = μD > 3 minutes. The null hypothesis of
a binary hypothesis test is H0 : a call is a voice call.
The alternative hypothesis is H1: a call is a data call.
The probability of a voice call is P[V ] = 0.8. The
probability of a data call is P[D] = 0.2. A binary
hypothesis test measures T minutes, the duration
of a call. The decision is H0 if T ≤ t0 minutes.
Otherwise, the decision is H1.

(a) Write a formula for the false alarm probability
as a function of t0 and μD .

(b) Write a formula for the miss probability as a
function of t0 and μD .

(c) Calculate the maximum likelihood decision time
t0 = tM L for μD = 6 minutes and μD = 10
minutes.

(d) Do you think that tMAP, the maximum a poste-
riori decision time, is greater than or less than
tML? Explain your answer.

(e) Calculate the maximum a posteriori probability
decision time t0 = tM AP for μD = 6 minutes
and μD = 10 minutes.

(f) Draw the receiver operating curves for μD = 6
minutes and μD = 10 minutes.

8.2.3
�

An automatic doorbell system rings a bell when-
ever it detects someone by the door. The system
uses a photodetector such that if a person is present,
hypothesis H1, the photodetector output N is a Pois-
son random variable with an expected value of 1,300
photons. Otherwise; if no one is there, hypothesis
H0, the photodetector output is a Poisson random
variable with an expected value of 1,000. Devise a
Neyman-Pearson test for the presence of someone
outside the door such that the false alarm probability
is α ≤ 10−6. What is minimum value of PMISS?

8.2.4
�

In the radar system of Example 8.4, the probability
that a target is present is P[H1] = 0.01. In the case
of a false alarm, the system issues an unnecessary
alert at the cost of C10 = 1 unit. The cost of a miss
is C10 = 104 units because the target could cause
a lot of damage. When the target is present, the
voltage is X = 4 + N , a Gaussian (4, 1) random
variable. When there is no target present, the volt-
age is X = N , the Gaussian (0, 1) random variable.
In a binary hypothesis test, the acceptance sets are
A0 = {X ≤ x0} and A1 = {X > x0}.
(a) What is x0 = xMAP, the decision threshold of

the maximum a posteriori probability hypothesis
test?

(b) What are the error probabilities PFA and PMISS
of the MAP test?

8.2.5
�

In the radar system of Example 8.4, show that the
ROC in Figure 8.2 is the result of a Neyman-Pearson
test. That is, show that the Neyman-Pearson test is a
threshold test with acceptance set A0 = {X ≤ x0}.
How is x0 related to the false alarm probability α?

8.2.6
�

Some telephone lines are used only for voice calls.
Others are connected to modems and used only for
data calls. The duration of a voice telephone call
is an exponential random variable V with expected
value E[V ] = 3 minutes. The duration of a data
call is an exponential random variable D with ex-
pected value E[D] = μD = 6 minutes. The null
hypothesis of a binary hypothesis test is H0 : a line
is used for voice calls. The alternative hypothesis is
H1: a line is a data line. The probability of a voice
line is P[V ] = 0.8. The probability of a data line
is P[D] = 0.2.

A binary hypothesis test observes n calls from
one telephone line and calculates Mn(T ), the
sample mean of the duration of a call. The deci-
sion is H0 if Mn (T ) ≤ t0 minutes. Otherwise, the
decision is H1.
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(a) Use the central limit theorem to write a formula
for the false alarm probability as a function of t0
and n.

(b) Use the central limit theorem to write a formula
for the miss probability as a function of t0 and
n.

(c) Calculate the maximum likelihood decision
time, t0 = tML, for n = 9 calls monitored.

(d) Calculate the maximum a posteriori probability
decision time, t0 = tMAP for n = 9 calls moni-
tored.

(e) Draw the receiver operating curves for n = 9
calls monitored and n = 16 calls monitored.

8.2.7
�

In this problem, we repeat the voice/data line detec-
tion test of Problem 8.2.6, except now we observe
n calls from one line and records whether each call
lasts longer than t0 minutes. The random variable
K is the number of calls that last longer than t0 min-
utes. The decision is H0 if K ≤ k0 . Otherwise, the
decision is H1.

(a) Write a formula for the false alarm probability
as a function of t0, k0, and n.

(b) Find the maximum likelihood decision number
k0 = kM L for t0 = 4.5 minutes and n = 16
calls monitored.

(c) Find the maximum a posteriori probability deci-
sion number k0 = kM AP for t0 = 4.5 minutes
and n = 16 calls monitored.

(d) Draw the receiver operating curves for t0 = 4.5
minutes and t0 = 3 minutes. In both cases let
n = 16 calls monitored.

8.2.8
�

A binary communication system has transmitted
signal X , a Bernoulli (p = 1/2) random variable.
At the receiver, we observe Y = V X + W , where
V is a “fading factor” and W is additive noise.
Note that X , V and W are mutually independent
random variables. Moreover V and W are expo-
nential random variables with PDFs

fV (v) = fW (v) =
{

e−v v ≥ 0
0 otherwise

Given the observation Y , we must guess whether
X = 0 or X = 1 was transmitted. Use a binary
hypothesis test to determine the rule that minimizes
the probability PERR of a decoding error. For the
optimum decision rule, calculate PERR.

8.2.9
�

Suppose in the disk drive factory of Example 8.8,
we can observe K , the number of failed devices out
of n devices tested. As in the example, let Hi denote
the hypothesis that the failure rate is qi .

(a) Assuming q0 < q1, what is the ML hypothesis
test based on an observation of K ?

(b) What are the conditional probabilities of error
PFA = P[A1|H0] and PMISS = P[A0|H1]?
Calculate these probabilities for n = 500, q0 =
10−4, q1 = 10−2.

(c) Compare this test to that considered in Exam-
ple 8.8. Which test is more reliable? Which test
is easier to implement?

8.2.10
�

Consider a binary hypothesis in which there is a cost
associated with each type of decision. In addition
to the cost C ′

10 for a false alarm and C ′
01 for a miss,

we also have the costs C ′
00 for correctly guessing

hypothesis H0 and the C ′
11 for correctly guessing

hypothesis H1. Based on the observation of a con-
tinuous random vector X, design the hypothesis test
that minimizes the total expected cost

E
[
C ′] = P

[
A1|H0

]
P
[
H0

]
C ′

10

+ P
[
A0|H0

]
P
[
H0

]
C ′

00

+ P
[
A0|H1

]
P
[
H1

]
C ′

01

+ P
[
A1|H1

]
P
[
H1

]
C ′

11.

Show that the decision rule that minimizes mini-
mum cost test is the same as the minimum cost test
in Theorem 8.3 with the costs C01 and C10 replaced
by the differential costs C ′

01 − C ′
11 and C ′

10 − C ′
00.

8.3.1• In a ternary amplitude shift keying (ASK) com-
munications system, there are three equally likely
transmitted signals {s0, s1, s2}. These signals are
distinguished by their amplitudes such that if signal
si is transmitted, then the receiver output will be

X = a(i − 1) + N

where a is a positive constant and N is a Gaus-
sian (0, σN ) random variable. Based on the output
X , the receiver must decode which symbol si was
transmitted. What are the acceptance sets Ai for the
hypotheses Hi that si was transmitted?

8.3.2• A multilevel QPSK communications system trans-
mits three bits every unit of time. For each possible
sequence i j k of three bits, one of eight symbols,
{s000, s001, . . . , s111}, is transmitted. When signal
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si j k is transmitted, the receiver output is

X = si j k + N

where N is a Gaussian (0, σ 2I) random vector. The
2-dimensional signal vectors s000, . . . , s111 are

��

�

�

•
s000•

s010

•
s001•

s011

•
s100•

s110

•
s101•

s111

Let Hijk denote the hypothesis that si j k
was transmitted. The receiver output X =[
X1 X2

]′ is used to decide the acceptance sets
{A000, . . . , A111}. If all eight symbols are equally
likely, sketch the acceptance sets.

8.3.3
�

For the ternary ASK system of Problem 8.3.1, what
is P[DE ], the probability that the receiver decodes
the wrong symbol?

8.3.4
�

An M-ary quadrature amplitude modulation
(QAM) communications system can be viewed as a
generalization of the QPSK system described in Ex-
ample 8.13. In the QAM system, one of M equally
likely symbols s0, . . . , sm−1 is transmitted every
unit of time. When symbol si is transmitted, the
receiver produces the 2-dimensional vector output

X = si + N

where N has iid Gaussian (0, σ 2) components.
Based on the output X, the receiver must decide
which symbol was transmitted. Design a hypothe-
sis test that maximizes the probability of correctly
deciding what symbol was sent. Hint: Following
Example 8.13, describe the acceptance set in terms
of the vectors

x =
[

x1
x2

]
, si =

[
si1
si2

]
.

8.3.5
�

Suppose a user of the multilevel QPSK system needs
to decode only the third bit k of the message i j k.
For k = 0, 1, let Hk denote the hypothesis that the
third bit was k. What are the acceptance sets A0 and

A1? What is P[B3], the probability that the third
bit is in error?

8.3.6
�

The QPSK system of Example 8.13 can be general-
ized to an M-ary phase shift keying (M-PSK) sys-
tem with M > 4 equally likely signals. The signal
vectors are {s0, . . . , sM−1} where

si =
[

si1
si2

]
=
[√

E cos θi√
E sin θi

]

and θi = 2πi/M . When the i th message is sent, the
received signal is X = si +N where N is a Gaussian
(0, σ 2I) noise vector.

(a) Sketch the acceptance set Ai for the hypothesis
Hi that si was transmitted.

(b) Find the largest value of d such that

{x| ‖x − si ‖ ≤ d} ⊂ Ai .

(c) Use d to find an upper bound for the probability
of error.

8.3.7
�

An obsolete 2400 bps modem uses QAM (see
Problem 8.3.4) to transmit one of 16 symbols,
s0, . . . , s15, every 1/600 seconds. When signal si
is transmitted, the receiver output is

X = si + N.

The signal vectors s0, . . . , s15 are

��

�

�

•
s1•

s4

•
s8 •

s12

•
s0

•
s2•

s5

•
s6

•
s9

•
s10 •

s13

•
s14

•
s3•

s7

•
s11 •

s15

(a) Sketch the acceptance sets based on the receiver
outputs X1, X2. Hint: Apply the solution to
Problem 8.3.4.

(b) Let Hi be the event that symbol si was transmit-
ted and let C be the event that the correct symbol
is decoded. What is P[C|H1]?

(c) Argue that P[C] ≥ P[C|H1].
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8.3.8
�

For the QPSK communications system of Exam-
ple 8.13, identify the acceptance sets for the MAP
hypothesis test when the symbols are not equally
likely. Sketch the acceptance sets when σ = 0.8,
E = 1, P[H0] = 1/2, and P[H1] = P[H2] =
P[H3] = 1/6.

8.3.9
�

In a code division multiple access (CDMA) commu-
nications system, k users share a radio channel using
a set of n-dimensional code vectors {S1, . . . , Sk} to
distinguish their signals. The dimensionality fac-
tor n is known as the processing gain. Each user i
transmits independent data bits Xi such that the vec-
tor X = [

X1 · · · Xn
]′ has iid components with

PXi (1) = PXi (−1) = 1/2. The received signal is

Y =
k∑

i=1

Xi
√

pi Si + N

where N is a Gaussian (0, σ 2I) noise vector. From
the observation Y, the receiver performs a multiple
hypothesis test to decode the data bit vector X.

(a) Show that in terms of vectors,

Y = SP1/2X + N

where S is an n×k matrix with i th column Si and
P1/2 = diag[√p1, . . . ,

√
pk ] is a k×k diagonal

matrix.

(b) Given Y = y, show that the MAP and ML de-
tectors for X are the same and are given by

x∗(y) = arg min
x∈Bn

∥∥∥y − SP1/2x
∥∥∥

where Bn is the set of all n dimensional vectors
with ±1 elements.

(c) How many hypotheses does the ML detector
need to evaluate?

8.3.10
�

For the CDMA communications system of Prob-
lem 8.3.9, a detection strategy known as decorrela-
tion applies a transformation to Y to generate

Ỹ = (S′S)−1S′Y = P1/2X + Ñ

where Ñ = (S′S)−1S′N is still a Gaussian noise
vector with expected value E[Ñ] = 0. Decorrela-
tion separates the signals in that the i th component
of Ỹ is

Ỹi = √
pi Xi + Ñi ,

which is the same as a single user receiver output of
the binary communication system of Example 8.6.
For equally likely inputs Xi = 1 and Xi = −1,
Example 8.6 showed that the optimal (minimum
probability of bit error) decision rule based on the
receiver output Ỹi is

X̂i = sgn (Ỹi ).

Although this technique requires the code vectors
S1, . . . , Sk to be linearly independent, the number
of hypotheses that must be tested is greatly reduced
in comparison to the optimal ML detector intro-
duced in Problem 8.3.9. In the case of linearly inde-
pendent code vectors, is the decorrelator optimal?
That is, does it achieve the same BER as the optimal
ML detector?

8.4.1• A wireless pressure sensor (buried in the ground)
reports a discrete random variable X with range
SX = {0, 1, . . . , 20} to signal the presence of an
object. Given an observation X and a threshold x0,
we conclude that an object is present (hypothesis
H1) if X > x0; otherwise we decide that no object
is present (hypothesis H0). Under hypothesis Hi ,
X has conditional PMF

PX |Hi (x) =
⎧⎨
⎩

(1−pi )px−1
i

1−p20
i

x = 0, 1, . . . , 20,

0 otherwise,

where p0 = 0.99 and p1 = 0.9. Calculate and plot
the false alarm and miss probabilities as a function
of the detection threshold x0. Calculate the discrete
receiver operating curve (ROC) specified by x0.

8.4.2• For the binary communications system of Exam-
ple 8.7, graph the error probability PERR as a func-
tion of p, the probability that the transmitted signal
is 0. For the signal-to-noise voltage ratio, consider
v/σ ∈ {0.1, 1, 10}. What values of p minimize
PERR? Why are those values not practical?

8.4.3• For the squared distortion communications system
of Example 8.14 with v = 1.5 and d = 0.5, find the
value of T that minimizes PERR.

8.4.4
�

A poisonous gas sensor reports continuous random
variable X . In the presence of toxic gases, hypoth-
esis H1,

fX |H1 (x) =
{

(x/8)e−x2/16 x ≥ 0,

0 otherwise.
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In the absence of dangerous gases, X has condi-
tional PDF

fX |H0 (x) =
{

(1/2)e−x/2 x ≥ 0,

0 otherwise.

Devise a hypothesis test that determines the pres-
ence of poisonous gases. Plot the false alarm and
miss probabilities for the test as a function of the
decision threshold. Lastly, plot the corresponding
receiver operating curve.

8.4.5
�

Simulate the M-ary PSK system for M = 8 and
M = 16. Let P̂ERR denote the relative frequency
of symbol errors in the simulated transmission in
105 symbols. For each value of M , graph P̂ERR, as
a function of the signal-to-noise power ratio (SNR)
γ = E/σ 2. Consider 10 log10 γ , the SNR in dB,
ranging from 0 to 30 dB.

8.4.6
��

In this problem, we evaluate the bit error rate (BER)
performance of the CDMA communications system
introduced in Problem 8.3.9. In our experiments,
we will make the following additional assumptions.

•In practical systems, code vectors are gener-
ated pseudorandomly. We will assume the
code vectors are random. For each transmitted
data vector X, the code vector of user i will be
Si = 1√

n

[
Si1 Si2 · · · Sin

]′
, where the

components Si j are iid random variables such
that PSi j (1) = PSi j (−1) = 1/2. Note that the

factor 1/
√

n is used so that each code vector
Si has length 1: ‖Si‖2 = S′

i Si = 1.

•Each user transmits at 6dB SNR. For conve-
nience, assume Pi = p = 4 and σ 2 = 1.

(a) Use Matlab to simulate a CDMA system with
processing gain n = 16. For each experimen-
tal trial, generate a random set of code vectors
{Si }, data vector X, and noise vector N. Find
the ML estimate x∗ and count the number of
bit errors; i.e., the number of positions in which
x∗

i 	= Xi . Use the relative frequency of bit er-
rors as an estimate of the probability of bit error.
Consider k = 2, 4, 8, 16 users. For each value
of k, perform enough trials so that bit errors are
generated on 100 independent trials. Explain
why your simulations take so long.

(b) For a simpler detector known as the matched fil-
ter, when Y = y, the detector decision for user
i is

x̂i = sgn (S′
i y)

where sgn (x) = 1 if x > 0, sgn (x) = −1 if
x < 0, and otherwise sgn (x) = 0. Compare
the bit error rate of the matched filter and the
maximum likelihood detectors. Note that the
matched filter is also called a single user detec-
tor since it can detect the bits of user i without
the knowledge of the code vectors of the other
users.

8.4.7
��

For the CDMA system in Problem 8.3.9, we wish
to use Matlab to evaluate the bit error rate (BER)
performance of the decorrelater introduced Prob-
lem 8.3.10. In particular, we want to estimate Pe,
the probability that for a set of randomly chosen
code vectors, that a randomly chosen user’s bit is
decoded incorrectly at the receiver.

(a) For a k user system with a fixed set of code vec-
tors {S}1k, let S denote the matrix with Si as its
i th column. Assuming that the matrix inverse
(S′S)−1 exists, write an expression for Pe,i (S),
the probability of error for the transmitted bit of
user i , in terms of S and the Q(·) function. For
the same fixed set of code vectors S, write an ex-
pression for Pe, the probability of error for the
bit of a randomly chosen user.

(b) In the event that (S′S)−1 does not exist, we as-
sume the decorrelator flips a coin to guess the
transmitted bit of each user. What are Pe,i and
Pe in this case?

(c) For a CDMA system with processing gain n =
32 and k users, each with SNR 6dB, write a
Matlab program that averages over randomly
chosen matrices S to estimate Pe for the decor-
relator. Note that unlike the case for Prob-
lem 8.4.6, simulating the transmission of bits
is not necessary. Graph your estimate P̂e as a
function of k.

8.4.8
��

Simulate the multi-level QAM system of Prob-
lem 8.3.5. Estimate the probability of symbol error
and the probability of bit error as a function of the
noise variance σ 2.

8.4.9
��

In Problem 8.4.5, we used simulation to estimate
the probability of symbol error. For transmitting a
binary bit stream over an M-PSK system, we set
each M = 2N and each transmitted symbol corre-
sponds to N bits. For example, for M = 16, we map
each four-bit input b3b2b1b0 to one of 16 symbols.
A simple way to do this is binary index mapping:
transmit si when b3b2b1b0 is the binary representa-
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tion of i . For example, the bit input 1100 is mapped
to the transmitted signal s12. Symbol errors in the
communication system cause bit errors. For exam-
ple if s1 is sent but noise causes s2 to be decoded,
the input bit sequence b3b2b1b0 = 0001 is decoded
as b̂3b̂2b̂1b̂0 = 0010, resulting in 2 correct bits and
2 bit errors. In this problem, we use Matlab to in-
vestigate how the mapping of bits to symbols affects
the probability of bit error. For our preliminary in-
vestigation, it will be sufficient to map the three bits
b2b2b0 to the M = 8 PSK system of Problem 8.3.6.

(a) Determine the acceptance sets {A0, . . . , A7}.
(b) Simulate m trials of the transmission of symbol

s0. Estimate {P0 j | j = 0, 1, . . . , 7}, the proba-
bility that the receiver output is s j when s0 was
sent. By symmetry, use the set {P0 j } to deter-
mine Pi j for all i and j .

(c) Let b(i) = [
b2(i) b1(i) b0(i)

]
denote the

input bit sequence that is mapped to si . Let di j
denote the number of bit positions in which b(i)

and b( j) differ. For a given mapping, the bit
error rate (BER) is

BER =
∑

i

∑
j

Pi j di j .

(d) Estimate the BER for the binary index mapping.
(e) The Gray code is perhaps the most commonly

used mapping:

b 000 001 010 011 100 101 110 111
si s0 s1 s3 s2 s7 s6 s4 s5

Does the Gray code reduce the BER compared
to the binary index mapping?

8.4.10
��

Continuing Problem 8.4.9, in the mapping of the bit
sequence b2b1b0 to the symbols si , we wish to de-
termine the probability of error for each input bit bi .
Let qi denote the probability that bit bi is decoded
in error. Use the methodology to determine q0, q1,
and q2 for both the binary index mapping as well as
the Gray code mapping.

 



 



9
Estimation of a Random

Variable
The techniques in Chapters 7 and 8 use the outcomes of experiments to make inferences
about probability models. In this chapter we use observations to calculate an approximate
value of a sample value of a random variable that has not been observed. The random
variable of interest may be unavailable because it is impractical to measure (for example,
the temperature of the sun), or because it is obscured by distortion (a signal corrupted by
noise), or because it is not available soon enough. We refer to the estimation performed
in the latter situation as prediction. A predictor uses random variables produced in early
subexperiments to estimate a random variable produced by a future subexperiment. If X is
the random variable to be estimated, we adopt the notation X̂ (also a random variable) for
the estimate. In most of the Chapter, we use the mean square error

e = E
[
(X − X̂)2

]
(9.1)

as a measure of the quality of the estimate. Signal estimation is a big subject. To introduce
it in one chapter, we confine our attention to the following problems:

• Blind estimation of a random variable

• Estimation of a random variable given an event

• Estimation of a random variable given one other random variable

• Linear estimation of a random variable given a random vector

• Linear prediction of one component of a random vector given other components of
the random vector

9.1 Optimum Estimation Given Another Random Variable

An experiment produces a random variable X . However, we are unable to observe X directly.
Instead, we observe an event or a random variable that provides partial information about
the sample value of X . X can be either discrete or continuous. If X is a discrete random
variable, it is possible to use hypothesis testing to estimate X . For each xi ∈ SX , we

327
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could define hypothesis Hi as the probability model PX (xi ) = 1, PX (x) = 0, x �= xi . A
hypothesis test would then lead us to choose the most probable xi given our observations.
Although this procedure maximizes the probability of determining the correct value of xi ,
it does not take into account the consequences of incorrect results. It treats all errors in the
same manner, regardless of whether they produce answers that are close to or far from the
correct value of X . Section 9.3 describes estimation techniques that adopt this approach. By
contrast, the aim of the estimation procedures presented in this section is to find an estimate
X̂ that, on average, is close to the true value of X , even if the estimate never produces a
correct answer. A popular example is an estimate of the number of children in a family.
The best estimate, based on available information, might be 2.4 children.

In an estimation procedure, we aim for a low probability that the estimate is far from
the true value of X . An accuracy measure that helps us achieve this aim is the mean
square error in Equation (9.1). The mean square error is one of many ways of defining
the accuracy of an estimate. Two other accuracy measures, which might be appropriate
to certain applications, are the expected value of the absolute estimation error E[|X − X̂ |]
and the maximum absolute estimation error, max |X − X̂ |. In this section, we confine our
attention to the mean square error, which is the most widely used accuracy measure because
it lends itself to mathematical analysis and often leads to estimates that are convenient to
compute. In particular, we use the mean square error accuracy measure to examine three
different ways of estimating random variable X . They are distinguished by the information
available. We consider three types of information:

• The probability model of X (blind estimation),

• The probability model of X and information that the sample value x ∈ A,

• The probability model of random variables X and Y and information that Y = y.

The estimation methods for these three situations are fundamentally the same. Each one
implies a probability model for X , which may be a PDF, a conditional PDF, a PMF, or a
conditional PMF. In all three cases, the estimate of X that produces the minimum mean
square error is the expected value (or conditional expected value) of X calculated with the
probability model that incorporates the available information. While the expected value is
the best estimate of X , it may be complicated to calculate in a practical application. Many
applications rely on linear estimation of X , the subject of Section 9.2.

Blind Estimation of X

An experiment produces a random variable X . Prior to performing the experiment, what is
the best estimate of X? This is the blind estimation problem because it requires us to make
an inference about X in the absence of any observations. Although it is unlikely that we
will guess the correct value of X , we can derive a number that comes as close as possible
in the sense that it minimizes the mean square error.

Theorem 9.1 In the absence of observations, the minimum mean square error estimate of random variable
X is

x̂B = E [X] .

Proof After substituting X̂ = x̂B , we expand the square in Equation (9.1) to write
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e = E
[

X2
]

− 2x̂B E [X] + x̂2
B . (9.2)

To minimize e, we solve
d e

dx̂B
= −2E [X] + 2x̂B = 0, (9.3)

yielding x̂B = E[X].

In the absence of observations, the minimum mean square error estimate of X is the expected
value E[X]. The minimum error is e∗

B = Var[X]. In introducing the idea of expected value,
Chapter 2 describes E[X] as a “typical value” of X . Theorem 9.1 gives this description a
mathematical meaning.

Example 9.1 Prior to rolling a six-sided die, what is the minimum mean square error estimate of the
number of spots X that will appear?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The probability model is PX (x) = 1/6, x = 1, 2, . . . , 6, otherwise PX (x) = 0. For this
model E[X] = 3.5. Even though x̂B = 3.5 is not in the range of X , it is the estimate
that minimizes the mean square estimation error.

Estimation of X Given an Event

Suppose that we perform an experiment. Instead of observing X directly, we learn only
that X ∈ A. Given this information, what is the minimum mean square error estimate of
X? Given A, X has a conditional PDF fX |A(x) or a conditional PMF PX |A(x). Our task is
to minimize the conditional mean square error eX |A = E[(X − x̂)2|A]. We see that this is
essentially the same as the blind estimation problem with the conditional PDF fX |A(x |A) or
the conditional PMF PX |A(x) replacing fX (x) or PX (x). Therefore, we have the following:

Theorem 9.2 Given the information X ∈ A, the minimum mean square error estimate of X is

x̂ A = E [X |A] .

Example 9.2 The duration T minutes of a phone call is an exponential random variable with expected
value E[T ] = 3 minutes. If we observe that a call has already lasted 2 minutes, what
is the minimum mean square error estimate of the call duration?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We have already solved this problem in Example 3.34. The PDF of T is

fT (t) =
{ 1

3 e−t/3 t ≥ 0,

0 otherwise.
(9.4)

If the call is still in progress after 2 minutes, we have t ∈ A = {T > 2}. Therefore, the
minimum mean square error estimate of T is

t̂A = E [T |T > 2] . (9.5)
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Referring to Example 3.34, we have the conditional PDF

fT |T >2 (t) =
{ 1

3 e−(t−2)/3 t ≥ 2,

0 otherwise.
(9.6)

Therefore,

E [T |T > 2] =
∫ ∞

2
t
1

3
e−(t−2)/3 dt = 2 + 3 = 5 minutes. (9.7)

Prior to the phone call, the minimum mean square error (blind) estimate of T is E[T ] =
3 minutes. After the call is in progress 2 minutes, the best estimate of the duration
becomes E[T |T > 2] = 5 minutes. This result is an example of the memoryless
property of an exponential random variable. At any time t0 during a call, the expected
time remaining is just the expected value of the call duration, E[T ].

Minimum Mean Square Estimation of X Given Y

Consider an experiment that produces two random variables, X and Y . We can observe Y
but we really want to know X . Therefore, the estimation task is to assign to every y ∈ SY a
number, x̂ , that is near X . As in the other techniques presented in this section, our accuracy
measure is the mean square error

eM = E
[
X = x̂M(y)|Y = y

]
. (9.8)

Because each y ∈ SY produces a specific x̂M (y), x̂M(y) is a sample value of a random
variable X̂ M (Y ). The fact that x̂M (y) is a sample value of a random variable is in contrast
to blind estimation and estimation given an event. In those situations, x̂B and x̂ A are
parameters of the probability model of X .

In common with x̂B in Theorem 9.1 and x̂ A in Theorem 9.2, the estimate of X given
Y is an expected value of X based on available information. In this case, the available
information is the value of Y .

Theorem 9.3 The minimum mean square error estimate of X given the observation Y = y is

x̂M (y) = E [X |Y = y] .

Example 9.3 Suppose X and Y are independent random variables with PDFs fX (x) and fY (y).
What is the minimum mean square error estimate of X given Y ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this case, fX |Y (x|y) = fX (x) and the minimum mean square error estimate is

x̂M (y) =
∫ ∞
−∞

x fX |Y (x|y) dx =
∫ ∞
−∞

x fX (x) dx = E [X] = x̂B . (9.9)

That is, when X and Y are independent, the observation Y is useless and the best
estimate of X is simply the blind estimate.
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Example 9.4 Suppose that R has a uniform (0, 1) PDF and that given R = r , X is a uniform (0, r)

random variable. Find x̂M (r), the minimum mean square error estimate of X given R.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 9.3, we know x̂M (r) = E[X |R = r ]. To calculate the estimator, we
need the conditional PDF fX |R(x|r ). The problem statement implies that

fX |R (x|r ) =
{

1/r 0 ≤ x ≤ r,
0 otherwise,

(9.10)

permitting us to write

x̂M (r) =
∫ r

0

1

r
dx = r

2
. (9.11)

Although the estimate of X given R = r is simply r/2, the estimate of R given X = x for
the same probability model is more complicated.

Example 9.5 Suppose that R has a uniform (0, 1) PDF and that given R = r , X is a uniform (0, r)

random variable. Find r̂M (x), the minimum mean square error estimate of R given
X = x.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 9.3, we know r̂M (x) = E[R|X = x]. To perform this calculation, we
need to find the conditional PDF fR|X (r |x). This conditional PDF is reasonably difficult
to find. The derivation of fR|X (r |x) appears in Example 4.22:

fR|X (r |x) =
{

1
−r ln x 0 ≤ x ≤ r ≤ 1,

0 otherwise.
(9.12)

The corresponding estimator is, therefore,

r̂M (x) =
∫ 1

x
r

1

−r ln x
dr = x − 1

ln x
. (9.13)

The graph of this function appears at the end of Example 9.6.

While the solution of Example 9.4 is a simple function of r that can easily be obtained
with a microprocessor or an analog electronic circuit, the solution of Example 9.5 is consid-
erably more complex. In many applications, the cost of calculating this estimate could be
significant. In these applications, engineers would look for a simpler estimate. Even though
the simpler estimate produces a higher mean square error than the estimate in Example 9.5,
the complexity savings might justify the simpler approach. For this reason, there are many
applications of estimation theory that employ linear estimates, the subject of Section 9.2.

Quiz 9.1 The random variables X and Y have the joint probability density function

fX,Y (x, y) =
{

2(y + x) 0 ≤ x ≤ y ≤ 1,

0 otherwise.
(9.14)

(1) What is fX |Y (x |y), the conditional PDF of X given Y = y?

(2) What is x̂M (y), the minimum mean square error estimate of X given Y = y?
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(3) What is fY |X (y|x), the conditional PDF of Y given X = x?

(4) What is ŷM (x), the minimum mean square error estimate of Y given X = x?

9.2 Linear Estimation of X given Y

In this section we again use an observation, y, of random variable Y to produce an estimate,
x̂ , of random variable X . Again, our accuracy measure is the mean square error, in Equa-
tion (9.1). Section 9.1 derives x̂M(y), the optimum estimate for each possible observation
Y = y. By contrast, in this section the estimate is a single function that applies for all Y .
The notation for this function is

x̂L(y) = ay + b (9.15)

where a and b are constants for all y ∈ SY . Because x̂L(y) is a linear function of y, the
procedure is referred to as linear estimation. Linear estimation appears in many electrical
engineering applications of statistical inference for several reasons, including:

• Linear estimates are easy to compute. Analog filters using resistors, capacitors, and
inductors, and digital signal processing microcomputers perform linear operations
efficiently.

• For some probability models, the optimum estimator x̂M(y) described in Section 9.1
is a linear function of y. (We encounter this situation in Example 9.4.) In other
probability models, the error produced by the optimum linear estimator is not much
higher than the error produced by the optimum estimator.

• The values of a, b that produce the minimum mean square error and the value of
the minimum mean square error depend only on E[X], E[Y ], Var[X], Var[Y ], and
Cov[X, Y ]. Therefore, it is not necessary to know the complete probability model of
X and Y in order to design and evaluate an optimum linear estimator.

To present the mathematics of minimum mean square error linear estimation, we intro-
duce the subscript L to denote the mean square error of a linear estimate:

eL = E

[(
X − X̂ L(Y )

)2
]

. (9.16)

In this formula, we use X̂ L(Y ) and not x̂L(y) because the expected value in the formula is an
unconditional expected value in contrast to the conditional expected value (Equation (9.8))
that is the quality measure for x̂M (y). Minimum mean square error estimation in principle
uses a different calculation for each y ∈ SY . By contrast, a linear estimator uses the same
coefficients a and b for all y. The following theorem presents the important properties of
optimum linear estimates in terms of the correlation coefficient of X and Y introduced in
Definition 4.8:

ρX,Y = Cov [X, Y ]

σXσY
. (9.17)
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(a) ρX,Y = −0.95 (b) ρX,Y = 0 (c) ρX,Y = 0.60

Figure 9.1 Each graph contains 50 sample values of the random variable pair (X, Y ) each marked
by the symbol ×. In each graph, E[X] = E[Y ] = 0, Var[X] = Var[Y ] = 1. The solid line is the
optimal linear estimator X̂ L(Y ) = ρX,Y Y .

Theorem 9.4 Random variables X and Y have expected values μX and μY , standard deviations σX

and σY , and correlation coefficient ρX,Y , The optimal linear mean square error (LMSE)
estimator of X given Y is X̂ L(Y ) = a∗Y + b∗ and it has the following properties

(a)

a∗ = Cov [X, Y ]

Var[Y ] = ρX,Y
σX

σY
, b∗ = μX − a∗μY .

(b) The minimum mean square estimation error for a linear estimate is

e∗
L = E

[
(X − X̂ L(Y ))2

]
= σ 2

X (1 − ρ2
X,Y ).

(c) The estimation error X − X̂ L(Y ) is uncorrelated with Y .

Proof Replacing X̂ L(Y ) by aY + b and expanding the square, we have

eL = E
[

X2
]

− 2aE [XY ] − 2bE [X] + a2 E
[
Y 2

]
+ 2abE [Y ] + b2. (9.18)

The values of a and b that produce the minimum eL can be found by computing the partial derivatives
of eL with respect to a and b and setting the derivatives to zero, yielding

∂eL

∂a
= −2E [XY ] + 2aE

[
Y 2

]
+ 2bE [Y ] = 0, (9.19)

∂eL

∂b
= −2E [X] + 2aE [Y ] + 2b = 0. (9.20)

Solving the two equations for a and b, we find

a∗ = Cov [X, Y ]

Var[Y ] = ρX,Y
σX

σY
, b∗ = E [X] − a∗ E [Y ] . (9.21)
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We confirm Theorem 9.4(a) and Theorem 9.4(b) by using a∗ and b∗ in Equations (9.16) and (9.18).
To prove part (c) of the theorem, observe that the correlation of Y and the estimation error is

E
[
Y [X − X̂ L(Y )]

]
= E [XY ] − E [Y E [X]] − Cov [X, Y ]

Var[Y ]
(

E
[
Y 2

]
− E [Y E [Y ]]

)
(9.22)

= Cov [X, Y ] − Cov [X, Y ]

Var[Y ] Var[Y ] = 0. (9.23)

Theorem 9.4(c) is referred to as the orthogonality principle of the LMSE. It states that
the estimation error is orthogonal to the data used in the estimate. A geometric explanation
of linear estimation is that the optimum estimate of X is the projection of X into the plane
of linear functions of Y .

The correlation coefficient ρX,Y plays a key role in the optimum linear estimator. Recall
from Section 4.7 that |ρX,Y | ≤ 1 and that ρX,Y = ±1 corresponds to a deterministic
linear relationship between X and Y . This property is reflected in the fact that when
ρX,Y = ±1, e∗

L = 0. At the other extreme, when X and Y are uncorrelated, ρX,Y = 0 and
X̂ L(Y ) = E[X], the blind estimate. With X and Y uncorrelated, there is no linear function
of Y that provides useful information about the value of X .

The magnitude of the correlation coefficient indicates the extent to which observing Y
improves our knowledge of X , and the sign of ρX,Y indicates whether the slope of the
estimate is positive, negative, or zero. Figure 9.1 contains three different pairs of random
variables X and Y. In each graph, the crosses are 50 outcomes x, y of the underlying
experiment, and the line is the optimum linear estimate of X . In all cases E[X] = E[Y ] = 0
and Var[X] = Var[Y ] = 1. From Theorem 9.4, we know that the optimum linear estimator
of X given Y is the line X̂ L(Y ) = ρX,Y Y . For each pair (x, y), the estimation error equals
the vertical distance to the estimator line. In the graph of Figure 9.1(a), ρX,Y = −0.95.
Therefore, e∗

L = 0.0975, and all the observations are close to the estimate, which has a slope
of −0.95. By contrast, in graph (b), with X and Y uncorrelated, the points are scattered
randomly in the x, y plane and e∗

L = Var[X] = 1. Lastly, in graph (c), ρX,Y = 0.6, and the
observations, on average, follow the estimator X̂ L(Y ) = 0.6Y , although the estimates are
less accurate than those in graph (a).

At the beginning of this section, we state that for some probability models, the optimum
estimator of X given Y is a linear estimator. The following theorem shows that this is always
the case when X and Y are jointly Gaussian random variables, described in Section 4.11.

Theorem 9.5 If X and Y are the bivariate Gaussian random variables in Definition 4.17, the optimum
estimator of X given Y is the optimum linear estimator in Theorem 9.4.

Proof From Theorem 9.4, applying a∗ and b∗ to the optimal linear estimator X̂ L(Y ) = a∗Y + b∗
yields

X̂ L(Y ) = ρX,Y
σX

σY
(Y − μY ) + μX . (9.24)

From Theorem 4.29, we observe that when X and Y are jointly Gaussian, X̂ M (Y ) = E[X |Y ] is
identical to X̂ L(Y ).
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Figure 9.2 The minimum mean square error (MMSE) estimate r̂M (x) in Example 9.5 and the
optimum linear (LMSE) estimate r̂L (x) in Example 9.6 of X given R.

In the case of jointly Gaussian random variables, the optimum estimate of X given Y
and the optimum estimate of Y given X are both linear. However, there are also probability
models in which one of the optimum estimates is linear and the other one is not linear.
This occurs in the probability model of Examples 9.4 and 9.5. Here x̂M (r) (Example 9.4)
is linear, and r̂M (x) (Example 9.5) is nonlinear. In the following example, we derive the
linear estimator r̂L(x) for this probability model and compare it with the optimum estimator
in Example 9.5.

Example 9.6 As in Examples 9.4 and 9.5, R is a uniform (0, 1) random variable and given R = r , X
is a uniform (0, r) random variable. Derive the optimum linear estimator of R given X .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the problem statement, we know fX |R(x|r ) and fR(r), implying that the joint
PDF of X and R is

fX,R (x, r) = fX |R (x|r ) fR (r) =
{

1/r 0 ≤ x ≤ r ≤ 1,

0 otherwise.
(9.25)

The estimate we have to derive is given by Theorem 9.4:

r̂L(x) = ρR,X
σR

σX
(x − E [X]) + E [R] . (9.26)

Since R is uniform on [0, 1], E[R] = 1/2 and σR = 1/
√

12. Using the formula for
fX |R(x|r ) in Equation (9.10), we have

fX (x) =
∫ ∞
−∞

fX,R (x, r ) dr =
{ ∫ 1

x (1/r) dr = − ln x 0 ≤ x ≤ 1,

0 otherwise.
(9.27)

From this marginal PDF, we can calculate E[X] = 1/4 and σX = √
7/12. Using the

joint PDF, we obtain E[X R] = 1/6 so that Cov[X, R] = E[X R] − E[X]E[R] = 1/24.
Thus ρR,X = √

3/7. Putting these values into Equation (9.26), the optimum linear
estimator is

r̂L (x) = 6

7
x + 2

7
. (9.28)
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Figure 9.2 compares the optimum (MMSE) estimator and the optimum linear (LMSE)
estimator. We see that the two estimators are reasonably close for all but extreme
values of x (near 0 and 1). Note that for x > 5/6, the linear estimate is greater than 1,
the largest possible value of R. By contrast, the optimum estimate r̂M (x) is confined
to the range of R for all x.

In this section, the examples apply to continuous random variables. For discrete random
variables, the linear estimator is also described by Theorem 9.4. When X and Y are discrete,
the parameters (expected value, variance, covariance) are sums containing the joint PMF
PX,Y (x, y).

In Section 9.4, we use a linear combination of the random variables in a random vector
to estimate another random variable.

Quiz 9.2 A telemetry signal, T , transmitted from a temperature sensor on a communications satellite
is a Gaussian random variable with E[T ] = 0 and Var[T ] = 9. The receiver at mission
control receives R = T + X, where X is a noise voltage independent of T with PDF

fX (x) =
{

1/6 −3 ≤ x ≤ 3,

0 otherwise.
(9.29)

The receiver uses R to calculate a linear estimate of the telemetry voltage:

t̂L(r) = ar + b. (9.30)

(1) What is E[R], the expected value of the received voltage?

(2) What is Var[R], the variance of the received voltage?

(3) What is Cov[T, R], the covariance of the transmitted voltage and the received voltage?

(4) What is the correlation coefficient ρT ,R of T and R?

(5) What are a∗ and b∗, the optimum mean square values of a and b in the linear estimator?

(6) What is e∗
L, the minimum mean square error of the linear estimate?

9.3 MAP and ML Estimation

Sections 9.1 and 9.2 describe methods for minimizing the mean square error in estimating a
random variable X given a sample value of another random variable Y . In this section, we
present the maximum a posteriori probability (MAP) estimator and the maximum likelihood
(ML) estimator. Although neither of these estimates produces the minimum mean square
error, they are convenient to obtain in some applications, and they often produce estimates
with errors that are not much higher than the minimum mean square error.

As you might expect, MAP and ML estimation are closely related to MAP and ML
hypothesis testing. We will describe these methods in the context of continuous random
variables X and Y .
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Definition 9.1 Maximum A Posteriori Probability (MAP) Estimate
The maximum a posteriori probability estimate of X given the observation Y = y is

x̂MAP(y) = arg max
x

fX |Y (x |y) .

In this definition, the notation arg maxx g(x) denotes a value of x that maximizes g(x),
where g(x) is any function of a variable x . To relate this definition to the hypothesis testing
methods of Chapter 8, suppose we observe the event that Y = y. Let Hx denote the
hypothesis that x ≤ X ≤ x + dx . Since x is a continuous parameter, we have a continuum
of hypotheses Hx . Choosing a hypothesis Hx̂ corresponds to choosing x̂ as an estimate for
X . From the definition of the conditional PDF,

fX |Y (x |y) dx = P [Hx |Y = y] . (9.31)

We see that the MAP estimator chooses an estimate x̂MAP(y) = x to maximize the proba-
bility of Hx given the observation Y = y.

The definition of the conditional PDF provides an alternate way to calculate the MAP
estimator. First we recall from Theorem 4.24 that

fX |Y (x |y) = fY |X (y|x) fX (x)

fY (y)
= fX,Y (x, y)

fY (y)
. (9.32)

Because the denominator fY (y) does not depend on x , maximizing fX |Y (x |y) over all x is
equivalent to maximizing the numerator fY |X (y|x) fX (x). This implies the MAP estimation
procedure can be written in the following way.

Theorem 9.6 The MAP estimate of X given Y = y is

x̂MAP(y) = arg max
x

fY |X (y|x) fX (x) = arg max
x

fX,Y (x, y) .

From Theorem 9.6, we see that the MAP estimation procedure requires that we know the
PDF fX (x). That is, the MAP procedure needs the a priori probability model for random
variable X . This is analogous to the requirement of the MAP hypothesis test that we know
the a priori probabilities P[Hi ]. In the absence of this a priori information, we can instead
implement a maximum likelihood estimator.

Definition 9.2 Maximum Likelihood (ML) Estimate
The maximum likelihood (ML) estimate of X given the observation Y = y is

x̂ML(y) = arg max
x

fY |X (y|x) .

In terms of the continuum of hypotheses Hx and the experimental observation y < Y ≤
y + dy, we observe that

fY |X (y|x) dy = P [y < Y ≤ y + dy|Hx] . (9.33)
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We see that the primary difference between the MAP and ML procedures is that the max-
imum likelihood procedure does not use information about the a priori probability model
of X . This is analogous to the situation in hypothesis testing in which the ML hypothesis
testing rule does not use information about the a priori probabilities of the hypotheses. That
is, the ML rule is the same as the MAP rule when all possible values of X are equally likely.

We can define equivalent MAP and ML estimation procedures when X and Y are discrete
random variables with sample values in the sets SX and SY . Given the observation Y = y j ,
the MAP and ML rules are

• x̂MAP(y j ) = arg maxx∈SX PY |X (y j |x)PX (x),

• x̂ML(y j ) = arg maxx∈SX PY |X (y j |x).

One should keep in mind that in general we cannot prove any sort of optimality of either
the MAP or the ML procedure.1 For example, neither estimate minimizes the mean square
error. However, when we consider specific estimation problems, we can often infer that
either the MAP estimator or the ML estimator works well and provides good estimates.

In the following example, we observe interesting relationships among five of the esti-
mates studied in this chapter.

Example 9.7 Consider an experiment that produces a Bernoulli random variable with probability
of success q. In order to estimate q, we perform the experiment that produces this
random variable n. In this experiment, q is a sample value of a random variable, Q,
with PDF

fQ (q) =
{

6q(1 − q) 0 ≤ q ≤ 1,

0 otherwise.
(9.34)

In Appendix A, we can identify Q as a beta (i = 2, j = 2) random variable. To
estimate Q we perform n independent trials of the Bernoulli experiment. The number
of successes in the n trials is a random variable K . Given an observation K = k,
derive the following estimates of Q:

(a) The blind estimate q̂B
(b) The maximum likelihood estimate q̂ML(k)

(c) The maximum a posteriori probability estimate q̂MAP(k)

(d) The minimum mean square error estimate q̂M (k)

(e) The optimum linear estimate q̂L (k)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) To derive the blind estimate, we refer to Appendix A for the properties of the beta
(i = 2, j = 2) random variable and find

q̂B = E [Q] = i

i + j
= 1/2. (9.35)

(b) To find the other estimates, we observe in the problem statement that for any
Q = q, K is a binomial random variable. Therefore, the conditional PMF of K is

PK |Q (k|q) =
(

n

k

)
qk(1 − q)n−k . (9.36)

1One exception is that when X and Y are discrete random variables, the MAP estimate maximizes the probability
of choosing the correct xi .
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The maximum likelihood estimate is the value of q that maximizes PK |Q (k|q).
The derivative of PK |Q(k|q) with respect to q is

d PK |Q (k|q)

dq
=
(

n

k

)
qk−1(1 − q)n−k−1 [k(1 − q) − (n − k)q] . (9.37)

Setting d PK |Q(k|q)/dq = 0, and solving for q yields

q̂ML(k) = k

n
. (9.38)

(c) For the MAP estimator, we need to maximize

fQ|K (q|k) = PK |Q (k|q) fQ (q)

PK (k)
. (9.39)

Since the denominator of Equation (9.39) is a constant with respect to q, we can
obtain the maximum value by setting the derivative of the numerator to 0:

d

dq

[
PK |Q (k|q) fQ (q)

]

= 6

(
n

k

)
qk (1 − q)n−k [(k + 1)(1 − q) − (n − k + 1)q] = 0. (9.40)

Solving for q yields

q̂MAP(k) = k + 1

n + 2
. (9.41)

(d) To compute the MMSE estimate q̂M (k) = E[Q|K = k], we have to analyze
fQ|K (q|k) in Equation (9.39). To perform this analysis, we refer to the prop-
erties of beta random variables in Appendix A. In this case, we must solve for
PK (k) in the denominator of Equation (9.39) via

PK (k) =
∫ ∞
−∞

PK |Q (k|q) fQ (q) dq. (9.42)

Substituting fQ (q) and PK |Q(k|q) from Equations (9.34) and (9.36), we obtain

PK (k) = 6

(
n

k

)∫ 1

0
qk+1(1 − q)n−k+1 dq (9.43)

We observe that the function of q in the integrand appears in a beta (k+2, n−k+2)

PDF. If we multiply the integrand by the constant β(k +2, n − k +2), the resulting
integral is 1. That is,

∫ 1

0
β(k + 2, n − k + 2)qk+1(1 − q)n−k+1 dq = 1. (9.44)

It follows from Equations (9.43) and (9.44) that

PK (k) = 6
(n

k
)

β(k + 2, n − k + 2)
(9.45)
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for k = 0, 1, . . . , n and PK (k) = 0 otherwise. From Equation (9.39),

fQ|K (q|k) =
{

β(k + 2, n − k + 2)qk+1(1 − q)n−k+1 0 ≤ q ≤ 1,

0 otherwise.

That is, given K = k, Q is a beta (i = k + 2, j = n − k + 2) random variable.
Thus, from Appendix A,

q̂M (k) = E [Q|K = k] = i

i + j
= k + 2

n + 4
. (9.46)

(e) We note that the minimum mean square error estimator q̂M (k) is a linear function
of k: q̂M (k) = a∗k + b∗ where a∗ = 1/(n + 4) and b∗ = 2/(n + 4). Therefore,
q̂L (k) = q̂M (k).

It is instructive to compare the different estimates. The blind estimate, using only
prior information, is simply E[Q] = 1/2, regardless of the results of the Bernoulli
trials. By contrast, the maximum likelihood estimate makes no use of prior information.
Therefore, it estimates Q as k/n, the relative frequency of success in the Bernoulli
trials. When n = 0, there are no observations, and there is no maximum likelihood
estimate. The other estimates use both prior information and data from the Bernoulli
trials. In the absence of data (n = 0), they produce q̂MAP(k) = q̂M (k) = q̂L (k) = 1/2 =
E[Q] = q̂B . As n grows large, they all approach k/n = q̂ML(k), the relative frequency
of success. For low values of n > 0, q̂M (k) = q̂L (k) is a little further from 1/2 relative
to q̂MAP(k). This reduces the probability of high errors that occur when n is small and
q is near 0 or 1.

Quiz 9.3 A receiver at a radial distance R from a radio beacon measures the beacon power to be

X = Y − 40 − 40 log10 R dB (9.47)

where Y , called the shadow fading factor, is a Gaussian (0, 8) random variable that is
independent of R. When the receiver is equally likely to be at any point within a 1000 m
radius circle around the beacon, the distance R has PDF

fR (r) =
{

2r/106 0 ≤ r ≤ 1000,

0 otherwise.
(9.48)

Find the ML and MAP estimates of R given the observation X = x.

9.4 Linear Estimation of Random Variables from Random Vectors

In many practical estimation problems, the available data consists of sample values of several
random variables. The following theorem, a generalization of Theorem 9.4, represents the
random variables used in the estimate as an n-dimensional random vector.
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Theorem 9.7 X is a random variable with E[X] = 0, and Y is an n-dimensional random vector with
E[Y] = 0. X̂ L(Y) = a′Y is a linear estimate of X given Y. The minimum mean square

error linear estimator, X̂ L(Y) = â′Y, has the following properties:

(a)
â = R−1

Y RYX

where RY is the n × n correlation matrix of Y (Definition 5.13) and RYX is the n × 1
cross-correlation matrix of Y and X (Definition 5.15).

(b) The estimation error X − X̂ L(Y) is uncorrelated with the elements of Y.

(c) The minimum mean square estimation error is

e∗
L = E

[
(X − â′Y)2

]
= Var[X] − R′

YX R−1
Y RYX = Var[X] − â′RYX .

Proof In terms of Y = [
Y0 · · · Yn−1

]′ and a = [
a0 · · · an−1

]′, the mean square estimation
error is

eL = E
[
(X − X̂ L(Y))2

]
= E

[
(X − a0Y0 − a1Y1 − . . . − an−1Yn−1)2

]
. (9.49)

The partial derivative of eL with respect to an arbitrary coefficient ai is

∂eL

∂ai
= −2E

[
Yi (X − X̂ L(Y))

]
= −2E

[
Yi (X − a0Y0 − a1Y1 − . . . − an−1Yn−1)

]
. (9.50)

To minimize the error, the partial derivative ∂eL/∂ai must be zero. The first expression on the right
side is the correlation of Yi and the estimation error. This correlation has to be zero for all Yi , which
establishes Theorem 9.7(b). Expanding the second expression on the right side and setting it to zero,
we obtain

a0 E
[
Yi Y0

] + a1 E
[
Yi Y1

] + · · · + an−1 E
[
Yi Yn−1

] = E
[
Yi X

]
. (9.51)

Recognizing that all the expected values are correlations, we write

a0rYi ,Y0 + a1rYi ,Y1 + · · · + an−1rYi ,Yn−1 = rYi ,X . (9.52)

Setting the complete set of partial derivatives with respect to ai to zero for i = 0, 1, . . . , n−1 produces
a set of n linear equations in the n unknown elements of â. In matrix form, the equations are

RYa = RYX . (9.53)

Solving for a completes the proof of Theorem 9.7(a). To find the minimum mean square error, we
write

e∗
L = E

[
(X − â′Y)2

]
= E

[
(X2 − â′YX)

]
− E

[
(X − â′Y)â′Y

]
. (9.54)

The second term on the right side is zero because E[(X − â′Y)Y j ] = 0 for j = 0, 1, . . . , n − 1. The
first term is identical to the error expression of Theorem 9.7(c).

Example 9.8 Observe the random vector Y = X + W, where X and W are independent random
vectors with expected values E[X] = E[W] = 0 and correlation matrices

RX =
[

1 0.75
0.75 1

]
, RW =

[
0.1 0
0 0.1

]
. (9.55)
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Find the coefficients a1 and a2 of the optimum linear estimator of the random variable
X = X1 given Y1 and Y2. Find the mean square error, e∗

L , of the optimum estimator.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In terms of Theorem 9.7, n = 2 and we wish to estimate X given the observation
vector Y = [

Y1 Y2
]′. To apply Theorem 9.7, we need to find RY and RYX .

RY = E
[
YY′] = E

[
(X + W)(X′ + W′)

]
(9.56)

= E
[
XX′ + XW′ + WX′ + WW′] . (9.57)

Because X and W are independent, E[XW′] = E[X]E[W′] = 0. Similarly, E[WX′] =
0. This implies

RY = E
[
XX′] + E

[
WW′] = RX + RW =

[
1.1 0.75
0.75 1.1

]
. (9.58)

In addition, we need to find

RYX = E [YX] =
[

E
[
Y1 X

]
E
[
Y2 X

]] =
[

E
[
(X1 + W1)X1

]
E
[
(X2 + W2)X1

]] . (9.59)

Since X and W are independent vectors, E[W1 X1] = E[W1]E[X1] = 0. In addition,
E[W2 X1] = 0. Thus

RYX =
[

E[X2
1]

E
[
X2 X1

]] =
[

1
0.75

]
. (9.60)

By Theorem 9.7, â = R−1
Y RYX , for which a1 = 0.830 and a2 = 0.116. Therefore, the

optimum linear estimator of X given Y1 and Y2 is

X̂ L = 0.830Y1 + 0.116Y2. (9.61)

The mean square error is Var[X] − a1rX,Y1 − a2rX,Y2 = 0.0830.

The following theorem generalizes Theorem 9.7 to random variables with nonzero ex-
pected values. In this case the optimum estimate contains a constant term b, and the
coefficients of the linear equations are covariances.

Theorem 9.8 X is a random variable with expected value E[X]. Y is an n-dimensional random vector
with expected value E[Y] and n × n covariance matrix CY. CYX is the n × 1 cross-
covariance of Y and X. X̂ L(Y) = a′Y + b is a linear estimate of X given Y. The minimum

mean square error linear estimator, X̂ L(Y) = â′Y + b, has the following properties:

(a) â = C−1
Y CYX and b̂ = E[X] − â′E[Y].

(b) The estimation error X − X̂ L(Y) is uncorrelated with the elements of Y.

(c) The minimum mean square estimation error is

e∗
L = E

[
(X − X̂ L(Y))2

]
= Var[X] − C′

YX C−1
Y CYX = Var[X] − â′CYX .

Proof For any a, ∂eL/∂b = 0 implies

2E
[
X − a′Y − b

] = 0. (9.62)
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The solution for b is b̂ in Theorem 9.8(a). Using b̂ in the formula for X̂ L (Y) leads to

X̂ L (Y) − E [X] = a′(Y − E [Y]). (9.63)

Defining U = X − E[X] and V = Y − E[Y], we can write Equation (9.63) as ÛL (V) = a′V where
E[U ] = 0 and E[V] = 0. Theorem 9.7(a) implies that the optimum linear estimator of U given V is
â = R−1

V RVU . We next observe that Definition 5.16 implies that RV = CY. Similarly RVU = CYX .
Therefore, â′V in Theorem 9.8(a) is the optimum estimator of U given V. That is, over all choices of
a, a = â minimizes

E
[
(X − E [X] − a′(Y − E [Y]))2

]
= E

[
(X − a′Y − b̂)2

]
= E

[
(X − X̂ L(Y))2

]
. (9.64)

Thus âY+ b̂ is the minimum mean square error estimate of X given Y. The proofs of Theorem 9.8(b)
and Theorem 9.8(c) use the same logic as the corresponding proofs in Theorem 9.7.

Example 9.9 As in Example 5.15, consider the outdoor temperature at a certain weather station.
On May 5, the temperature measurements in degrees Fahrenheit taken at 6 AM, 12
noon, and 6 PM are elements of the 3-dimensional random vector X with E[X] =[
50 62 58

]′. The covariance matrix of the three measurements is

CX =
⎡
⎣16.0 12.8 11.2

12.8 16.0 12.8
11.2 12.8 16.0

⎤
⎦ . (9.65)

Use the temperatures at 6 AM and 12 noon to form a linear estimate of the temperature
at 6 PM: X̂3 = a′Y + b, where Y = [

X1 X2
]′.

(a) What are the coefficients of the optimum estimator â and b̂?

(b) What is the mean square estimation error?

(c) What are the coefficients a∗ and b∗ of the optimum estimator of X3 given X2?

(d) What is the mean square estimation error based on the single observation X2?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) To apply Theorem 9.8, we need to find the expected value E[Y], the covariance
matrix CY, and the cross-covariance matrix CYX . Since Y = [

X1 X2
]′, E[Y] =[

E[X1] E[X2]
]′ = [

50 62
]′ and we can find the covariance matrix of Y in CX:

CY =
[

CX (1, 1) CX (1, 2)

CX (2, 1) CX (2, 2)

]
=
[

16.0 12.8
12.8 16.0

]
. (9.66)

Since X = X3, the elements of CYX are also in CX:

CYX =
[

Cov
[
X1, X3

]
Cov

[
X2, X3

]] =
[

CX (1, 3)

CX (2, 3)

]
=
[

11.2
12.8

]
(9.67)

Therefore, â solves CYâ = CYX , implying â = [
0.2745 0.6078

]′. Furthermore,
b̂ = E[X3] − â′ E[Y] = 58 − 50â1 − 62â2 = 6.591.
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(b) The mean square estimation error is

e∗
L = Var[X] − â′CYX = 16 − 11.2â1 − 12.8â2 = 5.145 degrees2. (9.68)

Here, we have found Var[X] = Var[X3] in CX: Var[X3] = Cov[X3, X3] = CX(3, 3).

(c) Using only the observation Y = X2, we apply Theorem 9.4 and find

a∗ = Cov
[
X2, X3

]
Var[X2] = 12.8

16
= 0.8 (9.69)

b∗ = E [X] − a∗ E [Y ] = 58 − 0.8(62) = 8.4. (9.70)

(d) The mean square error of the estimate based on Y = X2 is

e∗
L = Var[X] − a∗ Cov [Y, X] = 16 − 0.8(12.8) = 5.76 degrees2. (9.71)

In Example 9.9, we see that the estimator employing both X1 and X2 can exploit the
correlation of X1 and X3 to offer a reduced mean square error compared to the estimator
that uses just X2.

Consider a sequence of n+1 experiments that produce random variables X1, X2, . . . Xn+1.
Use the outcomes of the first n experiments to form a linear estimate of the outcome of
experiment n +1. We refer to this estimation procedure as linear prediction because it uses
observations of earlier experiments to predict the outcome of a subsequent experiment.
When the correlations of the random variables Xi have the property that rXi ,X j depends
only on the difference |i − j |, the estimation equations in Theorem 9.7(a) have a struc-
ture that is exploited in many practical applications. To examine the implications of this
property, we adopt the notation

RX (i, j) = r|i− j |. (9.72)

In Chapter 11 we observe that this property is characteristic of random vectors derived from
a wide sense stationary random sequence.

In the notation of the linear estimation model developed in Section 9.4, X = Xn+1
and Y = [

X1 X2 · · · Xn
]′. The elements of the correlation matrix RY and the cross-

correlation matrix RYX all have the form

RY =

⎡
⎢⎢⎢⎣

r0 r1 · · · rn−1
r1 r0 · · · rn−2
...

...
. . .

...

rn−1 · · · r1 r0

⎤
⎥⎥⎥⎦ , RYX =

⎡
⎢⎢⎢⎣

rn

rn−1
...

r1

⎤
⎥⎥⎥⎦ . (9.73)

Here RY and RYX together have a special structure. There are only n +1 different numbers
among the n2+n elements of the two matrices, and each diagonal of RY consists of identical
elements. This matrix is in a category referred to as Toeplitz forms. The properties of RY
and RYX make it possible to solve for â in Theorem 9.7(a) with far fewer computations
than are required in solving an arbitrary set of n linear equations.
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Quiz 9.4 X = [
X1 X2

]′
is a random vector with E[X] = 0 and autocorrelation matrix RX with

elements RX (i, j) = (−0.9)|i− j |. Observe the vector Y = X + W, where E[W] = 0,
E[W 2

1 ] = E[W 2
2 ] = 0.1, and E[W1W2] = 0. W and X are independent.

(1) Find a∗, the coefficient of the optimum linear estimator of X2 given Y2 and the mean
square error of this estimator.

(2) Find the coefficients â1 and â2 of the optimum linear estimator of X2 given Y1 and
Y2, and the minimum mean square error of this estimator.

9.5 Matlab

Matlab easily implements linear estimators. The code for generating the coefficients of
an estimator and the estimation error is particularly simple.

The following example explores the relationship of the mean square error to the number
of observations used in a linear predictor of a random variable.

Example 9.10 The correlation matrix RX of a 21-dimensional random vector X has i, j th element

RX (i, j) = r|i− j |, i, j = 1, 2, . . . , 21. (9.74)

W is a random vector, independent of X, with expected value E[W] = 0 and diagonal
correlation matrix RW = (0.1)I. Use the first n elements of Y = X +W to form a linear
estimate of X21 and plot the mean square error of the optimum linear estimate as a
function of n for

(a) r|i− j | = sin(0.1π |i − j |)
0.1π |i − j | , (b) r|i− j | = cos(0.5π |i − j |).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this problem, let W(n), X(n), and Y(n) denote the vectors, consisting of the first n
components of W, X, and Y. Similar to Example 9.8, independence of X(n) and W(n)

implies that the correlation matrix of Y(n) is

RY(n) = E
[
(X(n) + W(n))(X(n) + W(n))′

]
= RX(n) + RW(n) (9.75)

Note that RX(n) and RW(n) are the n × n upper-left submatrices of RX and RW. In
addition,

RY(n) X = E

⎡
⎢⎣
⎡
⎢⎣

X1 + W1
.
..

Xn + Wn

⎤
⎥⎦ X21

⎤
⎥⎦ =

⎡
⎢⎣

r20
.
..

r21−n

⎤
⎥⎦ . (9.76)

Thus the optimal filter based on the first n observations is â(n) = R−1
Y(n)RY(n) X , and the

mean square error is
e∗

L = Var[X21] − (â(n))′RY(n) X (9.77)
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ra=[1 sin(0.1*pi*(1:20))...
./(0.1*pi*(1:20))];

mse(ra);

rb=cos(0.5*pi*(0:20));
mse(rb);

(a) (b)

Figure 9.3 Two Runs of mse.m

function e=mse(r)
N=length(r);
e=[];
rr=fliplr(r(:)’);
for n=1:N,

RYX=rr(1:n)’;
RY=toeplitz(r(1:n))+0.1*eye(n);
a=RY\RYX;
en=r(1)-(a’)*RYX;
e=[e;en];

end
plot(1:N,e);

The program mse.m uses
Equation (9.77) to calculate the
mean square error. The input
is the vector r corresponding
to the vector

[
r0 · · · r20

]
,

which holds the first row of the
Toeplitz correlation matrix RX.
Note that RX(n) is the Toeplitz
matrix whose first row is the
first n elements of r.

To plot the mean square error as a function of the number of observations, n, we
generate the vector r and then run mse(r). For the requested cases (a) and (b),
the necessary Matlab commands and corresponding mean square estimation error
output as a function of n are shown in Figure 9.3.

In comparing the results of cases (a) and (b) in Example 9.10, we see that the mean
square estimation error depends strongly on the correlation structure given by r|i− j |. For
case (a), samples Xn for n < 10 have very little correlation with X21. Thus for n < 10,
the estimates of X21 are only slightly better than the blind estimate. On the other hand, for
case (b), X1 and X21 are completely correlated; ρX1,X21 = 1. For n = 1, Y1 = X1 + W1
is simply a noisy copy of X21 and the estimation error is due to the variance of W1. In this
case, as n increases, the optimal linear estimator is able to combine additional noisy copies
of X21, yielding further reductions in the mean square estimation error.
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Quiz 9.5 We are given 20 measurements of random Gaussian (0, 1) random variable X to form
the observation vector Y = 1X + W where 1 is the vector of all 1’s. The noise vector
W = [

W1 · · · W20
]′

is independent of X, has zero expected value, and has a correlation

matrix with i, j th entry RW(i, j) = c|i− j |−1. Find X̂ L(Y), the linear MMSE estimate of X
given Y. For c in the range 0 < c < 1, what value of c minimizes the mean square error of
the estimate?

Chapter Summary

This chapter presents techniques for using sample values of observed random variables to
estimate the sample value of another random variable.

• The blind estimate of X is E[X]. It minimizes the mean square error in the absence of
observations.

• Given the event x ∈ A, the optimum estimator is E[X |A].

• Given an observation Y = y, the minimum mean square error estimate of X is E[X |Y = y].

• Linear mean square error (LMSE) estimation of X given Y has the form aY + b. The
optimum values of a and b depend on the expected values and variances of X and Y and
the covariance of X and Y .

• Maximum a posteriori probability (MAP) estimation selects a value of x that maximizes
the conditional PDF fX |Y (x |y).

• Maximum likelihood (ML) estimation chooses the value of x that maximizes the condi-
tional PDF fY |X (y|x). The ML estimate is identical to the MAP estimate when X has
a uniform PDF.

• Given an observation of a random vector, the optimum linear estimator of a random
variable is the solution to a set of linear equations. The coefficients in the equations are
elements of the autocorrelation matrix of the observed random vector. The right side is
the cross-correlation matrix of the estimated random variable and the observed random
vector.

• The estimation error of the optimum linear estimator is uncorrelated with the observed
random variables.

• Further Reading: The final chapter of [WS01] presents the basic theory of estimation
of random variables as well as extensions to stochastic process estimation in the time
domain and frequency domain.
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Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

9.1.1• Generalizing the solution of Example 9.2, let the
call duration T be an exponential (λ) random var-
iable. For t0 > 0, show that the minimum mean
square error estimate of T , given that T > t0, is

T̂ = t0 + E [T ]

9.1.2• X and Y have the joint PDF

fX,Y (x, y) =
{

6(y − x) 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) What is fX (x)?

(b) What is the blind estimate x̂B?

(c) What is the minimum mean square error estimate
of X given X < 0.5?

(d) What is fY (y)?

(e) What is the blind estimate ŷB?

(f) What is the minimum mean square error estimate
of Y given Y > 0.5?

9.1.3
�

X and Y have the joint PDF

fX,Y (x, y) =
{

2 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) What is fX (x)?

(b) What is the blind estimate x̂B?

(c) What is the minimum mean square error estimate
of X given x > 1?

(d) What is fY (y)?

(e) What is the blind estimate ŷB?

(f) What is the minimum mean square error estimate
of Y given x > 1?

9.1.4• X and Y have the joint PDF

fX,Y (x, y) =
{

6(y − x) 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) What is fX |Y (x|y)?

(b) What is x̂M (y), the minimum mean square error
estimate of X given Y = y?

(c) What is fY |X (y|x)?

(d) What is ŷM (x), the minimum mean square error
estimate of Y given X = x?

9.1.5
�

X and Y have the joint PDF

fX,Y (x, y) =
{

2 0 ≤ x ≤ y ≤ 1,

0 otherwise.

(a) What is fX |Y (x|y)?

(b) What is x̂M (y), the minimum mean square error
estimate of X given Y = y?

(c) What is

e∗(0.5) = E
[(

X − x̂M (0.5)
)2 |Y = 0.5

]
,

the minimum mean square error of the estimate
of X given Y = 0.5?

9.2.1
�

The following table gives PX,Y (x, y), the joint
probability mass function of random variables X
and Y .

PX,Y (x, y) y=−3 y=−1 y=1 y=3

x=−1 1/6 1/8 1/24 0
x=0 1/12 1/12 1/12 1/12
x=1 0 1/24 1/8 1/6

(a) Find the marginal probability mass functions
PX (x) and PY (y).

(b) Are X and Y independent?

(c) Find E[X], Var[X], E[Y ], Var[Y ], and
Cov[X, Y ].

(d) Let X̂(Y ) = aY + b be a linear estimator of
X . Find a� and b�, the values of a and b that
minimize the mean square error eL .

(e) What is e∗
L , the minimum mean square error of

the optimum linear estimate?

(f) Find PX |Y (x| − 3), the conditional PMF of X
given Y = −3.

(g) Find x̂M (−3), the optimum (nonlinear) mean
square estimator of X given Y = −3.

(h) What is

e∗(−3) = E
[(

X − x̂M (−3)
)2 |Y = −3

]

the mean square error of this estimate?

9.2.2• A telemetry voltage V , transmitted from a position
sensor on a ship’s rudder, is a random variable with
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fV (v) =
{

1/12 −6 ≤ v ≤ 6,

0 otherwise.

A receiver in the ship’s control room receives R =
V +X , The random variable X is a Gaussian (0,

√
3)

noise voltage that is independent of V . The receiver
uses R to calculate a linear estimate of the telemetry
voltage:

V̂ = aR + b.

Find

(a) the expected received voltage E[R],

(b) the variance Var[R] of the received voltage,

(c) the covariance Cov[V, R] of the transmitted and
received voltages,

(d) a∗ and b∗, the optimum coefficients in the linear
estimate,

(e) e∗, the minimum mean square error of the esti-
mate.

9.2.3• Random variables X and Y have joint PMF given
by the following table:

PX,Y (x, y) y = −1 y = 0 y = 1
x = −1 3/16 1/16 0
x = 0 1/6 1/6 1/6
x = 1 0 1/8 1/8

We estimate Y by ŶL(X) = aX + b.

(a) Find a and b to minimize the mean square esti-
mation error.

(b) What is the minimum mean square error e∗
L ?

9.2.4
�

Here are four different joint PMFs:

PX,Y (x, y) x = −1 x = 0 x = 1
y = −1 1/9 1/9 1/9
y = 0 1/9 1/9 1/9
y = 1 1/9 1/9 1/9

PU,V (u, v) u = −1 u = 0 u = 1
v = −1 0 0 1/3
v = 0 0 1/3 0
v = 1 1/3 0 0

PS,T (s, t) s = −1 s = 0 s = 1
t = −1 1/6 0 1/6
t = 0 0 1/3 0
t = 1 1/6 0 1/6

PQ,R (q, r) q = −1 q = 0 q = 1
r = −1 1/12 1/12 1/6
r = 0 1/12 1/6 1/12
r = 1 1/6 1/12 1/12

(a) For each pair of random variables, indicate
whether the two random variables are indepen-
dent, and compute the correlation coefficient ρ.

(b) Compute the least mean square linear estimator
ÛL (V ) of U given V . What is the mean square
error? Do the same for the pairs X, Y , Q, R, and
S, T .

9.2.5
�

The random variables X and Y have the joint prob-
ability density function

fX,Y (x, y) =
{

2(y + x) 0 ≤ x ≤ y ≤ 1.

0 otherwise.

What is X̂ L(Y ), the linear minimum mean square
error estimate of X given Y ?

9.2.6
�

For random variables X and Y from Problem 9.1.4,
find X̂ L(Y ), the linear minimum mean square error
estimator of X given Y.

9.2.7
�

Random variable X has a second-order Erlang den-
sity

fX (x) =
{

λxe−λx x ≥ 0,

0 otherwise.

Given X = x , Y is a uniform (0, x)random variable.
Find
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(a) the MMSE estimate of Y given X = x , ŷM (x),

(b) the MMSE estimate of X given Y = y, x̂M (y),

(c) the LMSE estimate of Y given X , ŶL (X),

(d) the LMSE estimate of X given Y , X̂ L (Y ).

9.2.8
�

Random variable R has an exponential PDF with
expected value 1. Given R = r , X has an exponen-
tial PDF with expected value 1/r . Find

(a) the MMSE estimate of R given X = x , r̂M (x),

(b) the MMSE estimate of X given R = r , x̂M (r),

(c) the LMSE estimate of R given X , R̂L (X),

(d) the LMSE estimate of X given R, X̂ L(R).

9.2.9
�

For random variables X and Y , we wish to use Y to
estimate X . However, our estimate must be of the
form X̂ = aY .

(a) Find a∗, the value of a that minimizes the mean
square error e = E[(X − aY )2].

(b) For a = a∗, what is the minimum mean square
error e∗?

(c) Under what conditions is X̂ the LMSE estimate
of X?

9.3.1
�

Suppose that in Quiz 9.3, R, measured in meters,
has a uniform PDF over [0, 1000]. Find the MAP
estimate of R given X = x . In this case, are the
MAP and ML estimators the same?

9.3.2
�

Let R be an exponential random variable with ex-
pected value 1/μ. If R = r , then over an interval
of length T , the number of phone calls N that ar-
rive at a telephone switch has a Poisson PMF with
expected value r T .

(a) Find the MMSE estimate of N given R.

(b) Find the MAP estimate of N given R.

(c) Find the ML estimate of N given R.

9.3.3
�

Let R be an exponential random variable with ex-
pected value 1/μ. If R = r , then over an interval of
length T the number of phone calls N that arrive at a
telephone switch has a Poisson PMF with expected
value r T .

(a) Find the MMSE estimate of R given N .

(b) Find the MAP estimate of R given N .

(c) Find the ML estimate of R given N .

9.3.4
�

For a certain coin, Q, is a uniform (0, 1) random
variable. Given Q = q, each flip is heads with

probability q, independent of any other flip. Sup-
pose this coin is flipped n times. Let K denote the
number of heads in n flips.

(a) What is the ML estimator of Q given K ?

(b) What is the PMF of K ? What is E[K ]?
(c) What is the conditional PDF fQ|K (q|k)?

(d) Find the MMSE estimator of Q given K = k.

9.4.1
�

X is a 3-dimensional random vector with E[X] = 0
and autocorrelation matrix RX with elements

RX(i, j) = 1 − 0.25|i − j |.
Y is a 2-dimensional random vector with

Y1 = X1 + X2,

Y2 = X2 + X3.

Use Y to form a linear estimate of X1:

X̂1 = [
â1 â2

]
Y.

(a) What are the optimum coefficients â1 and â2?

(b) What is the minimum mean square error e∗
L?

(c) Use Y1 to form a linear estimate of X1: X̂1 =
aY1 + b. What are the optimum coefficients a∗
and b∗? What is the minimum mean square error
e∗

L ?

9.4.2
�

X is a 3-dimensional random vector with E[X] = 0
and correlation matrix RX with elements

RX(i, j) = 1 − 0.25|i − j |.
W is a 2-dimensional random vector, independent
of X, with E[W] = 0, E[W1W2] = 0, and

E
[
W 2

1

]
= E

[
W 2

2

]
= 0.1.

Y is a 2-dimensional random vector with

Y1 = X1 + X2 + W1,

Y2 = X2 + X3 + W2.

Use Y to form a linear estimate of X1:

X̂1 = [
â1 â2

]
Y.

(a) What are the optimum coefficients â1 and â2?

(b) What is the minimum mean square error e∗
L?
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(c) Use Y1 to form a linear estimate of X1: X̂1 =
aY1 + b. What are the optimum coefficients a∗
and b∗? What is the minimum mean square error
e∗

L ?

9.4.3
�

X is a 3-dimensional random vector with E[X] =[−1 0 1
]′ and correlation matrix RX with ele-

ments
RX(i, j) = 1 − 0.25|i − j |.

W is a 2-dimensional random vector, independent
of X, with E[W] = 0, E[W1W2] = 0, and

E
[
W 2

1

]
= E

[
W 2

2

]
= 0.1.

Y is a 2-dimensional random vector with

Y1 = X1 + X2 + W1,

Y2 = X2 + X3 + W2.

Use Y to form a linear estimate of X1:

X̂1 = [
â1 â2

]
Y + b̂.

(a) What are the optimum coefficients â1, â2, and
b̂?

(b) What is the minimum mean square error e∗
L ?

(c) Use Y1 to form a linear estimate of X1: X̂1 =
aY1 + b. What are the optimum coefficients a∗
and b∗? What is the minimum mean square error
e∗

L ?

9.4.4
�

When X and Y have expected values μX = μY =
0, Theorem 9.4 says that X̂ L (Y ) = ρX,Y

σX
σY

Y .
Show that this result is a special case of The-
orem 9.7(a) when random vector Y is the 1-
dimensional random variable Y .

9.4.5• X is a 3-dimensional random vector with E[X] = 0
and autocorrelation matrix RX with elements ri j =
(−0.80)|i− j | . Use X1 and X2 to form a linear esti-
mate of X3: X̂3 = a1 X2 + a2 X1.

(a) What are the optimum coefficients â1 and â2?

(b) What is the minimum mean square error e∗
L ?

Use X2 to form a linear estimate of X3: X̂3 =
aX2 + b.

(c) What are the optimum coefficients a∗ and b∗?

(d) What is the minimum mean square error e∗
L ?

9.4.6
�

Prove the following theorem: X is an n-dimensional
random vector with E[X] = 0 and autocorrela-
tion matrix RX with elements ri j = c|i− j | where

|c| < 1. The optimum linear estimator of Xn ,

X̂n = a1 Xn−1 + a2 Xn−2 + · · · + an−1 X1.

is X̂n = cXn−1. The minimum mean square esti-
mation error is e∗

L = 1 − c2. Hint: Consider the
n − 1 equations ∂eL/∂ai = 0.

9.4.7
�

In the CDMA multiuser communications system in-
troduced in Problem 8.3.9, each user i transmits
an independent data bit Xi such that the vector
X = [

X1 · · · Xn
]′ has iid components with

PXi (1) = PXi (−1) = 1/2. The received signal
is

Y =
k∑

i=1

Xi
√

pi Si + N

where N is a Gaussian (0, σ 2I) noise vector.

(a) Based on the observation Y, find the LMSE es-
timate X̂i (Y) = â′

i Y of Xi .

(b) Let
X̂ = [

X̂1 · · · X̂k
]′

denote the vector of LMSE bits estimates for
users 1, . . . , k. Show that

X̂ = P1/2S′(SPS′ + σ 2I)−1Y.

9.5.1• Continuing Example 9.10, the 21-dimensional vec-
tor X has correlation matrix RX with i, j th element

RX(i, j) = sin(φ0π |i − j |)
φ0π |i − j | .

We use the observation vector Y = Y(n) =[
Y1 · · · Yn

]′ to estimate X = X21. Find the

LMSE estimate X̂ L (Y(n)) = â(n)Y(n). Graph the
mean square error e∗

L (n) as a function of the number
of observations n for φ0 ∈ {0.1, 0.5, 0.9}. Interpret
your results. Does smaller φ0 or larger φ0 yield
better estimates?

9.5.2• Repeat Problem 9.5.1 when

RX(i, j) = cos(φ0π |i − j |).
9.5.3
�

In a variation on Example 9.10, we use the obser-
vation vector Y = Y(n) = [

Y1 · · · Yn
]′ to es-

timate X = X1. The 21-dimensional vector X has
correlation matrix RX with i, j th element

RX(i, j) = r|i− j |.
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Find the LMSE estimate X̂ L (Y(n)) = â(n)Y(n).
Graph the mean square error e∗

L (n) as a function
of the number of observations n, and interpret your
results for the cases

(a) r|i− j | = sin(0.1π |i − j |)
0.1π |i − j | ,

(b) r|i− j | = cos(0.5π |i − j |).
9.5.4
��

For the k user CDMA system employing LMSE re-
ceivers in Problem 9.4.7, it is still necessary for a

receiver to make decisions on what bits were trans-
mitted. Based on the LMSE estimate X̂i , the bit de-
cision rule for user i is X̃i = sgn (X̂i ) Following the
approach in Problem 8.4.6, construct a simulation
to estimate the BER for a system with processing
gain n = 32, with each user operating at 6dB SNR.
Graph your results as a function of the number of
users k for k = 1, 2, 4, 8, 16, 32. Make sure to av-
erage your results over the choice of code vectors
Si .

 



10
Stochastic Processes

Our study of probability refers to an experiment consisting of a procedure and observations.
When we study random variables, each observation corresponds to one or more numbers.
When we study stochastic processes, each observation corresponds to a function of time.
The word stochastic means random. The word process in this context means function of
time. Therefore, when we study stochastic processes, we study random functions of time.
Almost all practical applications of probability involve multiple observations taken over
a period of time. For example, our earliest discussion of probability in this book refers
to the notion of the relative frequency of an outcome when an experiment is performed a
large number of times. In that discussion and subsequent analyses of random variables, we
have been concerned only with how frequently an event occurs. When we study stochastic
processes, we also pay attention to the time sequence of the events.

In this chapter, we apply and extend the tools we have developed for random variables
to introduce stochastic processes. We present a model for the randomness of a stochastic
process that is analogous to the model of a random variable and we describe some families
of stochastic processes (Poisson, Brownian, Gaussian) that arise in practical applications.
We then define the autocorrelation function and autocovariance function of a stochastic
process. These time functions are useful summaries of the time structure of a process, just
as the expected value and variance are useful summaries of the amplitude structure of a
random variable. Wide sense stationary processes appear in many electrical and computer
engineering applications of stochastic processes. In addition to descriptions of a single
random process, we define the cross-correlation to describe the relationship between two
wide sense stationary processes.

10.1 Definitions and Examples

The definition of a stochastic process resembles Definition 2.1 of a random variable.

353
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Figure 10.1 Conceptual representation of a random process.

Definition 10.1 Stochastic Process
A stochastic process X (t) consists of an experiment with a probability measure P[·] defined
on a sample space S and a function that assigns a time function x(t, s) to each outcome s
in the sample space of the experiment.

Essentially, the definition says that the outcomes of the experiment are all functions of
time. Just as a random variable assigns a number to each outcome s in a sample space S, a
stochastic process assigns a sample function to each outcome s.

Definition 10.2 Sample Function
A sample function x(t, s) is the time function associated with outcome s of an experiment.

A sample function corresponds to an outcome of a stochastic process experiment. It is
one of the possible time functions that can result from the experiment. Figure 10.1 shows
the correspondence between the sample space of an experiment and the ensemble of sample
functions of a stochastic process. It also displays the two-dimensional notation for sample
functions x(t, s). In this notation, X (t) is the name of the stochastic process, s indicates the
particular outcome of the experiment, and t indicates the time dependence. Corresponding
to the sample space of an experiment and to the range of a random variable, we define the
ensemble of a stochastic process.

Definition 10.3 Ensemble
The ensemble of a stochastic process is the set of all possible time functions that can result
from an experiment.
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Example 10.1 Starting at launch time t = 0, let X (t) denote the temperature in degrees Kelvin on the
surface of a space shuttle. With each launch s, we record a temperature sequence
x(t, s). The ensemble of the experiment can be viewed as a catalog of the possible
temperature sequences that we may record. For example,

x(8073.68, 175) = 207 (10.1)

indicates that in the 175th entry in the catalog of possible temperature sequences, the
temperature at t = 8073.68 seconds after the launch is 207◦ K .

Just as with random variables, one of the main benefits of the stochastic process model
is that it lends itself to calculating averages. Corresponding to the two-dimensional nature
of a stochastic process, there are two kinds of averages. With t fixed at t = t0, X (t0)
is a random variable, and we have the averages (for example, the expected value and the
variance) that we have studied already. In the terminology of stochastic processes, we refer
to these averages as ensemble averages. The other type of average applies to a specific
sample function, x(t, s0), and produces a typical number for this sample function. This is
a time average of the sample function.

Example 10.2 In Example 10.1 of the space shuttle, over all possible launches, the average temper-
ature after 8073.68 seconds is E[X (8073.68)] = 217◦K . This is an ensemble average
taken over all possible temperature sequences. In the 175th entry in the catalog of
possible temperature sequences, the average temperature over that space shuttle
mission is

1

671208.3

∫ 671208.3

0
x(t, 175) dt = 187.43◦ K (10.2)

where the integral limit 671208.3 is the duration in seconds of the shuttle mission.

Before delving into the mathematics of stochastic processes, it is instructive to examine
the following examples of processes that arise when we observe time functions.

Example 10.3 Starting on January 1, we measure the noontime temperature (in degrees Celsius)
at Newark Airport every day for one year. This experiment generates a sequence,
C(1), C(2), . . . , C(365), of temperature measurements. With respect to the two kinds
of averages of stochastic processes, people make frequent reference to both ensem-
ble averages such as “the average noontime temperature for February 19,” and time
averages, such as the “average noontime temperature for 1923.”

Example 10.4 Consider an experiment in which we record M(t), the number of active calls at a
telephone switch at time t , at each second over an interval of 15 minutes. One trial
of the experiment might yield the sample function m(t, s) shown in Figure 10.2. Each
time we perform the experiment, we would observe some other function m(t, s). The
exact m(t, s) that we do observe will depend on many random variables including the
number of calls at the start of the observation period, the arrival times of the new calls,
and the duration of each call. An ensemble average is the average number of calls
in progress at t = 403 seconds. A time average is the average number of calls in
progress during a specific 15-minute interval.
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Figure 10.2 A sample function m(t, s) of the random process M(t) described in Example 10.4.

The fundamental difference between Examples 10.3 and 10.4 and experiments from
earlier chapters is that the randomness of the experiment depends explicitly on time. More-
over, the conclusions that we draw from our observations will depend on time. For
example, in the Newark temperature measurements, we would expect the temperatures
C(1), . . . , C(30) during the month of January to be low in comparison to the temperatures
C(181), . . . , C(210) in the middle of summer. In this case, the randomness we observe
will depend on the absolute time of our observation. We might also expect that for a day
t that is within a few days of t ′, the temperatures C(t) and C(t ′) are likely to be similar.
In this case, we see that the randomness we observe may depend on the time difference
between observations. We will see that characterizing the effects of the absolute time of
an observation and the relative time between observations will be a significant step toward
understanding stochastic processes.

Example 10.5
Suppose that at time instants T =
0, 1, 2, . . ., we roll a die and record the out-
come NT where 1 ≤ NT ≤ 6. We then
define the random process X (t) such that
for T ≤ t < T + 1, X (t) = NT . In this
case, the experiment consists of an infinite
sequence of rolls and a sample function
is just the waveform corresponding to the
particular sequence of rolls. This mapping
is depicted on the right.

x t, s( )1

t

x t, s( )2

t

s1

1,2,6,3,...

s2

3,1,5,4,...

Example 10.6 In a quaternaryphase shift keying (QPSK) communications system, one of four equally
probable symbols s0, . . . , s3 is transmitted in T seconds. If symbol si is sent, a wave-
form x(t, si ) = cos(2π f0t + π/4 + iπ/2) is transmitted during the interval [0, T ]. In
this example, the experiment is to transmit one symbol over [0, T ] seconds and each
sample function has duration T . In a real communications system, a symbol is trans-
mitted every T seconds and an experiment is to transmit j symbols over [0, j T ] sec-
onds. In this case, an outcome corresponds to a sequence of j symbols and a sample
function has duration j T seconds.
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Although the stochastic process model in Figure 10.1 and Definition 10.1 refers to one
experiment producing an observation s, associated with a sample function x(t, s), our
experience with practical applications of stochastic processes can better be described in
terms of an ongoing sequence of observations of random events. In the experiment of
Example 10.4, if we observe m(17, s) = 22 calls in progress after 17 seconds, then we
know that unless in the next second at least one of the 22 calls ends or one or more new
calls begin, m(18, s) would remain at 22. We could say that each second we perform an
experiment to observe the number of calls beginning and the number of calls ending. In this
sense, the sample function m(t, s) is the result of a sequence of experiments, with a new
experiment performed every second. The observations of each experiment produce several
random variables related to the sample functions of the stochastic process.

Example 10.7 The observations related to the waveform m(t, s) in Example 10.4 could be

• m(0, s), the number of ongoing calls at the start of the experiment,

• X1, . . . , Xm(0,s), the remaining time in seconds of each of the m(0, s) ongoing
calls,

• N , the number of new calls that arrive during the experiment,

• S1, . . . , SN , the arrival times in seconds of the N new calls,

• Y1, . . . , YN , the call durations in seconds of each of the N new calls.

Some thought will show that samples of each of these random variables, by indicating
when every call starts and ends, correspond to one sample function m(t, s). Keep in
mind that although these random variables completely specify m(t, s), there are other
sets of random variables that also specify m(t, s). For example, instead of referring
to the duration of each call, we could instead refer to the time at which each call
ends. This yields a different but equivalent set of random variables corresponding to
the sample function m(t, s). This example emphasizes that stochastic processes can
be quite complex in that each sample function m(t, s) is related to a large number of
random variables, each with its own probability model. A complete model of the entire
process, M(t), is the model (joint probability mass function or joint probability density
function) of all of the individual random variables.

Quiz 10.1 In Example 10.4, define a set of random variables that could produce m(t, s). Do not
duplicate the set listed in Example 10.7.

10.2 Types of Stochastic Processes

Just as we developed different ways of analyzing discrete and continuous random vari-
ables, we can define categories of stochastic processes that can be analyzed using different
mathematical techniques. To establish these categories, we characterize both the range of
possible values at any instant t as well as the time instants at which changes in the random
process can occur.
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Figure 10.3 Sample functions of four kinds of stochastic processes. Xcc(t) is a continuous-time,
continuous-value process. Xdc(t) is discrete-time, continuous-value process obtained by sampling
Xcc) every 0.1 seconds. Rounding Xcc(t) to the nearest integer yields Xcd (t), a continuous-time,
discrete-value process. Lastly, Xdd (t), a discrete-time, discrete-value process, can be obtained either
by sampling Xcd (t) or by rounding Xdc(t).

Definition 10.4 Discrete-Value and Continuous-Value Processes
X (t) is a discrete-value process if the set of all possible values of X (t) at all times t is a
countable set SX ; otherwise X (t) is a continuous-value process.

Definition 10.5 Discrete-Time and Continuous-Time Processes
The stochastic process X (t) is a discrete-time process if X (t) is defined only for a set of
time instants, tn = nT , where T is a constant and n is an integer; otherwise X (t) is a
continuous-time process.

In Figure 10.3, we see that the combinations of continuous/discrete time and continu-
ous/discrete value result in four categories. For a discrete-time process, the sample function
is completely described by the ordered sequence of random variables Xn = X (nT ).

Definition 10.6 Random Sequence
A random sequence Xn is an ordered sequence of random variables X0, X1, . . ..

Quiz 10.2 For the temperature measurements of Example 10.3, construct examples of the measurement
process such that the process is either
(1) discrete-time, discrete-value, (2) discrete-time, continuous-value,
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(3) continuous-time, discrete-value, (4) continuous-time, continuous-value.

10.3 Random Variables from Random Processes

Suppose we observe a stochastic process at a particular time instant t1. In this case, each time
we perform the experiment, we observe a sample function x(t, s) and that sample function
specifies the value of x(t1, s). Each time we perform the experiment, we have a new s and
we observe a new x(t1, s). Therefore, each x(t1, s) is a sample value of a random variable.
We use the notation X (t1) for this random variable. Like any other random variable, it has
either a PDF fX (t1)(x) or a PMF PX (t1)(x). Note that the notation X (t) can refer to either
the random process or the random variable that corresponds to the value of the random
process at time t . As our analysis progresses, when we write X (t), it will be clear from the
context whether we are referring to the entire process or to one random variable.

Example 10.8 In the example of repeatedly rolling a die, Example 10.5, what is the PMF of X (3.5)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The random variable X (3.5) is the value of the die roll at time 3. In this case,

PX (3.5) (x) =
{

1/6 x = 1, . . . , 6,

0 otherwise.
(10.3)

Example 10.9 Let X (t) = R| cos 2π f t | be a rectified cosine signal having a random amplitude R with
the exponential PDF

fR (r) =
{ 1

10 e−r/10 r ≥ 0,

0 otherwise.
(10.4)

What is the PDF fX (t)(x)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since X (t) ≥ 0 for all t , P[X (t) ≤ x] = 0 for x < 0. If x ≥ 0, and cos 2π f t > 0,

P [X (t) ≤ x] = P [R ≤ x/ |cos 2π f t |] (10.5)

=
∫ x/|cos 2π f t |

0
fR (r) dr (10.6)

= 1 − e−x/10|cos 2π f t |. (10.7)

When cos 2π f t �= 0, the complete CDF of X (t) is

FX (t) (x) =
{

0 x < 0,

1 − e−x/10|cos 2π f t | x ≥ 0.
(10.8)

When cos 2π f t �= 0, the PDF of X (t) is

fX (t) (x) = d FX (t) (x)

dx
=
{

1
10|cos 2π f t | e−x/10|cos 2π f t | x ≥ 0,

0 otherwise.
(10.9)
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When cos 2π f t = 0 corresponding to t = π/2 + kπ , X (t) = 0 no matter how large R
may be. In this case, fX (t)(x) = δ(x). In this example, there is a different random
variable for each value of t .

With respect to a single random variable X , we found that all the properties of X are
determined from the PDF fX (x). Similarly, for a pair of random variables X1, X2, we
needed the joint PDF fX1,X2(x1, x2). In particular, for the pair of random variables, we
found that the marginal PDF’s fX1(x1) and fX2(x2) were not enough to describe the pair
of random variables. A similar situation exists for random processes. If we sample a
process X (t) at k time instants t1, . . . , tk , we obtain the k-dimensional random vector
X = [

X (t1) · · · X (tk)
]′.

To answer questions about the random process X (t), we must be able to answer questions
about any random vector X = [

X (t1) · · · X (tk)
]′

for any value of k and any set of time
instants t1, . . . , tk . In Section 5.2, the random vector is described by the joint PMF PX(x)

for a discrete-value process X (t), or by the joint PDF fX(x) for a continuous-value process.
For a random variable X , we could describe X by its PDF fX (x), without speci-

fying the exact underlying experiment. In the same way, knowledge of the joint PDF
fX (t1),...,X (tk)(x1, . . . , xk) for all k will allow us to describe a random process without ref-
erence to an underlying experiment. This is convenient because many experiments lead to
the same stochastic process. This is analogous to the situation we described earlier in which
more than one experiment (for example, flipping a coin or transmitting one bit) produces
the same random variable.

In Section 10.1, there are two examples of random processes based on measurements.
The real-world factors that influence these measurements can be very complicated. For
example, the sequence of daily temperatures of Example 10.3 is the result of a very large
dynamic weather system that is only partially understood. Just as we developed random
variables from idealized models of experiments, we will construct random processes that
are idealized models of real phenomena. The next three sections examine the probability
models of specific types of stochastic processes.

Quiz 10.3 In a production line for 1000 � resistors, the actual resistance in ohms of each resistor
is a uniform (950, 1050) random variable R. The resistances of different resistors are
independent. The resistor company has an order for 1% resistors with a resistance between
990 � and 1010 �. An automatic tester takes one resistor per second and measures its exact
resistance. (This test takes one second.) The random process N(t) denotes the number of
1% resistors found in t seconds. The random variable Tr seconds is the elapsed time at
which r 1% resistors are found.

(1) What is p, the probability that any single resistor is a 1% resistor?

(2) What is the PMF of N(t)?

(3) What is E[T1] seconds, the expected time to find the first 1% resistor?

(4) What is the probability that the first 1% resistor is found in exactly 5 seconds?

(5) If the automatic tester finds the first 1% resistor in 10 seconds, what is E[T2|T1 = 10],
the conditional expected value of the time of finding the second 1% resistor?
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10.4 Independent, Identically Distributed Random Sequences

An independent identically distributed (iid) random sequence is a random sequence Xn in
which . . . , X−2, X−1, X0, X1, X2, . . . are iid random variables. An iid random sequence
occurs whenever we perform independent trials of an experiment at a constant rate. An
iid random sequence can be either discrete-value or continuous-value. In the discrete case,
each random variable Xi has PMF PXi (x) = PX (x), while in the continuous case, each Xi
has PDF fXi (x) = fX (x).

Example 10.10 In Quiz 10.3, each independent resistor test required exactly 1 second. Let Rn equal
the number of 1% resistors found during minute n. The random variable Rn has the
binomial PMF

PRn (r) =
(

60

r

)
pr (1 − p)60−r . (10.10)

Since each resistor is a 1% resistor independent of all other resistors, the number
of 1% resistors found in each minute is independent of the number found in other
minutes. Thus R1, R2, . . . is an iid random sequence.

Example 10.11 In the absence of a transmitted signal, the output of a matched filter in a digital commu-
nications system is an iid sequence X1, X2, . . . of Gaussian (0, σ ) random variables.

For an iid random sequence, the joint distribution of a sample vector
[
X1 · · · Xn

]′ is
easy to write since it is the product of the individual PMFs or PDFs.

Theorem 10.1 Let Xn denote an iid random sequence. For a discrete-value process, the sample vector
X = [

Xn1 · · · Xnk

]′
has joint PMF

PX (x) = PX (x1) PX (x2) · · · PX (xk) =
k∏

i=1

PX (xi ) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For a continuous-value process, the joint PDF of X = [

Xn1 · · · , Xnk

]′
is

fX (x) = fX (x1) fX (x2) · · · fX (xk) =
k∏

i=1

fX (xi) .

Of all iid random sequences, perhaps the Bernoulli random sequence is the simplest.

Definition 10.7 Bernoulli Process
A Bernoulli (p) process Xn is an iid random sequence in which each Xn is a Bernoulli (p)
random variable.

Example 10.12 In a common model for communications, the output X1, X2, . . . of a binary source is
modeled as a Bernoulli (p = 1/2) process.
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Example 10.13 Each day, we buy a ticket for the New York Pick 4 lottery. Xn = 1 if our ticket on day n
is a winner; otherwise, Xn = 0. The random sequence Xn is a Bernoulli process.

Example 10.14 For the resistor process in Quiz 10.3, let Yn = 1 if, in the nth second, we find a 1%
resistor; otherwise Yn = 0. The random sequence Yn is a Bernoulli process.

Example 10.15 For a Bernoulli (p) process Xn , find the joint PMF of X = [
X1 · · · Xn

]′.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For a single sample Xi , we can write the Bernoulli PMF in the following way:

PXi (xi ) =
{

pxi (1 − p)1−xi xi ∈ {0, 1} ,

0 otherwise.
(10.11)

When xi ∈ {0, 1} for i = 1, . . . , n, the joint PMF can be written as

PX (x) =
n∏

i=1

pxi (1 − p)1−xi = pk(1 − p)n−k (10.12)

where k = x1 + · · · + xn . The complete expression for the joint PMF is

PX (x) =
{

px1+···+xn (1 − p)n−(x1+···+xn) xi ∈ {0, 1} , i = 1, . . . , n,

0 otherwise.
(10.13)

Quiz 10.4 For an iid random sequence Xn of Gaussian (0, 1) random variables, find the joint PDF of
X = [

X1 · · · Xm
]′

.

10.5 The Poisson Process

A counting process N(t) starts at time 0 and counts the occurrences of events. These events
are generally called arrivals because counting processes are most often used to model the
arrivals of customers at a service facility. However, since counting processes have many
applications, we will speak about arrivals without saying exactly what is arriving.

Since we start at time t = 0, n(t, s) = 0 for all t ≤ 0. Also, the number of arrivals up
to any t > 0 is an integer that cannot decrease with time.

Definition 10.8 Counting Process
A stochastic process N(t) is a counting process if for every sample function, n(t, s) = 0
for t < 0 and n(t, s) is integer-valued and nondecreasing with time.

We can think of N(t) as counting the number of customers that arrive at a system during
the interval (0, t]. A typical sample path of N(t) is sketched in Figure 10.4. The jumps in
the sample function of a counting process mark the arrivals, and the number of arrivals in
the interval (t0, t1] is just N(t1) − N(t0).

We can use a Bernoulli process X1, X2, . . . to derive a simple counting process. In
particular, consider a small time step of size � seconds such that there is one arrival in
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N(t)

t

X1 X2 X3 X4 X5

1

2

3

4

5

S1 S2 S3 S4 S5

Figure 10.4 Sample path of a counting process.

the interval (n�, (n + 1)�] if and only if Xn = 1. For an average arrival rate λ > 0
arrivals/second, we can choose � such that λ� � 1. In this case, we let the success
probability of Xn be λ�. This implies that the number of arrivals Nm before time T = m�

has the binomial PMF

PNm (n) =
(

m

n

)
(λT/m)n(1 − λT/m)m−n . (10.14)

In Theorem 2.8, we showed that as m → ∞, or equivalently as � → 0, the PMF of Nm

becomes a Poisson random variable N(T ) with PMF

PN(T ) (n) =
{

(λT )ne−λT /n! n = 0, 1, 2, . . . ,

0 otherwise.
(10.15)

We can generalize this argument to say that for any interval (t0, t1], the number of arrivals
would have a Poisson PMF with parameter λT where T = t1 − t0. Moreover, the number of
arrivals in (t0, t1] depends on the independent Bernoulli trials corresponding to that interval.
Thus the number of arrivals in nonoverlapping intervals will be independent. In the limit
as � → 0, we have obtained a counting process in which the number of arrivals in any
interval is a Poisson random variable independent of the arrivals in any other nonoverlapping
interval. We call this limiting process a Poisson process.

Definition 10.9 Poisson Process
A counting process N(t) is a Poisson process of rate λ if

(a) The number of arrivals in any interval (t0, t1], N(t1) − N(t0), is a Poisson random
variable with expected value λ(t1 − t0).

(b) For any pair of nonoverlapping intervals (t0, t1] and (t ′0, t ′1], the number of arrivals
in each interval, N(t1) − N(t0) and N(t ′1) − N(t ′0) respectively, are independent
random variables.

We call λ the rate of the process because the expected number of arrivals per unit time is
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E[N(t)]/t = λ. By the definition of a Poisson random variable, M = N(t1) − N(t0) has
the PMF

PM (m) =
{ [λ(t1−t0)]m

m! e−λ(t1−t0) m = 0, 1, . . . ,

0 otherwise.
(10.16)

For a set of time instants t1 < t2 < · · · < tk , we can use the property that the num-
ber of arrivals in nonoverlapping intervals are independent to write the joint PMF of
N(t1), . . . , N(tk ) as a product of probabilities.

Theorem 10.2 For a Poisson process N(t) of rate λ, the joint PMF of N = [
N(t1), . . . , N(tk )

]′
, for ordered

time instances t1 < · · · < tk , is

PN(n) =
{

α
n1
1 e−α1

n1!
α

n2−n1
2 e−α2

(n2−n1)! · · · α
nk−nk−1
k e−αk

(nk−nk−1)! 0 ≤ n1 ≤ · · · ≤ nk,

0 otherwise

where α1 = λt1, and for i = 2, . . . , k, αi = λ(ti − ti−1).

Proof Let M1 = N(t1) and for i > 1, let Mi = N(ti ) − N(ti−1). By the definition of the Poisson
process, M1, . . . , Mk is a collection of independent Poisson random variables such that E[Mi ] = αi .

PN (n) = PM1,M2,...,Mk

(
n1, n2 − n1, . . . , nk − nk−1

)
(10.17)

= PM1 (n1) PM2 (n2 − n1) · · · PMk

(
nk − nk−1

)
. (10.18)

The theorem follows by substituting Equation (10.16) for PMi (ni − ni−1).

Keep in mind that the independent intervals property of the Poisson process must hold
even for very small intervals. For example, the number of arrivals in (t, t + δ] must be
independent of the arrival process over [0, t] no matter how small we choose δ > 0.
Essentially, the probability of an arrival during any instant is independent of the past history
of the process. In this sense, the Poisson process is memoryless.

This memoryless property can also be seen when we examine the times between arrivals.
As depicted in Figure 10.4, the random time Xn between arrival n −1 and arrival n is called
the nth interarrival time. In addition, we call the time X1 of the first arrival the first
interarrival time even though there is no previous arrival.

Theorem 10.3 For a Poisson process of rate λ, the interarrival times X1, X2, . . . are an iid random sequence
with the exponential PDF

fX (x) =
{

λe−λx x ≥ 0,

0 otherwise.

Proof Given X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, arrival n − 1 occurs at time

tn−1 = x1 + · · · + xn−1. (10.19)

For x > 0, Xn > x if and only if there are no arrivals in the interval (tn−1, tn−1 + x]. The number
of arrivals in (tn−1, tn−1 + x] is independent of the past history described by X1, . . . , Xn−1. This
implies

P
[
Xn > x|X1 = x1, . . . , Xn−1 = xn−1

] = P
[
N(tn−1 + x) − N(tn−1) = 0

] = e−λx . (10.20)
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Thus Xn is independent of X1, . . . , Xn−1 and has the exponential CDF

FXn (x) = 1 − P [Xn > x] =
{

1 − e−λx x > 0,

0 otherwise.
(10.21)

By taking the derivative of the CDF, we see that Xn has the exponential PDF fXn (x) = fX (x) in the
statement of the theorem.

From a sample function of N(t), we can identify the interarrival times X1, X2 and so
on. Similarly, from the interarrival times X1, X2, . . ., we can construct the sample function
of the Poisson process N(t). This implies that an equivalent representation of the Poisson
process is the iid random sequence X1, X2, . . . of exponentially distributed interarrival
times.

Theorem 10.4 A counting process with independent exponential (λ) interarrivals X1, X2, . . . is a Poisson
process of rate λ.

Quiz 10.5 Data packets transmitted by a modem over a phone line form a Poisson process of rate 10
packets/sec. Using Mk to denote the number of packets transmitted in the kth hour, find the
joint PMF of M1 and M2.

10.6 Properties of the Poisson Process

The memoryless property of the Poisson process can also be seen in the exponential inter-
arrival times. Since P[Xn > x] = e−λx , the conditional probability that Xn > t + x , given
Xn > t , is

P [Xn > t + x |Xn > t] = P [Xn > t + x, Xn > t]

P [Xn > t]
= e−λx . (10.22)

The interpretation of Equation (10.22) is that if the arrival has not occurred by time t , the
additional time until the arrival, Xn − t , has the same exponential distribution as Xn . That
is, no matter how long we have waited for the arrival, the remaining time until the arrival
remains an exponential (λ) random variable. The consequence is that if we start to watch
a Poisson process at any time t , we see a stochastic process that is indistinguishable from
a Poisson process started at time 0.

This interpretation is the basis for ways of composing and decomposing Poisson pro-
cesses. First we consider the sum N(t) = N1(t) + N2(t) of two independent Poisson
processes N1(t) and N2(t). Clearly, N(t) is a counting process since any sample function
of N(t) is nondecreasing. Since interarrival times of each Ni (t) are continuous exponen-
tial random variables, the probability that both processes have arrivals at the same time
is zero. Thus N(t) increases by one arrival at a time. Further, Theorem 6.9 showed that

 



366 CHAPTER 10 STOCHASTIC PROCESSES

the sum of independent Poisson random variables is also Poisson. Thus for any time t0,
N(t0) = N1(t0) + N2(t0) is a Poisson random variable. This suggests (but does not prove)
that N(t) is a Poisson process. In the following theorem and proof, we verify this conjecture
by showing that N(t) has independent exponential interarrival times.

Theorem 10.5 Let N1(t) and N2(t) be two independent Poisson processes of rates λ1 and λ2. The counting
process N(t) = N1(t) + N2(t) is a Poisson process of rate λ1 + λ2.

Proof We show that the interarrival times of the N(t) process are iid exponential random variables.
Suppose the N(t) process just had an arrival. Whether that arrival was from N1(t) or N2(t), Xi ,
the residual time until the next arrival of Ni (t), has an exponential PDF since Ni (t) is a memoryless
process. Further, X , the next interarrival time of the N(t) process, can be written as X = min(X1, X2).
Since X1 and X2 are independent of the past interarrival times, X must be independent of the past
interarrival times. In addition, we observe that X > x if and only if X1 > x and X2 > x . This
implies P[X > x] = P[X1 > x, X2 > x]. Since N1(t) and N2(t) are independent processes, X1
and X2 are independent random variables so that

P [X > x] = P
[
X1 > x

]
P
[
X2 > x

] =
{

1 x < 0,

e−(λ1+λ2)x x ≥ 0.
(10.23)

Thus X is an exponential (λ1 + λ2) random variable.

We derived the Poisson process of rate λ as the limiting case (as � → 0) of a Bernoulli
arrival process that has an arrival in an interval of length � with probability λ�. When we
consider the sum of two independent Poisson processes N1(t) + N2(t) over an interval of
length �, each process Ni (t) can have an arrival with probability λi�. The probability that
both processes have an arrival is λ1λ2�

2. As � → 0, �2 � � and the probability of two
arrivals becomes insignificant in comparison to the probability of a single arrival.

Example 10.16 Cars, trucks, and buses arrive at a toll booth as independent Poisson processes with
rates λc = 1.2 cars/minute, λt = 0.9 trucks/minute, and λb = 0.7 buses/minute. In
a 10-minute interval, what is the PMF of N , the number of vehicles (cars, trucks, or
buses) that arrive?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By Theorem 10.5, the arrival of vehicles is a Poisson process of rate λ = 1.2 + 0.9 +
0.7 = 2.8 vehicles per minute. In a 10-minute interval, λT = 28 and N has PMF

PN (n) =
{

28ne−28/n! n = 0, 1, 2, . . . ,

0 otherwise.
(10.24)

Theorem 10.5 describes the composition of a Poisson process. Now we examine the
decomposition of a Poisson process into two separate processes. Suppose whenever a
Poisson process N(t) has an arrival, we flip a biased coin to decide whether to call this a
type 1 or type 2 arrival. That is, each arrival of N(t) is independently labeled either type 1
with probability p or type 2 with probability 1 − p. This results in two counting processes,
N1(t) and N2(t), where Ni (t) denotes the number of type i arrivals by time t . We will call
this procedure of breaking down the N(t) processes into two counting processes a Bernoulli
decomposition.
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Theorem 10.6 The counting processes N1(t) and N2(t) derived from a Bernoulli decomposition of the
Poisson process N(t) are independent Poisson processes with rates λp and λ(1 − p).

Proof Let X (i)
1 , X (i)

2 , . . . denote the interarrival times of the process Ni (t). We will verify that

X (1)
1 , X (1)

2 , . . . and X (2)
1 , X (2)

2 , . . . are independent random sequences, each with exponential CDFs.
We first consider the interarrival times of the N1(t) process. Suppose time t marked arrival n − 1

of the N1(t) process. The next interarrival time X (1)
n depends only on future coin flips and future

arrivals of the memoryless N(t) process and thus is independent of all past interarrival times of either
the N1(t) or N2(t) processes. This implies the N1(t) process is independent of the N2(t) process.

All that remains is to show is that X (1)
n is an exponential random variable. We observe that X (1)

n > x
if there are no type 1 arrivals in the interval [t, t + x]. For the interval [t, t + x], let N1 and N denote
the number of arrivals of the N1(t) and N(t) processes. In terms of N1 and N , we can write

P
[

X (1)
n > x

]
= PN1 (0) =

∞∑
n=0

PN1|N (0|n) PN (n) . (10.25)

Given N = n total arrivals, N1 = 0 if each of these arrivals is labeled type 2. This will occur with
probability PN1|N (0|n) = (1 − p)n . Thus

P
[

X (1)
n > x

]
=

∞∑
n=0

(1 − p)n (λx)ne−λx

n! = e−pλx
∞∑

n=0

[(1 − p)λx]ne−(1−p)λx

n!︸ ︷︷ ︸
1

. (10.26)

Thus P[X (1)
n > x] = e−pλx ; each X (1)

n has an exponential PDF with mean 1/(pλ). It follows that
N1(t) is a Poisson process of rate λ1 = pλ. The same argument can be used to show that each

X (2)
n has an exponential PDF with mean 1/[(1 − p)λ], implying N2(t) is a Poisson process of rate

λ2 = (1 − p)λ.

Example 10.17 A corporate Web server records hits (requests for HTML documents) as a Poisson
process at a rate of 10 hits per second. Each page is either an internal request (with
probability 0.7) from the corporate intranet or an external request (with probability 0.3)
from the Internet. Over a 10-minute interval, what is the joint PMF of I , the number
of internal requests, and X , the number of external requests?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By Theorem 10.6, the internal and external request arrivals are independent Poisson
processes with rates of 7 and 3 hits per second. In a 10-minute (600-second) interval, I
and X are independentPoisson random variables with parametersαI = 7(600) = 4200
and αX = 3(600) = 1800 hits. The joint PMF of I and X is

PI,X (i, x) = PI (i) PX (x) (10.27)

=
{

(4200)ie−4200

i!
(1800)xe−1800

x ! i, x ∈ {0, 1, . . .} ,

0 otherwise.
(10.28)

The Bernoulli decomposition of two Poisson processes and the sum of two Poisson
processes are, in fact, very closely related. Theorem 10.6 says two independent Poisson
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processes N1(t) and N2(t) with rates λ1 and λ2 can be constructed from a Bernoulli decom-
position of a Poisson process N(t) with rate λ1 + λ2 by choosing the success probability to
be p = λ1/(λ1 + λ2). Furthermore, given these two independent Poisson processes N1(t)
and N2(t) derived from the Bernoulli decomposition, the original N(t) process is the sum
of the two processes. That is, N(t) = N1(t) + N2(t). Thus whenever we observe two
independent Poisson processes, we can think of those processes as being derived from a
Bernoulli decomposition of a single process. This view leads to the following conclusion.

Theorem 10.7 Let N(t) = N1(t) + N2(t) be the sum of two independent Poisson processes with rates λ1
and λ2. Given that the N(t) process has an arrival, the conditional probability that the
arrival is from N1(t) is λ1/(λ1 + λ2).

Proof We can view N1(t) and N2(t) as being derived from a Bernoulli decomposition of N(t) in
which an arrival of N(t) is labeled a type 1 arrival with probability λ1/(λ1 + λ2). By Theorem 10.6,
N1(t) and N2(t) are independent Poisson processes with rate λ1 and λ2 respectively. Moreover, given
an arrival of the N(t) process, the conditional probability that an arrival is an arrival of the N1(t)
process is also λ1/(λ1 + λ2).

A second way to prove Theorem 10.7 is outlined in Problem 10.6.2.

Quiz 10.6 Let N(t) be a Poisson process of rate λ. Let N ′(t) be a process in which we count only
even-numbered arrivals; that is, arrivals 2, 4, 6, . . ., of the process N(t). Is N ′(t) a Poisson
process?

10.7 The Brownian Motion Process

The Poisson process is an example of a continuous-time, discrete-value stochastic process.
Now we will examine Brownian motion, a continuous-time, continuous-value stochastic
process.

Definition 10.10 Brownian Motion Process
A Brownian motion process W (t) has the property that W (0) = 0 and for τ > 0, W (t +
τ ) − W (t) is a Gaussian (0,

√
ατ) random variable that is independent of W (t ′) for all

t ′ ≤ t .

For Brownian motion, we can view W (t) as the position of a particle on a line. For a small
time increment δ,

W (t + δ) = W (t) + [W (t + δ) − W (t)]. (10.29)

Although this expansion may seem trivial, by the definition of Brownian motion, the incre-
ment X = W (t + δ) − W (t) is independent of W (t) and is a Gaussian (0,

√
αδ) random

variable. This property of the Brownian motion is called independent increments. Thus
after a time step δ, the particle’s position has moved by an amount X that is independent of
the previous position W (t). The position change X may be positive or negative. Brownian
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motion was first described in 1827 by botanist Robert Brown when he was examining the
movement of pollen grains in water. It was believed that the movement was the result of
the internal processes of the living pollen. Brown found that the same movement could be
observed for any finely ground mineral particles. In 1905, Einstein identified the source of
this movement as random collisions with water molecules in thermal motion. The Brownian
motion process of Definition 10.10 describes this motion along one axis of motion.

Brownian motion is another process for which we can derive the PDF of the sample
vector W = [

W (t1), · · · , W (tk)
]′.

Theorem 10.8 For the Brownian motion process W (t), the joint PDF of W = [
W (t1), . . . , W (tk )

]′
is

fW (w) =
k∏

n=1

1√
2πα(tn − tn−1)

e−(wn−wn−1)2/[2α(tn−tn−1)].

Proof Since W (0) = 0, W (t1) = X (t1) − W (0) is a Gaussian random variable. Given time
instants t1, . . . , tk , we define t0 = 0 and, for n = 1, . . . , k, we can define the increments Xn =
W (tn)− W (tn−1). Note that X1, . . . , Xk are independent random variables such that Xn is Gaussian
(0,
√

α(tn − tn−1)).

fXn (x) = 1√
2πα(tn − tn−1)

e−x2/[2α(tn−tn−1)]. (10.30)

Note that W = w if and only if W1 = w1 and for n = 2, . . . , k, Xn = wn − wn−1. Although we
omit some significant steps that can be found in Problem 10.7.4, this does imply

fW (w) =
k∏

n=1

fXn

(
wn − wn−1

)
. (10.31)

The theorem follows from substitution of Equation (10.30) into Equation (10.31).

Quiz 10.7 Let W (t) be a Brownian motion process with variance Var[W (t)] = αt . Show that X (t) =
W (t)/

√
α is a Brownian motion process with variance Var[X (t)] = t .

10.8 Expected Value and Correlation

In studying random variables, we often refer to properties of the probability model such as
the expected value, the variance, the covariance, and the correlation. These parameters are a
few numbers that summarize the complete probability model. In the case of stochastic pro-
cesses, deterministic functions of time provide corresponding summaries of the properties
of a complete model.

For a stochastic process X (t), X (t1), the value of a sample function at time instant t1 is
a random variable. Hence it has a PDF fX (t1)(x) and expected value E[X (t1)]. Of course,
once we know the PDF fX (t1)(x), everything we have learned about random variables and
expected values can be applied to X (t1) and E[X (t1)]. Since E[X (t)] is simply a number
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for each value of t , the expected value E[X (t)] is a deterministic function of t . Since
E[X (t)] is a somewhat cumbersome notation, the next definition is just a new notation that
emphasizes that the expected value is a function of time.

Definition 10.11 The Expected Value of a Process
The expected value of a stochastic process X (t) is the deterministic function

μX (t) = E [X (t)] .

Example 10.18 If R is a nonnegative random variable, find the expected value of X (t) = R| cos 2π f t |.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The rectified cosine signal X (t) has expected value

μX (t) = E [R |cos 2π f t |] = E [R] |cos 2π f t | . (10.32)

From the PDF fX (t)(x), we can also calculate the variance of X (t). While the variance is
of some interest, the covariance function of a stochastic process provides very important
information about the time structure of the process. Recall that Cov[X, Y ] is an indication
of how much information random variable X provides about random variable Y . When the
magnitude of the covariance is high, an observation of X provides an accurate indication of
the value of Y . If the two random variables are observations of X (t) taken at two different
times, t1 seconds and t2 = t1 +τ seconds, the covariance indicates how much the process is
likely to change in the τ seconds elapsed between t1 and t2. A high covariance indicates that
the sample function is unlikely to change much in the τ -second interval. A covariance near
zero suggests rapid change. This information is conveyed by the autocovariance function.

Definition 10.12 Autocovariance
The autocovariance function of the stochastic process X (t) is

CX (t, τ ) = Cov [X (t), X (t + τ )] .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The autocovariance function of the random sequence Xn is

CX [m, k] = Cov
[
Xm, Xm+k

]
.

For random sequences, we have slightly modified the notation for autocovarianceby placing
the arguments in square brackets just as a reminder that the functions have integer argu-
ments. For a continuous-time process X (t), the autocovariance definition at τ = 0 implies
CX (t, t) = Var[X (t)]. Equivalently, for k = 0, CX [n, n] = Var[Xn]. The prefix auto
of autocovariance emphasizes that CX (t, τ ) measures the covariance between two samples
of the same process X (t). (There is also a cross-covariance function that describes the
relationship between two different random processes.)
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The autocorrelation function of a stochastic process is closely related to the autocovari-
ance function.

Definition 10.13 Autocorrelation Function
The autocorrelation function of the stochastic process X (t) is

RX (t, τ ) = E [X (t)X (t + τ )] .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The autocorrelation function of the random sequence Xn is

RX [m, k] = E
[
Xm Xm+k

]
.

From Theorem 4.16(a), we have the following result.

Theorem 10.9 The autocorrelation and autocovariance functions of a process X (t) satisfy

CX (t, τ ) = RX (t, τ ) − μX (t)μX (t + τ ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The autocorrelation and autocovariance functions of a random sequence Xn satisfy

CX [n, k] = RX [n, k] − μX (n)μX (n + k).

Since the autocovariance and autocorrelation are so closely related, it is reasonable to ask
why we need both of them. It would be possible to use only one or the other in conjunction
with the expected value μX (t). The answer is that each function has its uses. In particular,
the autocovariance is more useful when we want to use X (t) to predict a future value
X (t + τ ). On the other hand, we learn in Section 11.5 that the autocorrelation provides a
way to describe the power of a random signal.

Example 10.19 Find the autocovariance CX (t τ) and autocorrelation RX (t, τ ) of the Brownian motion
process X (t).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the definition of the Brownian motion process, we know that μX (t) = 0. Thus the
autocorrelation and autocovariance are equal: CX (t, τ ) = RX (t, τ ). To find the auto-
correlation RX (t, τ ), we exploit the independent increments property of Brownian mo-
tion. For the moment, we assume τ ≥ 0 so we can write RX (t, τ ) = E[X (t)X (t + τ)].
Because the definition of Brownian motion refers to X (t + τ)− X (t), we introduce this
quantity by substituting X (t + τ) = X (t + τ) − X (t) + X (t). The result is

RX (t, τ ) = E [X (t)[(X (t + τ) − X (t)) + X (t)]] (10.33)

= E [X (t)[X (t + τ) − X (t)]] + E
[

X2(t)
]
. (10.34)

By the definition of Brownian motion, X (t) and X (t + τ) − X (t) are independent with
zero expected value. This implies

E [X (t)[X (t + τ) − X (t)]] = E [X (t)] E [X (t + τ) − X (t)] = 0. (10.35)
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Furthermore, since E[X (t)] = 0, E[X2(t)] = Var[X (t)]. Therefore, Equation (10.34)
implies

RX (t, τ ) = E
[

X2(t)
]

= αt, τ ≥ 0. (10.36)

When τ < 0, we can reverse the labels in the preceding argument to show that
RX (t, τ ) = α(t + τ). For arbitrary t and τ we can combine these statements to write

RX (t, τ ) = α min {t, t + τ } . (10.37)

Example 10.20 The input to a digital filter is an iid random sequence . . . , X−1, X0, X1, . . . with E[Xi ] =
0 and Var[Xi ] = 1. The output is a random sequence . . . , Y−1, Y0, Y1, . . ., related to
the input sequence by the formula

Yn = Xn + Xn−1 for all integers n. (10.38)

Find the expected value E[Yn] and autocovariance function CY [m, k].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Because Yi = Xi + Xi−1, we have from Theorem 4.13, E[Yi ] = E[Xi ]+ E[Xi−1] = 0.
Before calculating CY [m, k], we observe that Xn being an iid random sequence with
E[Xn] = 0 and Var[Xn] = 1 implies

CX [m, k] = E
[
Xm Xm+k

] =
{

1 k = 0,

0 otherwise.
(10.39)

For any integer k, we can write

CY [m, k] = E
[
YmYm+k

]
(10.40)

= E
[
(Xm + Xm−1)(Xm+k + Xm+k−1)

]
(10.41)

= E
[
Xm Xm+k + Xm Xm+k−1 + Xm−1 Xm+k + Xm−1 Xm+k−1

]
. (10.42)

Since the expected value of a sum equals the sum of the expected values,

CY [m, k] = CX [m, k] + CX [m, k − 1] + CX [m − 1, k + 1] + CX [m − 1, k]. (10.43)

We still need to evaluate this expression for all k. For each value of k, some terms in
Equation (10.43) will equal zero since CX [m, k] = 0 for k �= 0. In particular, if |k| > 1,
then k, k − 1 and k + 1 are nonzero, implying CY [m, k] = 0. When k = 0, we have

CY [m, 0] = CX [m, 0] + CX [m,−1] + CX [m − 1, 1] + CX [m − 1, 0] = 2. (10.44)

For k = −1, we have

CY [m,−1] = CX [m, −1] + CX [m, −2] + CX [m − 1, 0] + CX [m − 1, −1] = 1. (10.45)

The final case, k = 1, yields

CY [m, 1] = CX [m, 1] + CX [m, 0] + CX [m − 1, 2] + CX [m − 1, 1] = 1. (10.46)

A complete expression for the autocovariance is

CY [m, k] =
{

2 − |k| k = −1, 0, 1,

0 otherwise.
(10.47)
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We see that since the filter output depends on the two previous inputs, the filter outputs
Yn and Yn+1 are correlated, whereas filter outputs that are two or more time instants
apart are uncorrelated.

An interesting property of the autocovariance function found in Example 10.20 is that
CY [m, k] depends only on k and not on m. In the next section, we learn that this is a property
of a class of random sequences referred to as stationary random sequences.

Quiz 10.8 Given a random process X (t) with expected value μX (t) and autocorrelation RX (t, τ ), we
can make the noisy observation Y (t) = X (t)+ N(t) where N(t) is a random noise process
with μN (t) = 0 and autocorrelation RN (t, τ ). Assuming that the noise process N(t) is
independent of X (t), find the expected value and autocorrelation of Y (t).

10.9 Stationary Processes

Recall that in a stochastic process, X (t), there is a random variable X (t1) at every time
instant t1 with PDF fX (t1)(x). For most random processes, the PDF fX (t1)(x) depends on
t1. For example, when we make daily temperature readings, we expect that readings taken
in the winter will be lower than temperatures recorded in the summer.

However, for a special class of random processes known as stationary processes, f X (t1)(x)

does not depend on t1. That is, for any two time instants t1 and t1 + τ ,

fX (t1) (x) = fX (t1+τ ) (x) = fX (x) . (10.48)

Therefore, in a stationary process, we observe the same random variable at all time instants.
The key idea of stationarity is that the statistical properties of the process do not change
with time. Equation (10.48) is a necessary condition but not a sufficient condition for a
stationary process. Since the statistical properties of a random process are described by
PDFs of random vectors [X (t1), . . . , X (tm)], we have the following definition.

Definition 10.14 Stationary Process
A stochastic process X (t) is stationary if and only if for all sets of time instants t1, . . . , tm ,
and any time difference τ ,

fX (t1),...,X (tm) (x1, . . . , xm) = fX (t1+τ ),...,X (tm+τ ) (x1, . . . , xm) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A random sequence Xn is stationary if and only if for any set of integer time instants
n1, . . . , nm, and integer time difference k,

fXn1 ,...,Xnm (x1, . . . , xm) = fXn1+k ,...,Xnm+k (x1, . . . , xm) .
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Generally it is not obvious whether a stochastic process is stationary. Usually a stochastic
process is not stationary. However, proving or disproving stationarity can be tricky. Curious
readers may wish to determine which of the processes in earlier examples are stationary.

Example 10.21 Determine if the Brownian motion process introduced in Section 10.7 with parameter
α is stationary.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For Brownian motion, X (t1) is the Gaussian (0,

√
ατ1) random variable. Similarly,

X (t2) is Gaussian (0,
√

ατ2). Since X (t1) and X (t2) do not have the same variance,
fX (t1)(x) �= fX (t2)(x), and the Brownian motion process is not stationary.

The following theorem applies to applications in which we modify one stochastic process
to produce a new process. If the original process is stationary and the transformation is a
linear operation, the new process is also stationary.

Theorem 10.10 Let X (t) be a stationary random process. For constants a > 0 and b, Y (t) = a X (t) + b is
also a stationary process.

Proof For an arbitrary set of time samples t1 , . . . , tn , we need to find the joint PDF of Y (t1 ), . . . , Y (tn).
We have solved this problem in Theorem 5.10 where we found that

fY (t1),...,Y (tn) (y1, . . . , yn) = 1

|a|n fX (t1),...,X (tn)

(
y1 − b

a
, . . . ,

yn − b

a

)
. (10.49)

Since the process X (t) is stationary, we can write

fY (t1+τ ),...,Y (tn+τ ) (y1, . . . , yn) = 1

an fX (t1+τ ),...,X (tn+τ )

(
y1 − b

a
, . . . ,

yn − b

a

)
(10.50)

= 1

an fX (t1),...,X (tn)

(
y1 − b

a
, . . . ,

yn − b

a

)
(10.51)

= fY (t1),...,Y (tn) (y1, . . . , yn) . (10.52)

Thus Y (t) is also a stationary random process.

There are many consequences of the time-invariant nature of a stationary random process.
For example, setting m = 1 in Definition 10.14 leads immediately to Equation (10.48).
Equation (10.48) implies, in turn, that the expected value function in Definition 10.11
is a constant. Furthermore, the autocovariance function and the autocorrelation function
defined in Definition 10.12 and Definition 10.13 are independent of t and depend only on
the time-difference variable τ . Therefore, we adopt the notation CX (τ ) and RX (τ ) for the
autocovariance function and autocorrelation function of a stationary stochastic process.

Theorem 10.11 For a stationary process X (t), the expected value, the autocorrelation, and the autocovari-
ance have the following properties for all t:

(a) μX (t) = μX ,

(b) RX (t, τ ) = RX (0, τ ) = RX (τ ),
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(c) CX (t, τ ) = RX (τ ) − μ2
X = CX (τ ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For a stationary random sequence Xn the expected value, the autocorrelation, and the
autocovariance satisfy for all n

(a) E[Xn] = μX ,

(b) RX [n, k] = RX [0, k] = RX [k],
(c) CX [n, k] = RX [k] − μ2

X = CX [k].

Proof By Definition 10.14, stationarity of X (t) implies fX (t)(x) = fX (0)(x) so that

μX (t) =
∫ ∞
−∞

x fX (t) (x) dx =
∫ ∞
−∞

x fX (0) (x) dx = μX (0). (10.53)

Note that μX (0) is just a constant that we call μX . Also, by Definition 10.14,

fX (t),X (t+τ ) (x1, x2) = fX (t−t),X (t+τ−t) (x1, x2) , (10.54)

so that

RX (t, τ ) = E [X (t)X (t + τ)] =
∫ ∞
−∞

∫ ∞
−∞

x1x2 fX (0),X (τ ) (x1, x2) dx1 dx2 (10.55)

= RX (0, τ ) = RX (τ). (10.56)

Lastly, by Theorem 10.9,

CX (t, τ ) = RX (t, τ ) − μ2
X = RX (τ) − μ2

X = CX (τ). (10.57)

We obtain essentially the same relationships for random sequences by replacing X (t) and X (t + τ)

with Xn and Xn+k .

Example 10.22 At the receiver of an AM radio, the received signal contains a cosine carrier signal at
the carrier frequency fc with a random phase 
 that is a sample value of the uniform
(0, 2π) random variable. The received carrier signal is

X (t) = A cos(2π fct + 
). (10.58)

What are the expected value and autocorrelation of the process X (t)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The phase has PDF

f
 (θ) =
{

1/(2π) 0 ≤ θ ≤ 2π,

0 otherwise.
(10.59)

For any fixed angle α and integer k,

E [cos(α + k
)] =
∫ 2π

0
cos(α + kθ)

1

2π
dθ (10.60)

= sin(α + kθ)

k

∣∣∣∣
2π

0
= sin(α + k2π) − sin α

k
= 0. (10.61)
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Choosing α = 2π fct , and k = 1, E[X (t)] is

μX (t) = E [A cos(2π fct + 
)] = 0. (10.62)

We will use the identity cos A cos B = [cos(A − B) + cos(A + B)]/2 to find the autocor-
relation:

RX (t, τ ) = E[A cos(2π fct + 
)A cos(2π fc(t + τ) + 
)]
= A2

2
E[cos(2π fcτ) + cos(2π fc(2t + τ) + 2
)].

For α = 2π fc(t + τ) and k = 2,

E [cos(2π fc(2t + τ) + 2
)] = E [cos(α + k
)] = 0. (10.63)

Thus

RX (t, τ ) = A2

2
cos(2π fcτ) = RX (τ). (10.64)

Therefore, X (t) has the properties of a stationary stochastic process listed in Theo-
rem 10.11.

Quiz 10.9 Let X1, X2, . . . be an iid random sequence. Is X1, X2, . . . a stationary random sequence?

10.10 Wide Sense Stationary Stochastic Processes

There are many applications of probability theory in which investigators do not have a
complete probability model of an experiment. Even so, much can be accomplished with
partial information about the model. Often the partial information takes the form of expected
values, variances, correlations, and covariances. In the context of stochastic processes, when
these parameters satisfy the conditions of Theorem 10.11, we refer to the relevant process
as wide sense stationary.

Definition 10.15 Wide Sense Stationary
X (t) is a wide sense stationary stochastic process if and only if for all t ,

E [X (t)] = μX , and RX (t, τ ) = RX (0, τ ) = RX (τ ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xn is a wide sense stationary random sequence if and only if for all n,

E [Xn] = μX , and RX [n, k] = RX [0, k] = RX [k].

Theorem 10.11 implies that every stationary process or sequence is also wide sense station-
ary. However, if X (t) or Xn is wide sense stationary, it may or may not be stationary. Thus
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wide sense stationary processes include stationary processes as a subset. Some texts use
the term strict sense stationary for what we have simply called stationary.

Example 10.23 In Example 10.22, we observe that μX (t) = 0 and RX (t, τ ) = (A2/2) cos 2π fcτ . Thus
the random phase carrier X (t) is a wide sense stationary process.

The autocorrelation function of a wide sense stationary process has a number of important
properties.

Theorem 10.12 For a wide sense stationary process X (t), the autocorrelation function RX (τ ) has the
following properties:

RX (0) ≥ 0, RX (τ ) = RX (−τ ), RX (0) ≥ |RX (τ )| .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If Xn is a wide sense stationary random sequence:

RX [0] ≥ 0, RX [k] = RX [−k], RX [0] ≥ |RX [k]| .

Proof For the first property, RX (0) = RX (t, 0) = E[X2(t)]. Since X2(t) ≥ 0, we must have
E[X2(t)] ≥ 0. For the second property, we substitute u = t + τ in Definition 10.13 to obtain

RX (t, τ ) = E [X (u − τ)X (u)] = RX (u, u − τ). (10.65)

Since X (t) is wide sense stationary,

RX (t, t + τ) = RX (τ) = RX (u, u − τ) = RX (−τ). (10.66)

The proof of the third property is a little more complex. First, we note that when X (t) is wide sense
stationary, Var[X (t)] = CX (0), a constant for all t . Second, Theorem 4.17 implies that

CX (t, τ ) ≤ σX (t)σX (t+τ ) = CX (0). (10.67)

Now, for any numbers a, b, and c, if a ≤ b and c ≥ 0, then (a + c)2 ≤ (b + c)2. Choosing
a = CX (t, τ ), b = CX (0), and c = μ2

X yields

(
CX (t, t + τ) + μ2

X

)2 ≤
(

CX (0) + μ2
X

)2
. (10.68)

In this expression, the left side equals (RX (τ))2 and the right side is (RX (0))2, which proves the third
part of the theorem. The proof for the random sequence Xn is essentially the same. Problem 10.10.5
asks the reader to confirm this fact.

RX (0) has an important physical interpretation for electrical engineers.

Definition 10.16 Average Power
The average power of a wide sense stationary process X (t) is RX (0) = E[X2(t)].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 



378 CHAPTER 10 STOCHASTIC PROCESSES

The average power of a wide sense stationary sequence Xn is RX [0] = E[X2
n].

This definition relates to the fact that in an electrical circuit, a signal is measured as
either a voltage v(t) or a current i(t). Across a resistor of R �, the instantaneous power
dissipated is v2(t)/R = i2(t)R. When the resistance is R = 1 �, the instantaneous power
is v2(t) when we measure the voltage, or i2(t) when we measure the current. When we use
x(t), a sample function of a wide sense stationary stochastic process, to model a voltage or a
current, the instantaneous power across a 1 � resistor is x2(t). We usually assume implicitly
the presence of a 1 � resistor and refer to x2(t) as the instantaneous power of x(t). By
extension, we refer to the random variable X2(t) as the instantaneous power of the process
X (t). Definition 10.16 uses the terminology average power for the expected value of the
instantaneous power of a process. Recall that Section 10.1 describes ensemble averages and
time averages of stochastic processes. In our presentation of stationary processes, we have
encountered only ensemble averages including the expected value, the autocorrelation, the
autocovariance, and the average power. Engineers, on the other hand, are accustomed to
observing time averages. For example, if X (t) models a voltage, the time average of sample
function x(t) over an interval of duration 2T is

X(T ) = 1

2T

∫ T

−T
x(t) dt . (10.69)

This is the DC voltage of x(t), which can be measured with a voltmeter. Similarly, a time
average of the power of a sample function is

X2(T ) = 1

2T

∫ T

−T
x2(t) dt . (10.70)

The relationship of these time averages to the corresponding ensemble averages, μX and
E[X2(t)], is a fascinating topic in the study of stochastic processes. When X (t) is a station-
ary process such that limT →∞ X(T ) = μX , the process is referred to as ergodic. In words,
for an ergodic process, the time average of the sample function of a wide sense stationary
stochastic process is equal to the corresponding ensemble average. For an electrical signal
modeled as a sample function of an ergodic process, μX and E[X2(t)] and many other
ensemble averages can be observed with familiar measuring equipment.

Although the precise definition and analysis of ergodic processes are beyond the scope
of this introductory text, we can use the tools of Chapter 7 to make some additional obser-
vations. For a stationary process X (t), we can view the time average X(T ) as an estimate of
the parameter μX , analogous to the sample mean Mn(X). The difference, however, is that
the sample mean is an average of independent random variables whereas sample values of
the random process X (t) are correlated. However, if the autocovariance CX (τ ) approaches
zero quickly, then as T becomes large, most of the sample values will have little or no
correlation and we would expect the process X (t) to be ergodic. This idea is made more
precise in the following theorem.

Theorem 10.13 Let X (t)be a stationary random process with expected value μX and autocovariance CX(τ ).
If
∫∞
−∞ |CX (τ )| dτ < ∞, then X(T ), X(2T ), . . . is an unbiased, consistent sequence of
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estimates of μX .

Proof First we verify that X(T ) is unbiased:

E
[
X(T )

] = 1

2T
E

[∫ T

−T
X (t) dt

]
= 1

2T

∫ T

−T
E [X (t)] dt = 1

2T

∫ T

−T
μX dt = μX (10.71)

To show consistency, it is sufficient to show that limT →∞ Var[X(T )] = 0. First, we observe that
X(T ) − μX = 1

2T

∫ T
−T (X (t) − μX ) dt . This implies

Var[X(T )] = E

⎡
⎣
(

1

2T

∫ T

−T
(X (t) − μX ) dt

)2
⎤
⎦ (10.72)

= E

[
1

(2T )2

(∫ T

−T
(X (t) − μX ) dt

)(∫ T

−T
(X (t ′) − μX ) dt ′

)]
(10.73)

= 1

(2T )2

∫ T

−T

∫ T

−T
E
[
(X (t) − μX )(X (t ′) − μX )

]
dt ′ dt (10.74)

= 1

(2T )2

∫ T

−T

∫ T

−T
CX (t ′ − t) dt ′ dt . (10.75)

We note that∫ T

−T
CX (t ′ − t) dt ′ ≤

∫ T

−T

∣∣CX (t ′ − t)
∣∣ dt ′ (10.76)

≤
∫ ∞
−∞

∣∣CX (t ′ − t)
∣∣ dt ′ =

∫ ∞
−∞

|CX (τ)| dτ < ∞. (10.77)

Hence there exists a constant K such that

Var[X(T )] ≤ 1

(2T )2

∫ T

−T
K dt = K

2T
. (10.78)

Thus limT →∞ Var[X(T )] ≤ limT →∞ K
2T = 0.

Quiz 10.10 Which of the following functions are valid autocorrelation functions?

(1) R1(τ ) = e−|τ | (2) R2(τ ) = e−τ 2

(3) R3(τ ) = e−τ cos τ (4) R4(τ ) = e−τ 2
sin τ

10.11 Cross-Correlation

In many applications, it is necessary to consider the relationship of two stochastic processes
X (t) and Y (t), or two random sequences Xn and Yn . For certain experiments, it is ap-
propriate to model X (t) and Y (t) as independent processes. In this simple case, any set
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of random variables X (t1), . . . , X (tk) from the X (t) process is independent of any set of
random variables Y (t ′1), . . . , Y (t ′j ) from the Y (t) process. In general, however, a complete
probability model of two processes consists of a joint PMF or a joint PDF of all sets of
random variables contained in the processes. Such a joint probability function completely
expresses the relationship of the two processes. However, finding and working with such a
joint probability function is usually prohibitively difficult.

To obtain useful tools for analyzing a pair of processes, we recall that the covariance
and the correlation of a pair of random variables provide valuable information about the
relationship between the random variables. To use this information to understand a pair of
stochastic processes, we work with the correlation and covariance of the random variables
X (t) and Y (t + τ ).

Definition 10.17 Cross-Correlation Function
The cross-correlation of continuous-time random processes X (t) and Y (t) is

RXY (t, τ ) = E [X (t)Y (t + τ )] .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The cross-correlation of random sequences Xn and Yn is

RXY [m, k] = E
[
XmYm+k

]
.

Just as for the autocorrelation, there are many interesting practical applications in which
the cross-correlation depends only on one time variable, the time difference τ or the index
difference k.

Definition 10.18 Jointly Wide Sense Stationary Processes
continuous-time random processes X (t) and Y (t) are jointly wide sense stationary if X (t)
and Y (t) are both wide sense stationary, and the cross-correlation depends only on the time
difference between the two random variables:

RXY (t, τ ) = RXY (τ ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Random sequences Xn and Yn are jointly wide sense stationary if Xn and Yn are both wide
sense stationary and the cross-correlation depends only on the index difference between the
two random variables:

RXY [m, k] = RXY [k].

We encounter cross-correlations in experiments that involve noisy observations of a wide
sense stationary random process X (t).

Example 10.24 Suppose we are interested in X (t) but we can observe only

Y (t) = X (t) + N(t) (10.79)

where N(t) is a noise process that interferes with our observation of X (t). Assume
X (t) and N(t) are independent wide sense stationary processes with E[X (t)] = μX
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and E[N(t)] = μN = 0. Is Y (t) wide sense stationary? Are X (t) and Y (t) jointly wide
sense stationary? Are Y (t) and N(t) jointly wide sense stationary?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since the expected value of a sum equals the sum of the expected values,

E [Y (t)] = E [X (t)] + E [N(t)] = μX . (10.80)

Next, we must find the autocorrelation

RY (t, τ ) = E [Y (t)Y (t + τ)] (10.81)

= E [(X (t) + N(t)) (X (t + τ) + N(t + τ))] (10.82)

= RX (τ) + RX N (t, τ ) + RN X (t, τ ) + RN (τ). (10.83)

Since X (t) and N(t) are independent, RN X (t, τ ) = E[N(t)]E[X (t + τ)] = 0. Similarly,
RX N (t, τ ) = μX μN = 0. This implies

RY (t, τ ) = RX (τ) + RN (τ). (10.84)

The right side of this equation indicates that RY (t, τ ) depends only on τ , which implies
that Y (t) is wide sense stationary. To determine whether Y (t) and X (t) are jointly wide
sense stationary, we calculate the cross-correlation

RY X (t, τ ) = E [Y (t)X (t + τ)] = E [(X (t) + N(t))X (t + τ)] (10.85)

= RX (τ) + RN X (t, τ ) = RX (τ). (10.86)

We can conclude that X (t) and Y (t) are jointly wide sense stationary. Similarly, we
can verify that Y (t) and N(t) are jointly wide sense stationary by calculating

RY N (t, τ ) = E [Y (t)N(t + τ)] = E [(X (t) + N(t))N(t + τ)] (10.87)

= RX N (t, τ ) + RN (τ) = RN (τ). (10.88)

In the following example, we observe that a random sequence Yn derived from a wide
sense stationary sequence Xn may also be wide sense stationary even though Xn and Yn are
not jointly wide sense stationary.

Example 10.25 Xn is a wide sense stationary random sequence with autorrelation function RX [k].
The random sequence Yn is obtained from Xn by reversing the sign of every other
random variable in Xn : Yn = −1n Xn .

(a) Express the autocorrelation function of Yn in terms of RX [k].
(b) Express the cross-correlation function of Xn and Yn in terms of RX [k].
(c) Is Yn wide sense stationary?
(d) Are Xn and Yn jointly wide sense stationary?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The autocorrelation function of Yn is

RY [n, k] = E
[
YnYn+k

] = E
[
(−1)n Xn(−1)n+k Xn+k

]
(10.89)

= (−1)2n+k E
[
Xn Xn+k

]
(10.90)

= (−1)k RX [k]. (10.91)
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Yn is wide sense stationary because the autocorrelation depends only on the index
difference k. The cross-correlation of Xn and Yn is

RXY [n, k] = E
[
XnYn+k

] = E
[

Xn(−1)n+k Xn+k

]
(10.92)

= (−1)n+k E
[
Xn Xn+k

]
(10.93)

= (−1)n+k RX [k]. (10.94)

Xn and Yn are not jointly wide sense stationary because the cross-correlation depends
on both n and k. When n and k are both even or when n and k are both odd, RXY [n, k] =
RX [k]; otherwise RXY [n, k] = −RX [k].

Theorem 10.12 indicates that the autocorrelation of a wide sense stationary process X (t)
is symmetric about τ = 0 (continuous-time) or k = 0 (random sequence). The cross-
correlation of jointly wide sense stationary processes has a corresponding symmetry:

Theorem 10.14 If X (t) and Y (t) are jointly wide sense stationary continuous-time processes, then

RXY (τ ) = RY X (−τ ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If Xn and Yn are jointly wide sense stationary random sequences, then

RXY [k] = RY X [−k].

Proof From Definition 10.17, RXY (τ) = E[X (t)Y (t + τ)]. Making the substitution u = t + τ

yields
RXY (τ) = E [X (u − τ)Y (u)] = E [Y (u)X (u − τ)] = RY X (u,−τ). (10.95)

Since X (t) and Y (t) are jointly wide sense stationary, RY X (u, −τ) = RY X (−τ). The proof is similar
for random sequences.

Quiz 10.11 X (t) is a wide sense stationary stochastic process with autocorrelation function RX (τ ).
Y (t) is identical to X (t), except that the time scale is reversed: Y (t) = X (−t).

(1) Express the autocorrelation function of Y (t) in terms of RX (τ ). Is Y (t) wide sense
stationary?

(2) Express the cross-correlation function of X (t) and Y (t) in terms of RX (τ ). Are X (t)
and Y (t) jointly wide sense stationary?

10.12 Gaussian Processes

The central limit theorem (Theorem 6.14) helps explain the proliferation of Gaussian random
variables in nature. The same insight extends to Gaussian stochastic processes. For elec-
trical and computer engineers, the noise voltage in a resistor is a pervasive example of a
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phenomenon that is accurately modeled as a Gaussian stochastic process. In a Gaussian
process, every collection of sample values is a Gaussian random vector (Definition 5.17).

Definition 10.19 Gaussian Process
X (t) is a Gaussian stochastic process if and only if X = [

X (t1) · · · X (tk)
]′

is a Gaus-
sian random vector for any integer k > 0 and any set of time instants t1, t2, . . . , tk .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Xn is a Gaussian random sequence if and only if X = [

Xn1 · · · Xnk

]′
is a Gaussian

random vector for any integer k > 0 and any set of time instants n1, n2, . . . , nk.

In Problem 10.12.3, we ask the reader to show that the Brownian motion process in Sec-
tion 10.7 is a special case of a Gaussian process. Although the Brownian motion process
is not stationary (see Example 10.21), our primary interest will be in wide sense station-
ary Gaussian processes. In this case, the probability model for the process is completely
specified by the expected value μX and the autocorrelation function RX (τ ) or RX [k]. As a
consequence, a wide sense stationary Gaussian process is stationary.

Theorem 10.15 If X (t) is a wide sense stationary Gaussian process, then X (t) is a stationary Gaussian
process.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If Xn is a wide sense stationary Gaussian sequence, Xn is a stationary Gaussian sequence.

Proof Let μ and C denote the expected value vector and the covariance matrix of the random vector
X = [

X (t1) . . . X (tk)
]′. Let μ̄ and C̄ denote the same quantities for the time-shifted random

vector X̄ = [
X (t1 + T ) . . . X (tk + T )

]′. Since X (t) is wide sense stationary, E[X (ti )] =
E[X (ti + T )] = μX . The i, j th entry of C is

Cij = CX (ti , t j ) = CX (t j − ti ) = CX (t j + T − (ti + T )) = CX (ti + T, t j + T ) = C̄i j . (10.96)

Thus μ = μ̄ and C = C̄, implying that fX(x) = fX̄(x). Hence X (t) is a stationary process. The
same reasoning applies to a Gaussian random sequence Xn .

The white Gaussian noise process is a convenient starting point for many studies in
electrical and computer engineering.

Definition 10.20 White Gaussian Noise
W (t) is a white Gaussian noise process if and only if W (t) is a stationary Gaussian stochastic
process with the properties μW = 0 and RW (τ ) = η0δ(τ ).

A consequence of the definition is that for any collection of distinct time instants t1, . . . , tk ,
W (t1), . . . , W (tk) is a set of independent Gaussian random variables. In this case, the value
of the noise at time ti tells nothing about the value of the noise at time t j . While the white
Gaussian noise process is a useful mathematical model, it does not conform to any signal
that can be observed physically. Note that the average noise power is

E
[
W 2(t)

]
= RW (0) = ∞. (10.97)
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That is, white noise has infinite average power,which is physically impossible. The model is
useful, however, because any Gaussian noise signal observed in practice can be interpreted
as a filtered white Gaussian noise signal with finite power. We explore this interpretation
in Chapter 11.

Quiz 10.12 X (t) is a stationary Gaussian random process with μX (t) = 0 and autocorrelation function
RX (τ ) = 2−|τ |. What is the joint PDF of X (t) and X (t + 1)?

10.13 Matlab

Stochastic processes appear in models of many phenomena studied by electrical and com-
puter engineers. When the phenomena are complicated, Matlab simulations are valuable
analysis tools. To produce Matlab simulations we need to develop codes for stochastic
processes. For example, to simulate the cellular telephone switch of Example 10.4, we need
to model both the arrivals and departures of calls. A Poisson process N(t) is a conventional
model for arrivals.

Example 10.26 Use Matlab to generate the arrival times S1, S2, . . . of a rate λ Poisson process over
a time interval [0, T ].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To generate Poisson arrivals at rate λ, we employ Theorem 10.4 which says that the
interarrival times are independent exponential (λ) random variables. Given interarrival
times X1, X2, . . ., the i th arrival time is the cumulative sum Si = X1 + X2 + · · · + Xi .

function s=poissonarrivals(lambda,T)
%arrival times s=[s(1) ... s(n)]
% s(n)<= T < s(n+1)
n=ceil(1.1*lambda*T);
s=cumsum(exponentialrv(lambda,n));
while (s(length(s))< T),
s_new=s(length(s))+ ...

cumsum(exponentialrv(lambda,n));
s=[s; s_new];

end
s=s(s<=T);

This Matlab code generates
cumulative sums of indepen-
dent exponential random vari-
ables; poissonarrivals
returns the vector s with
s(i) corresponding to Si , the
i th arrival time. Note that the
length of s is a Poisson (λT )

random variable because the
number of arrivals in [0, T ] is
random.

When we wish to examine a Poisson arrival process graphically, the vector of arrival
times is not so convenient. A direct representation of the process N(t) is often more useful.

Example 10.27 Generate a sample path of N(t), a rate λ = 5 arrivals/min Poisson process. Plot N(t)
over a 10-minute interval.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First we use the following code to generate the Poisson process:
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t=0.01*(0:1000);
lambda=5;
N=poissonprocess(lambda,t);
plot(t,N)
xlabel(’\it t’);
ylabel(’\it N(t)’);
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Figure 10.5 A graph of a Poisson process sample path N(t) generated by poissonprocess.m.

function N=poissonprocess(lambda,t)
%input: rate lambda>0, vector t
%For a sample function of a
%Poisson process of rate lambda,
%N(i) = no. of arrivals by t(i)
s=poissonarrivals(lambda,max(t));
N=count(s,t);

Given a vector of time in-
stants t, or equivalently
t = [

t1 · · · tm
]′, the func-

tion poissonprocess gen-
erates a sample path for a
rate λ Poisson process N(t)
in the form of the vector N =[
N1 · · · Nm

]′ where Ni =
N(ti ).

The basic idea of poissonprocess.m is that given the arrival times S1, S2, . . .,

N(t) = max {n|Sn ≤ t} (10.98)

is the number of arrivals that occur by time t . This is implemented in N=count(s,t)
which counts the number of elements of s that are less than or equal to t(i) for each
t(i). An example of a sample path generated by poissonprocess.m appears in
Figure 10.5.

Note that the number of arrivals generated by poissonprocess depends only on
T = maxi ti , but not on how finely we represent time. That is,

t=0.1*(0:10*T) or t=0.001*(0:1000*T)

both generate a Poisson number N , with E[N] = λT , of arrivals over the interval [0, T ].
What changes is how finely we observe the output N(t).

Now that Matlab can generate a Poisson arrival process, we can simulate systems such
as the telephone switch of Example 10.4.

Example 10.28 Simulate 60 minutes of activity of the telephone switch of Example 10.4 under the
following assumptions.

(a) The switch starts with M(0) = 0 calls.
(b) Arrivals occur as a Poisson process of rate λ = 10 calls/min.
(c) The duration of each call (often called the holding time) in minutes is an expo-

nential (1/10) random variable independent of the number of calls in the system
and the duration of any other call.
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Figure 10.6 Output for simswitch.m: (a) The active-call process M(t). (b) The arrival and
departure processes A(t) and D(t) such that M(t) = A(t) − D(t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function M=simswitch(lambda,mu,t)
%Poisson arrivals, rate lambda
%Exponential (mu) call duration
%For vector t of times
%M(i) = no. of calls at time t(i)
s=poissonarrivals(lambda,max(t));
y=s+exponentialrv(mu,size(s));
A=count(s,t);
D=count(y,t);
M=A-D;

In simswitch.m, the vectors
s and x mark the arrival times
and call durations. That is, the
i th call arrives at time s(i),
stays for time X (i), and departs
at time y(i)=s(i)+x(i). Thus
the vector y=s+x denotes the call
completion times, also known as
departures.

By counting the arrivals s and departures y, we produce the arrival and departure
processes A and D. At any given time t , the number of calls in the system equals
the number of arrivals minus the number of departures. Hence M=A-D is the number
of calls in the system. One run of simswitch.m depicting sample functions of A(t),
D(t), and M(t) = A(t) − D(t) appears in Figure 10.6.

Similar techniques can be used to produce a Brownian motion process Y (t).

Example 10.29 Generate a Brownian motion process W (t) with parameter α.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function w=brownian(alpha,t)
%Brownian motion process
%sampled at t(1)<t(2)< ...
t=t(:);
n=length(t);
delta=t-[0;t(1:n-1)];
x=sqrt(alpha*delta).*gaussrv(0,1,n);
w=cumsum(x);

The function brownian.m
produces a Brownian motion
process W (t). The vector x
consists of the independent
increments. The i th incre-
ment x(i) is scaled to have
variance α(ti − ti−1).

Each graph in Figure 10.7 shows four sample paths of a Brownian motion processes
with α = 1. For plot (a), 0 ≤ t ≤ 1, for plot (b), 0 ≤ t ≤ 10. Note that the plots
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Figure 10.7 Sample paths of Brownian motion.

have different y-axis scaling because Var[X (t)] = αt . Thus as time increases, the
excursions from the origin tend to get larger.

For an arbitrary Gaussian process X (t), we can use Matlab to generate random se-
quences Xn = X (nT ) that represent sampled versions of X (t). For the sampled process,
the vector X = [

X0 · · · Xn−1
]′ is a Gaussian random vector with expected value μX =[

E[X (0)] · · · E[X ((n − 1)T )]]′ and covariance matrix CX with i, j th element CX(i, j) =
CX (i T, j T ). We can generate m samples of X using x=gaussvector(mu,C,m). As
described in Section 5.8, mu is a length n vector and C is the n × n covariance matrix.

When X (t) is wide sense stationary, the sampled sequence is wide sense stationary with
autocovariance CX [k]. In this case, the vector X = [

X0 · · · Xn−1
]′ has covariance

matrix CX with i, j th element CX(i, j) = CX [i − j ]. Since CX [k] = CX [−k],

CX =

⎡
⎢⎢⎢⎢⎣

CX [0] CX [1] · · · CX [n − 1]
CX [1] CX [0] . . .

...
...

. . .
. . . CX [1]

CX [n − 1] · · · CX [1] CX [0]

⎤
⎥⎥⎥⎥⎦ . (10.99)

We see that CX is constant along each diagonal. A matrix with constant diagonals is called
a Toeplitz matrix. When the covariance matrix CX is Toeplitz, it is completely specified
by the vector c = [

CX [0] CX [1] · · · CX [n − 1]]′ whose elements are both the first
column and first row of CX. Thus the PDF of X is completely described by the expected
value μX = E[Xi ] and the vector c. In this case, a function that generates sample vectors
X needs only the scalar μX and vector c as inputs. Since generating sample vectors X
corresponding to a stationary Gaussian sequence is quite common, we extend the function
gaussvector(mu,C,m) introduced in Section 5.8 to make this as simple as possible.
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Figure 10.8 Two sample outputs for Example 10.30.

function x=gaussvector(mu,C,m)
%output: m Gaussian vectors,
%each with mean mu
%and covariance matrix C
if (min(size(C))==1)

C=toeplitz(C);
end
n=size(C,2);
if (length(mu)==1)

mu=mu*ones(n,1);
end
[U,D,V]=svd(C);
x=V*(Dˆ(0.5))*randn(n,m)...

+(mu(:)*ones(1,m));

If C is a length n row or column vector, it
is assumed to be the first row of an n × n
Toeplitz covariance matrix that we create
with the statement C=toeplitz(C). In
addition, when mu is a scalar value, it is as-
sumed to be the expected value E[Xn] of a
stationary sequence. The program extends
mu to a length n vector with identical ele-
ments. When mu is an n-element vector and
C is an n × n covariance matrix, as was re-
quired in the original gaussvector.m,
they are left unchanged. The real work of
gaussvector still occurs in the last two
lines, which are identical to the simpler ver-
sion of gaussvector.m in Section 5.8.

Example 10.30 Write a Matlab function x=gseq(a,n,m) that generates m sample vectors X =[
X0 · · · Xn

]′ of a stationary Gaussian sequence with

μX = 0, CX [k] = 1

1 + ak2
. (10.100)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function x=gseq(a,n,m)
nn=0:n;
cx=1./(1+a*nn.ˆ2);
x=gaussvector(0,cx,m);
plot(nn,x);

All we need to do is generate the vector cx corre-
sponding to the covariance function. Figure 10.8
shows sample outputs: (a) gseq(1,50,5) and
(b) gseq(0.01,50,5).

We observe in Figure 10.8 that when a = 1, samples just a few steps apart are
nearly uncorrelated and the sequence varies quickly with time. By contrast, when
a = 0.01, samples have significant correlation and the sequence varies slowly.
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Quiz 10.13 The switch simulation of Example 10.28 is unrealistic in the assumption that the switch can
handle an arbitrarily large number of calls. Modify the simulation so that the switch blocks
(i.e., discards) new calls when the switch has c = 120 calls in progress. Estimate P[B], the
probability that a new call is blocked. Your simulation may need to be significantly longer
than 60 minutes.

Chapter Summary

This chapter introduces a model for experiments in which randomness is observed over
time.

• The stochastic process X (t) is a mapping of outcomes of an experiment to functions of
time. Note that X (t) is both a name of the process as well as the name of the random
variable observed at time t .

• A probability model for X (t) consists of the joint PMF PX (t1),...,X (tk)(x1, . . . , xk) or joint
PDF fX (t1),...,X (tk)(x1, . . . , xk) for all possible {t1, . . . , tk}.

• The iid random sequence X1, X2, . . . is a discrete-time stochastic process consisting of
a sequence of independent, identically distributed random variables.

• The Poisson process is a memoryless counting process, in which an arrival at a particular
instant is independent of an arrival at any other instant.

• The Brownian motion process describes a one-dimensional random walk in which at
every instant, the position changes by a small increment that is independent of the
current position and past history of the process.

• The autocovariance and autocorrelation functions indicate the rate of change of the
sample functions of a stochastic process.

• A stochastic process is stationary if the randomness does not vary with time.

• A stochastic process is wide sense stationary if the expected value is constant with
time and the autocorrelation depends only on the time difference between two random
variables.

• The cross-covariance and cross-correlation functions represent the relationship of two
wide sense stationary processes.

• Further Reading: [Doo90] contains the original (1953) mathematical theory of stochas-
tic processes. [HSP87] is a concise introduction to basic principles for readers familiar
with probability and random variables. The second half of [PP01] is a comprehensive
treatise on stochastic processes.
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Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

10.2.1• For the random processes of Examples 10.3, 10.4,
10.5, and 10.6, identify whether the process is
discrete-time or continuous-time, discrete-value or
continuous-value.

10.2.2
�

Let Y (t) denote the random process corresponding
to the transmission of one symbol over the QPSK
communications system of Example 10.6. What
is the sample space of the underlying experiment?
Sketch the ensemble of sample functions.

10.2.3
�

In a binary phase shift keying (BPSK) communi-
cations system, one of two equally probable bits,
0 or 1, must be transmitted every T seconds. If
the kth bit is j ∈ {0, 1}, the waveform x j (t) =
cos(2π f0t + jπ) is transmitted over the interval
[(k − 1)T, kT ]. Let X (t) denote the random pro-
cess in which three symbols are transmitted in the
interval [0, 3T ]. Assuming f0 is an integer multiple
of 1/T , sketch the sample space and corresponding
sample functions of the process X (t).

10.2.4
�

True or false: For a continuous-value random pro-
cess X (t), the random variable X (t0) is always a
continuous random variable.

10.3.1
�

Let W be an exponential random variable with PDF

fW (w) =
{

e−w w ≥ 0,

0 otherwise.

Find the CDF FX (t)(x) of the time delayed ramp
process X (t) = t − W .

10.3.2
�

In a production line for 10 kHz oscillators, the out-
put frequency of each oscillator is a random variable
W uniformly distributed between 9980 Hz and 1020
Hz. The frequencies of different oscillators are in-
dependent. The oscillator company has an order for
one part in 104 oscillators with frequency between
9999 Hz and 10, 001 Hz. A technician takes one
oscillator per minute from the production line and
measures its exact frequency. (This test takes one
minute.) The random variable Tr minutes is the
elapsed time at which the technician finds r accept-
able oscillators.

(a) What is p, the probability that any single oscil-
lator has one-part-in-104 accuracy?

(b) What is E[T1] minutes, the expected time for
the technician to find the first one-part-in-104

oscillator?

(c) What is the probability that the technician will
find the first one-part-in-104 oscillator in exactly
20 minutes?

(d) What is E[T5], the expected time of finding the
fifth one-part-in-104 oscillator?

10.3.3
�

For the random process of Problem 10.3.2, what is
the conditional PMF of T2 given T1? If the tech-
nician finds the first oscillator in 3 minutes, what
is E[T2|T1 = 3], the conditional expected value of
the time of finding the second one-part-in-104 os-
cillator?

10.3.4
�

Let X (t) = e−(t−T )u(t − T ) be an exponential
pulse with a random delay T . The delay T has a
PDF fT (t). Find the PDF of X (t).

10.4.1• Suppose that at the equator, we can model the noon-
time temperature in degrees Celsius, Xn , on day
n by a sequence of iid Gaussian random variables
with a mean of 30 degrees and standard devia-
tion of 5 degrees. A new random process Yk =
[X2k−1 + X2k ]/2 is obtained by averaging the tem-
perature over two days. Is Yk an iid random se-
quence?

10.4.2
�

For the equatorial noontime temperature sequence
Xn of Problem 10.4.1, a second sequence of aver-
aged temperatures is Wn = [Xn + Xn−1]/2. Is Wn
an iid random sequence?

10.4.3
�

Let Yk denote the number of failures between suc-
cesses k−1 and k of a Bernoulli (p) random process.
Also, let Y1 denote the number of failures before the
first success. What is the PMF PYk (y)? Is Yk an iid
random sequence?

10.5.1• The arrivals of new telephone calls at a telephone
switching office is a Poisson process N(t) with an
arrival rate of λ = 4 calls per second. An exper-
iment consists of monitoring the switching office
and recording N(t) over a 10-second interval.

(a) What is PN(1)(0), the probability of no phone
calls in the first second of observation?

(b) What is PN(1)(4), the probability of exactly four
calls arriving in the first second of observation?
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(c) What is PN(2)(2), the probability of exactly two
calls arriving in the first two seconds?

10.5.2• Queries presented to a computer database are a Pois-
son process of rate λ = 6 queries per minute. An ex-
periment consists of monitoring the database for m
minutes and recording N(m), the number of queries
presented. The answer to each of the following
questions can be expressed in terms of the PMF
PN(m)(k) = P[N(m) = k].
(a) What is the probability of no queries in a one

minute interval?

(b) What is the probability of exactly six queries ar-
riving in a one-minute interval?

(c) What is the probability of exactly three queries
arriving in a one-half-minute interval?

10.5.3• At a successful garage, there is always a backlog
of cars waiting to be serviced. The service times
of cars are iid exponential random variables with a
mean service time of 30 minutes. Find the PMF of
N(t), the number of cars serviced in the first t hours
of the day.

10.5.4• The count of students dropping the course “Prob-
ability and Stochastic Processes” is known to be a
Poisson process of rate 0.1 drops per day. Starting
with day 0, the first day of the semester, let D(t) de-
note the number of students that have dropped after
t days. What is PD(t)(d)?

10.5.5• Customers arrive at the Veryfast Bank as a Poisson
process of rate λ customers per minute. Each arriv-
ing customer is immediately served by a teller. Af-
ter being served, each customer immediately leaves
the bank. The time a customer spends with a teller
is called the service time. If the service time of a
customer is exactly two minutes, what is the PMF
of the number of customers N(t) in service at the
bank at time t?

10.5.6
�

A sequence of queries are made to a database sys-
tem. The response time of the system, T seconds,
is an exponential random variable with mean 8. As
soon as the system responds to a query, the next
query is made. Assuming the first query is made
at time zero, let N(t) denote the number of queries
made by time t .

(a) What is P[T ≥ 4], the probability that a single
query will last at least four seconds?

(b) If the database user has been waiting five sec-
onds for a response, what is P[T ≥ 13|T ≥ 5],

the probability that it will last at least eight more
seconds?

(c) What is the PMF of N(t)?

10.5.7
�

The proof of Theorem 10.3 neglected to consider
the first interarrival time X1. Show that X1 also has
an exponential (λ) PDF.

10.5.8
�

U1, U2, . . . are independent identically distributed
uniform random variables with parameters 0 and 1.

(a) Let Xi = − ln Ui . What is P[Xi > x]?
(b) What kind of random variable is Xi ?

(c) Given a constant t > 0, let N denote the value
of n, such that

n∏
i=1

Ui ≥ e−t >

n+1∏
i=1

Ui .

Note that we define
∏0

i=1 Ui = 1. What is the
PMF of N?

10.6.1• Customers arrive at a casino as a Poisson process of
rate 100 customers per hour. Upon arriving, each
customer must flip a coin, and only those customers
who flip heads actually enter the casino. Let N(t)
denote the process of customers entering the casino.
Find the PMF of N , the number of customers who
arrive between 5 PM and 7 PM.

10.6.2
�

For a Poisson process of rate λ, the Bernoulli ar-
rival approximation assumes that in any very small
interval of length �, there is either 0 arrivals with
probability 1−λ� or 1 arrival with probability λ�.
Use this approximation to prove Theorem 10.7.

10.6.3
�

Continuing Problem 10.5.5, suppose each service
time is either one minute or two minutes equiprob-
ably, independent of the arrival process or the other
service times. What is the PMF of the number of
customers N(t) in service at the bank at time t?

10.6.4
��

Let N denote the number of arrivals of a Poisson
process of rate λ over the interval (0, T ). Given
N = n, let S1, . . . , Sn denote the corresponding
arrival times. Prove that

fS1,...,Sn|N (S1, . . . , Sn|n)

=
{

n!/T n 0 ≤ s1 < · · · < sn ≤ T,

0 otherwise.

Conclude that, given N(T ) = n, S1, . . . , Sn are the
order statistics of a collection of n uniform (0, T )

random variables. (See Problem 5.4.7.)
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10.7.1• Over the course of a day, the stock price of a widely
traded company can be modeled as a Brownian mo-
tion process where X (0) is the opening price at the
morning bell. Suppose the unit of time t is an hour,
the exchange is open for eight hours, and the stan-
dard deviation of the daily price change (the dif-
ference between the opening bell and closing bell
prices) is 1/2 point. What is the value of the Brow-
nian motion parameter α?

10.7.2
�

Let X (t) be a Brownian motion process with vari-
ance Var[X (t)] = αt . For a constant c > 0, deter-
mine whether Y (t) = X (ct) is a Brownian motion
process.

10.7.3
�

For a Brownian motion process X (t), let X0 =
X (0), X1 = X (1), . . . represent samples of a Brow-
nian motion process with variance αt . The discrete-
time continuous-value process Y1, Y2, . . . defined
by Yn = Xn − Xn−1 is called an increments pro-
cess. Show that Yn is an iid random sequence.

10.7.4
�

This problem works out the missing steps in the
proof of Theorem 10.8. For W and X as defined in
the proof of the theorem, show that W = AX. What
is the matrix A? Use Theorem 5.16 to find fW(w).

10.8.1• Xn is an iid random sequence with mean E[Xn] =
μX and variance Var[Xn] = σ 2

X . What is the auto-
covariance CX [m, k]?

10.8.2
�

For the time delayed ramp process X (t) from Prob-
lem 10.3.1, find for any t ≥ 0:

(a) The expected value function μX (t)

(b) The autocovariance function CX (t, τ ). Hint:
E[W ] = 1 and E[W 2] = 2.

10.8.3
�

A simple model (in degrees Celsius) for the daily
temperature process C(t) of Example 10.3 is

Cn = 16

[
1 − cos

2πn

365

]
+ 4Xn

where X1, X2, . . . is an iid random sequence of
Gaussian (0, 1) random variables.

(a) What is the mean E[Cn]?
(b) Find the autocovariance function CC [m, k].
(c) Why is this model overly simple?

10.8.4
�

A different model for the daily temperature process
C(n) of Example 10.3 is

Cn = 1

2
Cn−1 + 4Xn

where C0, X1, X2, . . . is an iid random sequence of
N[0, 1] random variables.

(a) Find the mean and variance of Cn .

(b) Find the autocovariance CC [m, k].
(c) Is this a plausible model for the daily tempera-

ture over the course of a year?

(d) Would C1, . . . , C31 constitute a plausible model
for the daily temperature for the month of Jan-
uary?

10.8.5
�

For a Poisson process N(t) of rate λ, show that for
s < t , the autocovariance is CN (s, t) = λs. If
s > t , what is CN (s, t)? Is there a general expres-
sion for CN (s, t)?

10.9.1• For an arbitrary constant a, let Y (t) = X (t + a).
If X (t) is a stationary random process, is Y (t) sta-
tionary?

10.9.2• For an arbitrary constant a, let Y (t) = X (at). If
X (t) is a stationary random process, is Y (t) sta-
tionary?

10.9.3• Let X (t) be a stationary continuous-time random
process. By sampling X (t) every � seconds, we
obtain the discrete-time random sequence Yn =
X (n�). Is Yn a stationary random sequence?

10.9.4• Given a wide sense stationary random sequence
Xn , we can subsample Xn by extracting every kth
sample:

Yn = Xkn .

Is Yn a wide sense stationary random sequence?

10.9.5
�

Let A be a nonnegative random variable that
is independent of any collection of samples
X (t1), . . . , X (tk) of a stationary random process
X (t). Is Y (t) = AX (t) a stationary random pro-
cess?

10.9.6
�

Let g(x) be an arbitrary deterministic function. If
X (t) is a stationary random process, is Y (t) =
g(X (t)) a stationary process?

10.10.1• Which of the following are valid autocorrelation
functions?

R1(τ) = δ(τ) R2(τ) = δ(τ) + 10

R3(τ) = δ(τ − 10) R4(τ) = δ(τ) − 10

10.10.2• Let A be a nonnegative random variable that
is independent of any collection of samples
X (t1), . . . , X (tk) of a wide sense stationary random
process X (t). Is Y (t) = A + X (t) a wide sense sta-
tionary process?
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10.10.3
�

Consider the random process

W (t) = X cos(2π f0t) + Y cos(2π f0t)

where X and Y are uncorrrelated random variables,
each with expected value 0 and variance σ 2. Find
the autocorrelation RW (t, τ ). Is W (t) wide sense
stationary?

10.10.4
�

X (t) is a wide sense stationary random process with
average power equal to 1. Let 
 denote a random
variable with uniform distribution over [0, 2π] such
that X (t) and 
 are independent.

(a) What is E[X2(t)]?
(b) What is E[cos(2π fct + 
)]?
(c) Let Y (t) = X (t) cos(2π fct + 
). What is

E[Y (t)]?
(d) What is the average power of Y (t)?

10.10.5
�

Prove the properties of RX [n] given in Theo-
rem 10.12.

10.10.6
�

Let Xn be a wide sense stationary random sequence
with expected value μX and autocovariance CX [k].
For m = 0, 1, . . . , we define

Xm = 1

2m + 1

m∑
n=−m

Xn

as the sample mean process. Prove that if∑∞
k=−∞ CX [k] < ∞, then X0, X1, . . . is an unbi-

ased consistent sequence of estimates of μX .

10.11.1• X (t) and Y (t) are independent wide sense station-
ary processes with expected values μX and μY and
autocorrelation functions RX (τ) and RY (τ) respec-
tively. Let W (t) = X (t)Y (t).

(a) Find μW and RW (t, τ ) and show that W (t) is
wide sense stationary.

(b) Are W (t) and X (t) jointly wide sense station-
ary?

10.11.2
�

X (t) is a wide sense stationary random process.
For each process Xi (t) defined below, determine
whether Xi (t) and X (t) are jointly wide sense sta-
tionary.

(a) X1(t) = X (t + a)

(b) X2(t) = X (at)

10.11.3
�

X (t) is a wide sense stationary stochastic pro-
cess with autocorrelation function RX (τ) =
10 sin(2π1000t)/(2π1000t). The process Y (t) is

a version of X (t) delayed by 50 microseconds:
Y (t) = X (t − t0) where t0 = 5 × 10−5s.

(a) Derive the autocorrelation function of Y (t).

(b) Derive the cross-correlation function of X (t)
and Y (t).

(c) Is Y (t) wide sense stationary?

(d) Are X (t) and Y (t) jointly wide sense stationary?

10.12.1
�

A white Gaussian noise process N(t) with auto-
correlation RN (τ) = αδ(τ) is passed through an
integrator yielding the output

Y (t) =
∫ t

0
N(u) du.

Find E[Y (t)] and the autocorrelation function
RY (t, τ ). Show that Y (t) is a nonstationary pro-
cess.

10.12.2
�

Let X (t) be a Gaussian process with mean μX (t)
and autocovariance CX (t, τ ). In this problem, we
verify that the for two samples X (t1), X (t2), the
multivariate Gaussian density reduces to the bivari-
ate Gaussian PDF. In the following steps, let σ 2

i de-
note the variance of X (ti ) and let ρ = CX (t1, t2 −
t1)/(σ1σ2) equal the correlation coefficient of X (t1)

and X (t2).

(a) Find the covariance matrix C and show that the
determinant is |C| = σ 2

1 σ 2
2 (1 − ρ2).

(b) Show that the inverse of the correlation matrix
is

C−1 = 1

1 − ρ2

⎡
⎣

1
σ 2

1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ 2

1

⎤
⎦ .

(c) Now show that the multivariate Gaussian den-
sity for X (t1), X (t2) is the bivariate Gaussian
density.

10.12.3
�

Show that the Brownian motion process is a Gaus-
sian random process. Hint: For W and X as defined
in the proof of the Theorem 10.8, find matrix A such
that W = AX and then apply Theorem 5.16.

10.13.1• Write aMatlabprogram that generates and graphs
the noisy cosine sample paths Xcc(t), Xdc(t),
Xcd (t), and Xdd(t) of Figure 10.3. Note that the
mathematical definition of Xcc(t) is

Xcc(t) = 2 cos(2π t) + N(t), −1 ≤ t ≤ 1.

Note that N(t) is a white noise process with au-
tocorrelation RN (τ) = 0.01δ(τ). Practically, the
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graph of Xcc(t) in Figure 10.3 is a sampled version
Xcc[n] = Xcc(nTs) where the sampling period is
Ts = 0.001s. In addition, the discrete-time func-
tions are obtained by subsampling Xcc[n]. In sub-
sampling, we generate Xdc[n] by extracting every
kth sample of Xcc[n]; see Problem 10.9.4. In terms
of Matlab, which starts indexing a vector x with
first element x(1),

Xdc(n)=Xcc(1+(n-1)k).
The discrete-time graphs of Figure 10.3 used k =
100.

10.13.2• For the telephone switch of Example 10.28, we can
estimate the expected number of calls in the system,
E[M(t)], after T minutes using the time average es-
timate

MT = 1

T

T∑
k=0

M(k).

Perform a 600-minute switch simulation and graph
the sequence M1, M2, . . . , M600. Does it appear
that your estimates are converging? Repeat your
experiment ten times and interpret your results.

10.13.3• A particular telephone switch handles only auto-
mated junk voicemail calls that arrive as a Poisson
process of rate λ = 100 calls per minute. Each au-
tomated voicemail call has duration of exactly one
minute. Use the method of Problem 10.13.2 to es-
timate the expected number of calls E[M(t)]. Do
your results differ very much from those of Prob-
lem 10.13.2?

10.13.4
�

Recall that for a rate λ Poisson process, the expected
number of arrivals in [0, T ] is λT . Inspection of the
code for poissonarrivals(lambda,T)will
show that initially n = �1.1λT 
 arrivals are gener-
ated. If Sn > T , the program stops and returns

{S j |S j ≤ T }. Otherwise, if Sn < T , then we gen-
erate an additional n arrivals and check if S2n > T .
This process may be repeated an arbitrary number
of times k until Skn > T . Let K equal the number
of times this process is repeated. What P[K = 1]?
What is the disadvantage of choosing larger n so as
to increase P[K = 1]?

10.13.5
�

In this problem, we employ the result of
Problem 10.6.4 as the basis for a function
s=newarrivals(lambda,T) that generates
a Poisson arrival process. The program
newarrivals.m should do the following:

•Generate a sample value of N , a Poisson (λT )

random variable.

•Given N = n, generate {U1, . . . , Un}, a set of
n uniform (0, T ) random variables.

•Sort {U1, . . . , Un} from smallest to largest and
return the vector of sorted elements.

Write the program newarrivals.m and experi-
ment to find out whether this program is any faster
than poissonarrivals.m.

10.13.6
�

Suppose the Brownian motion process is con-
strained by barriers. That is, we wish to generate a
process Y (t) such that −b ≤ Y (t) ≤ b for a con-
stant b > 0. Build a simulation of this system.
Estimate P[Y (t) = b].

10.13.7
�

For the departure process D(t) of Example 10.28,
let Dn denote the time of the nth departure. The
nth inter-departure time is then Vn = Dn − Dn−1.
From a sample path containing 1000 departures, es-
timate the PDF of Vn . Is it reasonable to model Vn
as an exponential random variable? What is the
mean inter-departure time?

 



11
Random Signal Processing

In designing new equipment and evaluating the performance of existing systems, electrical
and computer engineers frequently represent electrical signals as sample functions of wide
sense stationary stochastic processes. We use probability density functions and probability
mass functions to describe the amplitude characteristics of signals, and we use autocorrela-
tion functions to describe the time-varying nature of the signals. Many important signals –
for example, brightness levels of television picture elements – appear as sample functions
of random sequences. Others – for example, audio waveforms – appear as sample func-
tions of continuous-time processes. However, practical equipment increasingly uses digital
signal processing to perform many operations on continuous-time signals. To do so, the
equipment contains an analog-to-digital converter to transform a continuous-time signal
to a random sequence. An analog-to-digital converter performs two operations: sampling
and quantization. Sampling with a period Ts seconds transforms a continuous-time process
X (t) to a random sequence Xn = X (nTs). Quantization transforms the continuous random
variable Xn to a discrete random variable Qn .

In this chapter we ignore quantization and analyze linear filtering of random processes
and random sequences resulting from sampling random processes. Linear filtering is a
practical technique with many applications. For example, we will see that when we apply
the linear estimation methods developed in Chapter 9 to a random process, the result is a
linear filter. We will use the Fourier transform of the autocorrelation and cross-correlation
functions to develop frequency domain techniques for the analysis of random signals.

11.1 Linear Filtering of a Continuous-Time Stochastic Process

We begin by describing the relationship of the stochastic process at the output of a linear
filter to the stochastic process at the input of the filter. Consider a linear time-invariant (LTI)
filter with impulse response h(t). If the input is a deterministic signal v(t), the output, w(t),
is the convolution

w(t) =
∫ ∞

−∞
h(u)v(t − u) du =

∫ ∞

−∞
h(t − u)v(u) du. (11.1)

395
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If the possible inputs to the filter are x(t), sample functions of a stochastic process X (t),
then the outputs, y(t), are sample functions of another stochastic process, Y (t). Because
y(t) is the convolution of x(t) and h(t), we adopt the following notation for the relationship
of Y (t) to X (t):

Y (t) =
∫ ∞

−∞
h(u)X (t − u) du =

∫ ∞

−∞
h(t − u)X (u) du. (11.2)

Similarly, the expected value of Y (t) is the convolution of h(t) and E[X (t)].

Theorem 11.1

E [Y (t)] = E

[∫ ∞

−∞
h(u)X (t − u) du

]
=
∫ ∞

−∞
h(u)E [X (t − u)] du.

When X (t) is wide sense stationary, we use Theorem 11.1 to derive RY (t, τ ) and RXY (t, τ )

as functions of h(t) and RX (τ ). We will observe that when X (t) is wide sense stationary,
Y (t) is also wide sense stationary.

Theorem 11.2 If the input to an LTI filter with impulse response h(t) is a wide sense stationary process
X (t), the output Y (t) has the following properties:

(a) Y (t) is a wide sense stationary process with expected value

μY = E [Y (t)] = μX

∫ ∞

−∞
h(u) du,

and autocorrelation function

RY (τ ) =
∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)RX (τ + u − v) dv du.

(b) X (t)and Y (t)are jointly wide sense stationary and have input-output cross-correlation

RXY (τ ) =
∫ ∞

−∞
h(u)RX (τ − u) du.

(c) The output autocorrelation is related to the input-output cross-correlation by

RY (τ ) =
∫ ∞

−∞
h(−w)RXY (τ − w) dw.

Proof We recall from Theorem 11.1 that E[Y (t)] = ∫∞
−∞ h(u)E[X (t − u)] du. Since E[X (t)] =

μX for all t , E[Y (t)] = ∫∞
−∞ h(u)μX du, which is independent of t . Next, we observe that Equa-

tion (11.2) implies Y (t + τ) = ∫∞
−∞ h(v)X (t + τ − u) dv. Thus

RY (t, τ ) = E [Y (t)Y (t + τ)] = E

[∫ ∞
−∞

h(u)X (t − u) du
∫ ∞
−∞

h(v)X (t + τ − v) dv

]
(11.3)

=
∫ ∞
−∞

h(u)

∫ ∞
−∞

h(v)E [X (t − u)X (t + τ − v)] dv du. (11.4)
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Because X (t) is wide sense stationary, E[X (t − u)X (t + τ − v)] = RX (τ − v + u) so that

RY (t, τ ) = RY (τ) =
∫ ∞
−∞

h(u)

∫ ∞
−∞

h(v)RX (τ − v + u) dv du. (11.5)

By Definition 10.15, Y (t) is wide sense stationary because E[Y (t)] is independent of time t , and
RY (t, τ ) depends only on the time shift τ .

The input-output cross-correlation is

RXY (t, τ ) = E

[
X (t)

∫ ∞
−∞

h(v)X (t + τ − v) dv

]
(11.6)

=
∫ ∞
−∞

h(v)E [X (t)X (t + τ − v)] dv =
∫ ∞
−∞

h(v)RX (τ − v) dv. (11.7)

Thus RXY (t, τ ) = RXY (τ), and by Definition 10.18, X (t) and Y (t) are jointly wide sense stationary.
From Theorem 11.2(a) and Theorem 11.2(b), we observe that

RY (τ) =
∫ ∞
−∞

h(u)

∫ ∞
−∞

h(v)RX (τ + u − v) dv

︸ ︷︷ ︸
RXY (τ+u)

du =
∫ ∞
−∞

h(u)RXY (τ + u) du. (11.8)

The substitution w = −u yields RY (τ) = ∫∞
−∞ h(−w)RXY (τ − w) dw, to complete the derivation.

Example 11.1 X (t), a wide sense stationary stochastic process with expected value μX = 10 volts,
is the input to a linear time-invariant filter. The filter impulse response is

h(t) =
{

et/0.2 0 ≤ t ≤ 0.1 sec,

0 otherwise.
(11.9)

What is the expected value of the filter output process Y (t)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Theorem 11.2, we have

μY = μX

∫ ∞
−∞

h(t) dt = 10
∫ 0.1

0
et/0.2 dt = 2

(
e0.5 − 1

)
= 1.30 V. (11.10)

Example 11.2 A white Gaussian noise process W (t) with autocorrelation function RW (τ) = η0δ(τ)

is passed through the moving-average filter

h(t) =
{

1/T 0 ≤ t ≤ T,

0 otherwise.
(11.11)

For the output Y (t), find the expected value E[Y (t)], the input-output cross- correlation
RW Y (τ) and the autocorrelation RY (τ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We recall from Definition 10.20 that a Indexwhite noise process W (t) has expected
value μW = 0. The expected value of the output is E[Y (t)] = μW

∫∞
−∞ h(t) dt = 0.
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From Theorem 11.2(b), the input-output cross-correlation is

RW Y (τ) = η0

T

∫ T

0
δ(τ − u) du =

{
η0/T 0 ≤ t ≤ T,

0 otherwise.
(11.12)

By Theorem 11.2(c), the output autocorrelation is

RY (τ) =
∫ ∞
−∞

h(−v)RW Y (τ − v) dv = 1

T

∫ 0

−T
RW Y (τ − v) dv. (11.13)

To evaluate this convolution integral, we must express RW Y (τ − v) as a function of v.
From Equation (11.12),

RW Y (τ − v) =
{ η0

T 0 ≤ τ − v ≤ T
0 otherwise

=
{ η0

T τ − T ≤ v ≤ τ,

0 otherwise.
(11.14)

Thus, RW Y (τ − v) is nonzero over the interval τ − T ≤ v ≤ τ . However, in Equa-
tion (11.13), we integrate RW Y (τ − v) over the interval −T ≤ v ≤ 0. If τ < −T or
τ − T > 0, then these two intervals do not overlap and the integral (11.13) is zero.
Otherwise, for −T ≤ τ ≤ 0, it follows from Equation (11.13) that

RY (τ) = 1

T

∫ τ

−T

η0

T
dv = η0(T + τ)

T 2
. (11.15)

Furthermore, for 0 ≤ τ ≤ T ,

RY (τ) = 1

T

∫ 0

τ−T

η0

T
dv = η0(T − τ)

T 2
. (11.16)

Putting these pieces together, the output autocorrelation is the triangular function

RY (τ) =
{

η0(T − |τ |)/T 2 |τ | ≤ T,

0 otherwise.
(11.17)

In Section 10.12, we observed that a white Gaussian noise W (t) is physically impossible
because it has average power E[W 2(t)] = η0δ(0) = ∞. However, when we filter white
noise, the output will be a process with finite power. In Example 11.2, the output of the
moving-average filter h(t) has finite average power RY (0) = η0/T . This conclusion is
generalized in Problem 11.1.4.

Theorem 11.2 provides mathematical procedures for deriving the expected value and
the autocorrelation function of the stochastic process at the output of a filter from the
corresponding functions at the input. In general, however, it is much more complicated to
determine the PDF or PMF of the output given the corresponding probability function of
the input. One exception occurs when the filter input is a Gaussian stochastic process. The
following theorem states that the output is also a Gaussian stochastic process.

Theorem 11.3 If a stationary Gaussian process X (t) is the input to a LTI filter h(t), the output Y (t) is a sta-
tionary Gaussian process with expected value and autocorrelation given by Theorem 11.2.
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Although a proof of Theorem 11.3 is beyond the scope of this text, we observe that
Theorem 11.3 is analagous to Theorem 5.16 which shows that a linear transformation of
jointly Gaussian random variables yields jointly Gaussian random variables. In particular,
for a Gaussian input process X (t), the convolution integral of Equation (11.2) can be
viewed as the limiting case of a linear transformation of jointly Gaussian random variables.
Theorem 11.7 proves that if the input to a discrete-time filter is Gaussian, the output is also
Gaussian.

Example 11.3 For the white noise moving-averageprocess Y (t) in Example 11.2, letη0 = 10−15 W/Hz
and T = 10−3 s. For an arbitrary time t0, find P[Y (t0) > 4 · 10−6].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying the given parameter values η = 10−15 and T = 10−3 to Equation (11.17),
we learn that

RY [τ ] =
{

10−9(10−3 − |τ |) |τ | ≤ 10−3

0 otherwise.
(11.18)

By Theorem 11.3, Y (t) is a stationary Gaussian process and thus Y (t0) is a Gaussian
random variable. In particular, since E[Y (t0)] = 0, we see from Equation (11.18) that
Y (t0) has variance Var[Y (t0)] = RY (0) = 10−12. This implies

P
[
Y (t0) > 4 · 10−6

]
= P

[
Y (t0)√

Var[Y (t0)]
>

4 · 10−6

10−6

]
(11.19)

= Q(4) = 3.17 · 10−5. (11.20)

Quiz 11.1 Let h(t) be a low-pass filter with impulse response

h(t) =
{

e−t t ≥ 0,

0 otherwise.
(11.21)

The input to the filter is X (t), a wide sense stationary random process with expected value
μX = 2 and autocorrelation RX (τ ) = δ(τ ). What are the expected value and autocorre-
lation of the output process Y (t)?

11.2 Linear Filtering of a Random Sequence

A strong trend in practical electronics is to use a specialized microcomputer referred to
as a digital signal processor (DSP) to perform signal processing operations. To use a
DSP as a linear filter it is necessary to convert the input signal x(t) to a sequence of
samples x(nT ), where n = · · · ,−1, 0, 1, · · · and 1/T Hz is the sampling rate. When
the continuous-time signal is a sample function of a stochastic process, X (t), the sequence
of samples at the input to the digital signal processor is a sample function of a random
sequence Xn = X (nT ). The autocorrelation function of the random sequence Xn consists
of samples of the autocorrelation function of the continuous-time process X (t).

Theorem 11.4 The random sequence Xn is obtained by sampling the continuous-time process X (t) at a rate
of 1/Ts samples per second. If X (t) is a wide sense stationary process with expected value
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E[X (t)] = μX and autocorrelation RX (τ ), then Xn is a wide sense stationary random
sequence with expected value E[Xn] = μX and autocorrelation function

RX [k] = RX (kTs).

Proof Because the sampling rate is 1/Ts samples per second, the random variables in Xn are
random variables in X (t) occurring at intervals of Ts seconds: Xn = X (nTs). Therefore, E[Xn] =
E[X (nTs)] = μX and

RX [k] = E
[
Xn Xn+k

] = E [X (nTs )X ([n + k]Ts)] = RX (kTs). (11.22)

Example 11.4 Continuing Example 11.3, the random sequence Yn is obtained by sampling the white
noise moving-average process Y (t) at a rate of fs = 104 samples per second. Derive
the autocorrelation function RY [n] of Yn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given the autocorrelation function RY (τ) in Equation (11.18), Theorem 11.4 implies
that

RY [k] = RY (k10−4) =
{

10−9(10−3 − 10−4 |k|)
∣∣∣k10−4

∣∣∣ ≤ 10−3

0 otherwise
(11.23)

=
{

10−6(1 − 0.1 |k|) |k| ≤ 10,

0 otherwise.
(11.24)

A DSP performs discrete-time linear filtering. The impulse response of a discrete-time
filter is a sequence hn , n = . . . ,−1, 0, 1, . . . and the output is a random sequence Yn ,
related to the input Xn by the discrete-time convolution,

Yn =
∞∑

i=−∞
hi Xn−i . (11.25)

Corresponding to Theorem 11.2 for continuous-time processes we have the equivalent
theorem for discrete-time processes.

Theorem 11.5 If the input to a discrete-time linear time-invariant filter with impulse response hn is a wide
sense stationary random sequence, Xn, the output Yn has the following properties.

(a) Yn is a wide sense stationary random sequence with expected value

μY = E [Yn] = μX

∞∑
n=−∞

hn,

and autocorrelation function

RY [n] =
∞∑

i=−∞

∞∑
j=−∞

hi h j RX [n + i − j ].
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(b) Yn and Xn are jointly wide sense stationary with input-output cross-correlation

RXY [n] =
∞∑

i=−∞
hi RX [n − i ].

(c) The output autocorrelation is related to the input-output cross-correlation by

RY [n] =
∞∑

i=−∞
h−i RXY [n − i ].

Example 11.5 A wide sense stationary random sequence Xn with μX = 1 and autocorrelation func-
tion RX [n] is the input to the order M −1 discrete-time moving-average filter hn where

hn =
{

1/M n = 0, . . . , M − 1
0 otherwise,

and RX [n] =
⎧⎨
⎩

4 n = 0,

2 n = ±1,

0 |n| ≥ 2.

(11.26)

For the case M = 2, find the following properties of the output random sequence Yn :
the expected value μY , the autocorrelation RY [n], and the variance Var[Yn].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For this filter with M = 2, we have from Theorem 11.5,

μY = μX (h0 + h1) = μX = 1. (11.27)

By Theorem 11.5(a), the autocorrelation of the filter output is

RY [n] =
1∑

i=0

1∑
j=0

(0.25)RX [n + i − j ] (11.28)

= (0.5)RX [n] + (0.25)RX [n − 1] + (0.25)RX [n + 1]. (11.29)

Substituting RX [n] from the problem statement, we obtain

RY [n] =

⎧⎪⎪⎨
⎪⎪⎩

3 n = 0,

2 |n| = 1,

0.5 |n| = 2,

0 otherwise.

(11.30)

To obtain Var[Yn], we recall from Definition 10.16 that E[Y 2
n ] = RY [0] = 3. Therefore,

Var[Yn] = E[Y 2
n ] − μ2

Y = 2.

Note in Example 11.5 that the filter output is the average of the most recent input
sample and the previous input sample. Consequently, we could also use Theorem 6.1 and
Theorem 6.2 to find the expected value and variance of the output process.

Theorem 11.5 presents the important properties of discrete-time filters in a general way.
In designing and analyzing practical filters, electrical and computer engineers usually con-
fine their attention to causal filters with the property that hn = 0 for n < 0. They consider
filters in two categories:
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• Finite impulse response (FIR) filters with hn = 0 for n ≥ M , where M is a positive
integer. Note that M −1 is called the order of the filter. The input-output convolution
is

Yn =
M−1∑
i=0

hi Xn−i . (11.31)

• Infinite impulse response (IIR) filters such that for any positive integer N , hn �= 0
for at least one value of n > N . The practical realization of an IIR filter is recursive.
Each filter output is a linear combination of a finite number of input samples and a
finite number of previous output samples:

Yn =
∞∑

i=0

hi Xn−i =
M−1∑
i=0

ai Xn−i +
N∑

j=1

b j Yn− j . (11.32)

In this formula, the a0, a2, . . . , aM−1 are the coefficients of the forward section of
the filter and b1, b2, . . . , bN are the coefficients of the feedback section.

Example 11.6 Why does the index i in the forward section of an IIR filter start at i = 0 whereas the
index j in the feedback section starts at 1?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the forward section, the output Yn depends on the current input Xn as well as past
inputs. However, in the feedback section, the filter at sample n has access only to
previous outputs Yn−1, Yn−2, . . . in producing Yn .

Example 11.7 A wide sense stationary random sequence Xn with expected value μX = 0 and au-
tocorrelation function RX [n] = σ 2δn is passed through the order M − 1 discrete-time
moving-average filter

hn =
{

1/M 0 ≤ n ≤ M − 1,

0 otherwise.
(11.33)

Find the output autocorrelation RY [n].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Example 11.5, we found the output autocorrelation directly from Theorem 11.5(a)
because the averaging filter was a simple first-order filter. For a filter of arbitrary order
M − 1, we first find the input-output cross-correlation RXY [k] and then use Theo-
rem 11.5(c) to find RY [k]. From Theorem 11.5(b), the input-output cross-correlation
is

RXY [k] = σ 2

M

M−1∑
i=0

δk−i =
{

σ 2/M k = 0, 1, . . . , M − 1,

0 otherwise.
(11.34)

From Theorem 11.5(c), the output autocorrelation is

RY [n] =
∞∑

i=−∞
h−i RXY [n − i] = 1

M

0∑
i=−(M−1)

RXY [n − i]. (11.35)

To express RXY [n − i] as a function of i , we use Equation (11.34) by replacing k in
RXY [k] with n − i , yielding

RXY [n − i] =
{

σ 2/M i = n − M + 1, n − M + 2, . . . , n,

0 otherwise.
(11.36)
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Thus, if n < −(M − 1) or n − M + 1 > 0, then RXY [n − i] = 0 over the interval
−(M − 1) ≤ i ≤ M − 1. For −(M − 1) ≤ n ≤ 0,

RY [n] = 1

M

n∑
i=−(M−1)

σ 2

M
= σ 2(M + n)

M2
. (11.37)

For 0 ≤ n ≤ M − 1,

RY [n] = 1

M

0∑
i=n−(M−1)

σ 2

M
= σ 2(M − n)

M2
. (11.38)

Combining these cases, the output autocorrelation is the triangular function

RY [n] =
{

σ 2(M − |n|)/M2 −(M − 1) ≤ n ≤ M − 1,

0 otherwise.
(11.39)

Example 11.8 A first-order discrete-time integrator with wide sense stationary input sequence Xn
has output

Yn = Xn + 0.8Yn−1. (11.40)

What is the filter impulse response hn?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We find the impulse response by repeatedly substituting for Yk on the right side of
Equation (11.40). To begin, we replace Yn−1 with the expression in parentheses in
the following formula

Yn = Xn + 0.8(Xn−1 + 0.8Yn−2) = Xn + 0.8Xn−1 + 0.82Yn−2. (11.41)

We can continue this procedure, replacing successive values of Yk . For the third step,
replacing Yn−2 yields

Yn = Xn + 0.8Xn−1 + 0.82 Xn−2 + 0.83Yn−3. (11.42)

After k steps of this process, we obtain

Yn = Xn + 0.8Xn−1 + 0.82 Xn−2 + · · · + 0.8k Xn−k + 0.8k+1Yn−k−1. (11.43)

Continuing the process indefinitely, we infer that Yn = ∑∞
k=0 0.8k Xn−k . Comparing

this formula with Equation (11.25), we obtain

hn =
{

0.8n n = 0, 1, 2, . . .

0 otherwise.
(11.44)

Example 11.9 Continuing Example 11.8, suppose the wide sense stationary input Xn with expected
value μX = 0 and autocorrelation function

RX [n] =
⎧⎨
⎩

1 n = 0,

0.5 |n| = 1,

0 |n| ≥ 2,

(11.45)

is the input to the first-order integrator hn . Find the second moment, E[Y 2
n ], of the

output.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We start by expanding the square of Equation (11.40):

E
[
Y 2

n

]
= E

[
X2

n + 2(0.8)XnYn−1 + 0.82Y 2
n−1

]
(11.46)

= E
[

X2
n

]
+ 2(0.8)E

[
XnYn−1

]+ 0.82 E
[
Y 2

n−1

]
. (11.47)

Because Yn is wide sense stationary, E[Y 2
n−1] = E[Y 2

n ]. Moreover, since E[Xn Xn−1−i ] =
RX [i + 1],

E
[
XnYn−1

] = E
[

Xn(Xn−1 + 0.8Xn−2 + 0.82 Xn−3 . . .)
]

(11.48)

=
∞∑

i=0

0.8i RX [i + 1] = RX [1] = 0.5. (11.49)

Except for the first term (i = 0), all terms in the sum are zero because RX [n] = 0 for
n > 1. Therefore, from Equation (11.47),

E
[
Y 2

n

]
= E

[
X2

n

]
+ 2(0.8)(0.5) + 0.82 E

[
Y 2

n

]
. (11.50)

With E[X2
n] = RX [0] = 1, E[Y 2

n ] = 1.8/(1 − 0.82) = 2.8125.

Quiz 11.2 The input to a first-order discrete-time differentiator hn is Xn, a wide sense stationary
Gaussian random sequence with μX = 0.5 and autocorrelation function RX [k]. Given

RX [k] =
⎧⎨
⎩

1 k = 0,

0.5 |k| = 1,

0 otherwise,
and hn =

⎧⎨
⎩

1 n = 0,

−1 n = 1,

0 otherwise,
(11.51)

find the following properties of the output random sequence Yn: the expected value μY , the
autocorrelation RY [n], the variance Var[Yn].

11.3 Discrete-Time Linear Filtering: Vectors and Matrices

In many applications, it is convenient to think of a digital filter in terms of the filter impulse
response hn and the convolution sum of Equation (11.25). However, in this section, we
will observe that we can also represent discrete-time signals as vectors and discrete-time
filters as matrices. This can offer some advantages. The vector/matrix notation is generally
more concise than convolutional sums. Second, vector notation allows us to understand the
properties of discrete-time linear filters in terms of results for random vectors derived in
Chapter 5. Lastly, vector notation is the first step to implementing LTI filters in Matlab.

We can represent a discrete-time input sequence Xn by the L-dimensional vector of
samples X = [

X0 · · · X L−1
]′. From Equation (11.31), the output at time n of an order

M − 1 FIR filter depends on the M-dimensional vector

Xn = [
Xn−M+1 · · · Xn

]′
, (11.52)
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which holds the M most recent samples of Xn . The subscript n of the vector Xn denotes
that the most recent observation of the process Xn is at time n. For both X and Xn , we order
the vectors’ elements in increasing time index. In the following, we describe properties of
Xn , while noting that Xn = X when n = L − 1 and M = L.

Theorem 11.6 If Xn is a wide sense stationary process with expected value μ and autocorrelation function
RX [k], then the vector Xn has correlation matrix RXn and expected value E[Xn] given by

RXn =

⎡
⎢⎢⎢⎢⎣

RX [0] RX [1] · · · RX [M − 1]
RX [1] RX [0] . . .

...
...

. . .
. . . RX [1]

RX [M − 1] · · · RX [1] RX [0]

⎤
⎥⎥⎥⎥⎦ , E [Xn] = μ

⎡
⎢⎣

1
...

1

⎤
⎥⎦ .

The matrix RXn has a special structure. There are only M different numbers among the
M2 elements of the matrix and each diagonal of RXn consists of identical elements. This
matrix is in a category referred to as Toeplitz forms. The Toeplitz structure simplifies the
computation of the inverse R−1

Xn
.

Example 11.10 The wide sense stationary sequence Xn has autocorrelation RX [n] as given in Exam-
ple 11.5. Find the correlation matrix of X33 = [

X30 X31 X32 X33
]′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 11.6, X33 has length M = 4 and Toeplitz correlation matrix

RX33 =

⎡
⎢⎢⎣

RX [0] RX [1] RX [2] RX [3]
RX [1] RX [0] RX [1] RX [2]
RX [2] RX [1] RX [0] RX [1]
RX [3] RX [2] RX [1] RX [0]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4 2 0 0
2 4 2 0
0 2 4 2
0 0 2 4

⎤
⎥⎥⎦ (11.53)

We represent an order M − 1 LTI FIR filter hn by the vector h = [
h0 · · · hM−1

]′.
With input Xn , the output Yn at time n, as given by the input-output convolution of Equa-
tion (11.31), can be expressed conveniently in vector notation as

Yn = ←−
h ′Xn. (11.54)

where
←−
h is the vector

←−
h = [

hM−1 · · · h0
]′. Because of the equivalence of the filter hn

and the vector h, it is common terminology to refer to a filter vector h as simply an FIR filter.
As we did for the signal vector Xn , we represent the FIR filter h with elements in increasing
time index. However, as we observe in Equation (11.54), discrete-time convolution with
the filter hn employs the filter vector h with its elements in time-reversed order. In this case,
we put a left arrow over h, as in

←−
h , for the time-reversed version of h.

Example 11.11 The order M − 1 averaging filter hn given in Example 11.7 can be represented by the
M element vector

h = 1

M

[
1 1 · · · 1

]′
. (11.55)
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For an FIR filter h, it is often desirable to process a block of inputs represented by the
vector X = [

X0 · · · X L−1
]′. The output vector Y is the discrete convolution of h and

X. The nth element of Y is Yn given by the discrete-time convolution of Equation (11.31) or,
equivalently, Equation (11.54). In the implementation of discrete convolution of vectors, it
is customary to assume X is padded with zeros such that Xi = 0 for i < 0 and for i > N −1.
In this case, the discrete convolution (11.54) yields

Y0 = h0 X0, (11.56)

Y1 = h1 X0 + h0 X1, (11.57)

and so on. The output vector Y is related to X by Y = HX where
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0
...

YM−1
...
...

YL−1
...

YL+M−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0
...

. . .

hM−1 · · · h0
. . .

. . .

. . .
. . .

hM−1 · · · h0
. . .

...

hM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0
...

X M−1
...
...

X L−M
...

X L−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

. (11.58)

Just as for continuous-time processes, it is generally difficult to determine the PMF or PDF
of either an isolated filter output Yn or the vector output Y. Just as for continuous-time
systems, the special case of a Gaussian input process is a notable exception.

Theorem 11.7 Let the input to an FIR filter h = [
h0 · · · hM−1

]′
be the vector X = [

X0 · · · X L−1
]′

,
consisting of samples from a stationary Gaussian process Xn with expected value μ and
autocorrelation function RX [k]. The output Y = HX as given by Equation (11.58) is a
Gaussian random vector with expected value and covariance matrix given by

μY = HμX and CY = H(RX − μXμ′
X)H′

where RX and μX are given by RXn and E[Xn] in Theorem 11.6 with M = L.

Proof Theorem 5.12 verifies that X has covariance matrix CX = RX −μXμ′
X. The present theorem

then follows immediately from Theorem 5.16.

In Equation (11.58), we observe that the middle range outputs YM−1, . . . , YL−1 represent

a steady-state response. For M − 1 ≤ i ≤ L − 1, each Yi is of the form Yi = ←−
h ′Xi

where
←−
h ′ = [

hM−1 · · · h0
]′ and Xi = [

Xi−M+1 Xi−M+2 · · · Xi
]′. On the other

hand, the initial outputs Y0, . . . , YM−2 represent a transient response resulting from the
assumption that Xi = 0 for i < 0. Similarly, YL , . . . , YL+M−2 are transient outputs that
depend on Xi = 0 for i > n. These transient outputs are simply the result of using a finite-
length input for practical computations. Theorem 11.7 is a general result that accounts for
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the transient components in in the calculation of the expected value E[Y] and covariance
matrix CY through the structure of the matrix H.

However, a stationary Gaussian process Xn is defined for all time instances n. In this
case, in passing Xn through an FIR filter h0, . . . , hM−1, each output Yn is given by Equa-

tion (11.54), which we repeat here: Yn = ←−
h ′Xn . That is, each Yn combines the M most

recent inputs in precisely the same way. When Xn is a stationary process, the vectors Xn

are statistically identical for every n. This observation leads to the following theorem.

Theorem 11.8 If the input to a discrete-time linear filter hn is a stationary Gaussian random sequence Xn,
the output Yn is a stationary Gaussian random sequence with expected value and autocor-
relation given by Theorem 11.5.

Proof Since Xn is wide sense stationary, Theorem 11.5 implies that Yn is a wide sense station-
ary sequence. Thus it is sufficient to show that Yn is a Gaussian random sequence, since The-
orem 10.15 will then ensure that Yn is stationary. We prove this claim only for an FIR filter
h = [

h0 · · · h M−1
]′. That is, for every set of time instances n1 < n2 < · · · < nk , we will

show that Y = [
Yn1 Yn2 · · · Ynk

]′ is a Gaussian random vector. To start, we define L such

that nk = n1 + L − 1. Next, we define the vectors X = [
Xn1−M+1 Xn1−M+2 · · · Xnk

]′ and

Ŷ = ĤX where

Ĥ =
⎡
⎢⎣

h M−1 · · · h0
. . .

. . .

h M−1 · · · h0

⎤
⎥⎦ (11.59)

is an L × (L + M − 1) Toeplitz matrix. We note that Ŷ1 = Yn1 , Ȳ2 = Yn1+1, . . . , ŶL = Ynk . Thus
the elements of Y are a subset of the elements of Ŷ and we can define a k × L selection matrix B
such that Y = BŶ. Note that Bi j = 1 if ni = n1 + j − 1; otherwise Bi j = 0. Thus Y = BHX and
it follows from Theorem 5.16 that Y is a Gaussian random vector.

Quiz 11.3 The stationary Gaussian random sequence X0, X1, . . . with expected value E[Xn] = 0
and covariance function RX [n] = δn is the input to a the moving-average filter h =
(1/4)

[
1 1 1 1

]′
. The output is Yn. Find the PDF of Y = [

Y33 Y34 Y35
]′

.

11.4 Discrete-Time Linear Estimation and Prediction Filters

Most cellular telephones contain digital signal processing microprocessors that perform
linear prediction as part of a speech compression algorithm. In a linear predictor, a speech
waveform is considered to be a sample function of wide sense stationary stochastic process
X (t). The waveform is sampled every T seconds (usually T = 1/8000 seconds) to produce
the random sequence Xn = X (nT ). The prediction problem is to estimate a future speech
sample, Xn+k using N previous speech samples Xn−M+1, Xn−M+2, . . . , Xn . The need to
minimize the cost, complexity, and power consumption of the predictor makes a DSP-based
linear filter an attractive choice.
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In the terminology of Theorem 9.7, we wish to form a linear estimate of the random
variable X = Xn+k using the random observation vector is Y = [

Xn−M+1 · · · Xn
]′.

The general solution to this problem was given in Section 9.4 in the form of Theorems 9.7
and 9.8. When the random variable X has zero expected value,we learned from Theorem 9.7
that the minimum mean square error linear estimator of X given an observation vector Y is

X̂ L(Y) = a′Y (11.60)

where
a = R−1

Y RYX . (11.61)

We emphasize that this is a general solution for random variable X and observation vector
Y. In the context of a random sequence Xn , Equations (11.60) and (11.61) can solve a wide
variety of estimation and prediction problems based on an observation vector Y derived
from the process Xn . When X is a future value of the process Xn , the solution is a linear
predictor. When X = Xn and Y is a collection of noisy observations, the solution is a linear
estimator. In the following, we describe some basic examples of prediction and estimation.
These examples share the common feature that the linear predictor or estimator can be
implemented as a discrete-time linear filter.

Linear Prediction Filters

At time n, a linear prediction filter uses the available observations

Y = Xn = [
Xn−M+1 · · · Xn

]′
(11.62)

to estimate a future sample X = Xn+k . We wish to construct an LTI FIR filter hn with
input Xn such that the desired filter output at time n, is the linear minimum mean square
error estimate

X̂ L(Xn) = a′Xn (11.63)

where a = R−1
Y RYX . Following the notation of Equation (11.54), the filter output at time

n will be
X̂ L(Xn) = ←−

h ′Xn . (11.64)

Comparing Equations (11.61) and (11.64), we see that the predictor can be implemented in

the form the filter h by choosing
←−
h ′ = a′, or,

h = ←−a . (11.65)

That is, the optimal filter vector h = [
h0 · · · hM−1

]′ is simply the time-reversed a. To
complete the derivation of the optimal prediction filter, we observe that Y = Xn and that
RY = RXn , as given by Theorem 11.6. The cross-correlation matrix RYX is

RYX = RXn Xn+k = E

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

Xn−M+1
...

Xn−1
Xn

⎤
⎥⎥⎥⎦ Xn+k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

RX [M + k − 1]
...

RX [k + 1]
RX [k]

⎤
⎥⎥⎥⎦ . (11.66)
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We summarize this conclusion in the next theorem. An example then follows.

Theorem 11.9 Let Xn be a wide sense stationary random process with expected value E[Xn] = 0 and
autocorrelation function RX [k]. The minimum mean square error linear filter of order
M − 1 for predicting Xn+k at time n is the filter h such that

←−
h = R−1

Xn
RXn Xn+k ,

where RXn is given by Theorem 11.6 and RXn Xn+k is given by Equation (11.66).

Example 11.12 Xn is a wide sense stationary random sequence with E[Xn] = 0 and autocorrelation
function RX [k] = (−0.9)|k|. For M = 2 samples, find h = [

h0 h1
]′, the coefficients

of the optimum linear predictor of X = Xn+1, given Y = [
Xn−1 Xn

]′. What is the
optimum linear predictor of Xn+1 given Xn−1 and Xn?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The optimal filter is h = ←−a where a is given by Equation (11.61). For M = 2, the vector
a = [

a0 a1
]′ must satisfy RYa = RYX . From Theorem 11.6 and Equation (11.66),

[
RX [0] RX [1]
RX [1] RX [0]

] [
a0
a1

]
=
[

RX [2]
RX [1]

]
or
[

1 −0.9
−0.9 1

] [
a0
a1

]
=
[

0.81
−0.9

]
. (11.67)

The solution to these equations is a0 = 0 and a1 = −0.9. Therefore, the optimum
linear prediction filter is

h = [
h0 h1

]′ = [
a1 a0

]′ = [−0.9 0
]′

. (11.68)

The optimum linear predictor of Xn+1 given Xn−1 and Xn is

X̂n+1 = ←−
h ′Y = −0.9Xn . (11.69)

Example 11.13 Continuing Example 11.12, what is the mean square error of the optimal predictor?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since the optimal predictor is X̂n+1 = −0.9Xn , the mean square error is

eL = E
[
(Xn+1 − X̂n+1)2

]
= E

[
(Xn+1 + 0.9Xn)2

]
. (11.70)

By expanding the square and expresing the result in terms of the autocorrelation
function RX [k], we obtain

eL = RX [0] + 2(0.9)RX [1] + (0.9)2 RX [0] = 1 − (0.9)2 = 0.19. (11.71)

Examples 11.12 and 11.13 are a special case of the following property of random se-
quences Xn with autocorrelation function of the form RX [n] = b|n|RX [0].

Theorem 11.10 If the random sequence Xn has autocorrelation function RX [n] = b|n| RX [0], the optimum
linear predictor of Xn+k given the M previous samples Xn−M+1, Xn−M+2, . . . , Xn is

X̂n+k = bk Xn
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and the minimum mean square error is e∗
L = RX [0](1 − b2k).

Proof Since RX [n] = bn , we observe from Equation (11.66) that

RYX = bk [RX [M − 1] · · · RX [1] RX [0]]′ . (11.72)

From Theorem 11.6, we see that RYX is the Mth column of RY scaled by bk . Thus the solution to
RYa = RYX is the vector a = [

0 · · · 0 bk
]′

. The mean square error is

e∗
L = E

[
(Xn+k − bk Xn)2

]
= RX [0] − 2bk RX [k] + b2k RX [0] (11.73)

= RX [0] − 2b2k RX [0] + b2k RX [0] (11.74)

= RX [0](1 − b2k). (11.75)

When bk is close to 1, Xn+k and Xn are highly correlated. In this case, the sequence
varies slowly and the estimate bk Xn will be close to Xn and also close to Xn+k . As bk

gets smaller, Xn+k and Xn become less correlated. Consequently, the random sequence has
much greater variation. The predictor is unable to track this variation and the predicted value
approaches E[Xn+k] = 0. That is, when the observation tells us little about the future, the
predictor must rely on a priori knowledge of the random sequence. In addition, we observe
for a fixed value of b that increasing k reduces bk , and estimates are less accurate. That is,
predictions further into the future are less accurate.

Furthermore, Theorem 11.10 states that for random sequences with autocorrelation func-
tions of the form RX [k] = b|k| RX [0], Xn is the only random variable that contributes to
the optimum linear prediction of Xn+1. Another way of stating this is that at time n + 1,
all of the information about the past history of the sequence is summarized in the value
of Xn . Discrete-valued random sequences with this property are referred to as discrete-
time Markov chains. Section 12.1 analyzes the probability models of discrete-time Markov
chains.

Linear Estimation Filters

In the estimation problem, we estimate X = Xn based on the noisy observations Yn =
Xn + Wn . In particular, we use the vector Y = Yn = [

Yn−M+1 · · · Yn−1 Yn
]′ of the

M most recent observations. Our estimates will be the output resulting from passing the
sequence Yn through the LTI FIR filter hn . We assume that Xn and Wn are independent wide
sense stationary sequences with expected values E[Xn] = E[Wn] = 0 and autocorrelation
functions RX [n] and RW [n].

We know that the linear minimum mean square error estimate of X given the observation
Yn is X̂ L(Yn) = a′Yn where a = R−1

Yn
RYn X . The optimal estimation filter is h = ←−a , the

time reversal of a. All that remains is to identify RYn and RYn X . In vector form,

Yn = Xn + Wn (11.76)
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where

Xn = [
Xn−M+1 · · · Xn−1 Xn

]′
, Wn = [

Wn−M+1 · · · Wn−1 Wn
]′

. (11.77)

This implies

RYn = E
[
YnY′

n
] = E

[
(Xn + Wn)(X′

n + W′
n)
]

(11.78)

= E
[
XnX′

n + XnW′
n + WnX′

n + WnW′
n
]
. (11.79)

Because Xn and Wn are independent, E[XnW′
n] = E[Xn]E[W′

n] = 0. Similarly,
E[WnX′

n] = 0. This implies

RYn = E
[
XnX′

n
]+ E

[
WnW′

n
] = RXn + RWn . (11.80)

The cross-correlation matrix is

RYn X = E
[
(Xn + Wn)X ′

n

] = E [Xn Xn] + E [Wn Xn] = E [Xn Xn] (11.81)

since E[Wn Xn] = E[Wn]E[Xn] = 0. Thus, by Equation (11.77),

RYn X = RXn Xn = E

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

Xn−M+1
...

Xn−1
Xn

⎤
⎥⎥⎥⎦ Xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

RX [M − 1]
...

RX [1]
RX [0]

⎤
⎥⎥⎥⎦ . (11.82)

These facts are summarized in the following theorem. An example then follows.

Theorem 11.11 Let Xn and Wn be independent wide sense stationary random processes with expected values
E[Xn] = E[Wn] = 0 and autocorrelation functions RX [k] and RW [k]. Let Yn = Xn +Wn.
The minimum mean square error linear estimation filter of Xn of order M − 1 given the
input Yn is given by h such that

←−
h = [

hM−1 · · · h0
]′ = (RXn + RWn )

−1RXn Xn

where RXn Xn is given by Equation (11.82).

Example 11.14 The independent random sequences Xn and Wn have zero expected value and au-
tocorrelation functions RX [k] = (−0.9)|k| and RW [k] = (0.2)δk . Use M = 2 samples
of the noisy observation sequence Yn = Xn + Wn to estimate Xn . Find the linear
minimum mean square error prediction filter h = [

h0 h1
]′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Based on the observation Y = [

Yn−1 Yn
]′, the linear MMSE estimate of X = Xn

is a′Y where a = R−1
Y RYX . From Equation (11.82), RYX = [

RX [1] RX [0]]′ =[−0.9 1
]′. From Equation (11.80),

RY = RXn + RWn =
[

1 −0.9
−0.9 1

]
+
[

0.2 0
0 0.2

]
=
[

1.2 −0.9
−0.9 1.2

]
. (11.83)
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This implies

a = R−1
Y RYX =

[−0.2857
0.6190

]
(11.84)

The optimal filter is h = ←−a = [
0.6190 −0.2857

]′.

In Example 11.14, the estimation filter combines the observations to get the dual benefit
of averaging the noise samples as well as exploiting the correlation of Xn−1 and Xn . A
general version of Example 11.14 is examined in Problem 11.4.4.

Quiz 11.4 Xn is a wide sense stationary random sequence with E[Xn] = 0 and autocorrelation
function

RX [n] =
{

(0.9)|n| + 0.1 n = 0
(0.9)|n| otherwise.

(11.85)

For M = 2 samples, find h = [
h0 h1

]′
, the optimum linear prediction filter of Xn+1,

given Xn−1 and Xn. What is the mean square error of the optimum linear predictor?

11.5 Power Spectral Density of a Continuous-Time Process

The autocorrelation function of a continuous-time stochastic process conveys information
about the time structure of the process. If X (t) is stationary and RX (τ ) decreases rapidly
with increasing τ , it is likely that a sample function of X (t) will change abruptly in a short
time. Conversely, if the decline in RX (τ ) with increasing τ is gradual, it is likely that a
sample function of X (t) will be slowly time-varying. Fourier transforms offer another view
of the variability of functions of time. A rapidly varying function of time has a Fourier
transform with high magnitudes at high frequencies, and a slowly varying function has a
Fourier transform with low magnitudes at high frequencies.

In the study of stochastic processes, the power spectral density function, SX ( f ), provides
a frequency-domain representation of the time structure of X (t). By definition, SX ( f ) is
the expected value of the squared magnitude of the Fourier transform of a sample function
of X (t). To present the definition formally, we first establish our notation for the Fourier
transform as a function of the frequency variable f Hz.

Definition 11.1 Fourier Transform
Functions g(t) and G( f ) are a Fourier transform pair if

G( f ) =
∫ ∞

−∞
g(t)e− j2π f t dt, g(t) =

∫ ∞

−∞
G( f )e j2π f t d f.

Table 11.1 provides a list of Fourier transform pairs. Students who have already studied
signals and systems may recall that not all functions of time have Fourier transforms. For
many functions that extend over infinite time, the time integral in Definition 11.1 does not
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Time function Fourier Transform

δ(τ ) 1

1 δ( f )

δ(τ − τ0) e− j2π f τ0

u(τ )
1

2
δ( f ) + 1

j2π f

e j2π f0τ δ( f − f0)

cos 2π f0τ
1

2
δ( f − f0) + 1

2
δ( f + f0)

sin 2π f0τ
1

2 j
δ( f − f0) − 1

2 j
δ( f + f0)

ae−aτ u(τ )
a

a + j2π f

ae−a|τ | 2a2

a2 + (2π f )2

ae−πa2τ 2
e−π f 2/a2

rect(τ/T ) T sinc( f T )

sinc(2Wτ )
1

2W
rect(

f

2W
)

g(τ − τ0) G( f )e− j2π f τ0

g(τ )e j2π f0τ G( f − f0)

g(−τ ) G∗( f )

dg(τ )

dτ
j2π f G( f )

∫ τ

−∞ g(v) dv
G( f )

j2π f
+ G(0)

2
δ( f )

∫∞
−∞ h(v)g(τ − v) dv G( f )H ( f )

g(t)h(t)
∫∞
−∞ H ( f ′)G( f − f ′) d f ′

Note that a is a positive constant and that the rectangle and sinc functions are defined as

rect(x) =
{

1 |x | < 1/2,

0 otherwise,
sinc(x) = sin(πx)

πx
.

Table 11.1 Fourier transform pairs and properties.
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exist. Sample functions x(t) of a stationary stochastic process X (t) are usually of this
nature. To work with these functions in the frequency domain, we begin with xT (t), a
truncated version of x(t). It is identical to x(t) for −T ≤ t ≤ T and 0 elsewhere. We use
the notation XT ( f ) for the Fourier transform of this function.

XT ( f ) =
∫ T

−T
x(t)e− j2π f t dt . (11.86)

|XT ( f )|2, the squared magnitude of XT ( f ), appears in the definition of SX ( f ). If x(t) is
an electrical signal measured in volts or amperes, |XT ( f )|2 has units of energy. Its time
average, |XT ( f )|2/2T , has units of power. SX ( f ) is the limit as the time window goes to
infinity of the expected value of this function:

Definition 11.2 Power Spectral Density
The power spectral density function of the wide sense stationary stochastic process X (t) is

SX ( f ) = lim
T →∞

1

2T
E
[
|XT ( f )|2

]
= lim

T →∞
1

2T
E

[∣∣∣∣
∫ T

−T
X (t)e− j2π f t dt

∣∣∣∣
2]

.

We refer to SX ( f ) as a density function because it can be interpreted as the amount of
power in X (t) in the infinitesimal range of frequencies [ f, f + d f ]. Physically, SX ( f ) has
units of watts/Hz = Joules. As stated in Theorem 11.13(b), the average power of X (t) is the
integral of SX ( f ) over all frequencies in −∞ < f < ∞. Both the autocorrelation function
and the power spectral density function convey information about the time structure of X (t).
The Wiener-Khintchine theorem shows that they convey the same information:

Theorem 11.12 Wiener-Khintchine
If X (t) is a wide sense stationary stochastic process, RX (τ ) and SX ( f ) are the Fourier
transform pair

SX ( f ) =
∫ ∞

−∞
RX (τ )e− j2π f τ dτ, RX (τ ) =

∫ ∞

−∞
SX ( f )e j2π f τ d f.

Proof Since x(t) is real-valued, X∗
T ( f ) = ∫ T

−T x(t ′)e j2π f t ′ dt ′. Since |XT ( f )|2 = XT ( f )X∗
T ( f ),

E
[
|XT ( f )|2

]
= E

[(∫ T

−T
X (t)e− j2π f t dt

)(∫ T

−T
x(t ′)e j2π f t ′ dt ′

)]
(11.87)

=
∫ T

−T

∫ T

−T
E
[
X (t)X (t ′)

]
e− j2π f (t−t ′) dt dt ′ (11.88)

=
∫ T

−T

∫ T

−T
RX (t − t ′)e− j2π f (t−t ′) dt dt ′. (11.89)

In Equation (11.89), we are integrating the deterministic function g(t − t ′) = RX (t − t ′)e− j2π f (t−t ′)

over a square box. Making the variable substitution τ = t − t ′ and reversing the order of integration,
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we can show that
∫ T

−T

∫ T

−T
g(t − t ′) dt dt ′ = 2T

∫ 2T

−2T
g(τ)

(
1 − |τ |

2T

)
dτ (11.90)

With g(τ) = RX (τ)e− j2π f τ , it follows from Equations (11.89) and (11.90) that

1

2T
E
[
|XT ( f )|2

]
=
∫ 2T

−2T
RX (τ)

(
1 − |τ |

2T

)
e− j2π f τ dτ. (11.91)

We define the function

hT (τ) =
{

1 − |τ | /(2T ) |τ | ≤ 2T,

0 otherwise,
(11.92)

and we observe that limT →∞ hT (τ) = 1 for all finite τ . It follows from Equation (11.91) that

lim
T →∞

1

2T
E
[
|XT ( f )|2

]
= lim

T →∞

∫ ∞
−∞

hT (τ)RX (τ)e− j2π f τ dτ (11.93)

=
∫ ∞
−∞

(
lim

T →∞ hT (τ)

)
RX (τ)e− j2π f τ dτ = SX ( f ) (11.94)

The following theorem states three important properties of SX ( f ):

Theorem 11.13 For a wide sense stationary random process X (t), the power spectral density SX ( f ) is a
real-valued function with the following properties:

(a) SX ( f ) ≥ 0 for all f

(b)
∫ ∞

−∞
SX ( f ) d f = E[X2(t)] = RX (0)

(c) SX (− f ) = SX ( f )

Proof The first property follows from Definition 11.2, in which SX ( f ) is the expected value of
the time average of a nonnegative quantity. The second property follows by substituting τ = 0
in Theorem 11.12 and referring to Definition 11.1. To prove the third property, we observe that
RX (τ) = RX (−τ) implies

SX ( f ) =
∫ ∞
−∞

RX (−τ)e− j2π f τ dτ. (11.95)

Making the substitution τ ′ = −τ yields

SX ( f ) =
∫ ∞
−∞

RX (τ ′)e− j2π(− f )τ ′
dτ ′ = SX (− f ). (11.96)

Example 11.15 A wide sense stationary process X (t) has autocorrelation function RX (τ) = Ae−b|τ |
where b > 0. Derive the power spectral density function SX ( f ) and calculate the
average power E[X2(t)].
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Random processes V (t) and W (t) with autocorrelation functions RV (τ ) = e−0.5|τ | and
RW (τ ) = e−2|τ | are examples of the process X (t) in Example 11.15. These graphs show
RV (τ ) and RW (τ ), the power spectral density functions SV ( f ) and SW ( f ), and sample
paths of V (t) and W (t).

Figure 11.1 Two examples of the process X (t) in Example 11.15.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To find SX ( f ), we use Table 11.1 since RX (τ) is of the form ae−a|τ |.

SX ( f ) = 2Ab

(2π f )2 + b2
. (11.97)

The average power is

E
[

X2(t)
]

= RX (0) = Ae−b|0| =
∫ ∞
−∞

2Ab

(2π f )2 + b2
d f = A. (11.98)

Figure 11.1 displays three graphs for each of two stochastic processes in the family
studied in Example 11.15: V (t) with RV (τ ) = e−0.5|τ | and W (t) with RW (τ ) = e−2|τ |.
For each process, the three graphs are the autocorrelation function, the power spectral
density function, and one sample function. For both processes, the average power is A = 1
watt. Note W (t) has a narrower autocorrelation (less dependence between two values of
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the process with a given time separation) and a wider power spectral density (more power
at higher frequencies) than V (t). The sample function w(t) fluctuates more rapidly with
time than v(t).

Example 11.16 For the output random process Y (t) of Example 11.2, find the power spectral density
SY ( f ).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Definition 11.2 and the triangular autocorrelation function RY (τ) given in Equa-
tion (11.17), we can write

RY (τ) = η0

T 2

(∫ 0

−T
(T + τ)e− j2π f τ dτ +

∫ T

0
(T − τ)e− j2π f τ dτ

)
. (11.99)

With the substitution τ ′ = −τ in the left integral, we obtain

RY (τ) = η0

T 2

(∫ T

0
(T − τ ′)e j2π f τ ′

dτ ′ +
∫ T

0
(T − τ)e− j2π f τ dτ

)
(11.100)

= 2η0

T 2

∫ T

0
(T − τ) cos(2π f τ) dτ. (11.101)

Using integration by parts (Appendix B, Math Fact B.10), u = T − τ and dv =
cos(2π f τ) dτ , yields

RY (τ) = 2η0

T 2

(
(T − τ) sin(2π f τ)

2π f

∣∣∣∣
T

0
+
∫ T

0

sin(2π f τ)

2π f
dτ

)
(11.102)

= 2η0(1 − cos(2π f T ))

(2π f T )2
. (11.103)

Quiz 11.5 The power spectral density of X (t) is

SX ( f ) = 5

W
rect

(
f

2W

)
=
{

5/W −W ≤ f ≤ W,

0 otherwise.
(11.104)

(1) What is the average power of X (t)?

(2) Write a formula for the autocorrelation function of X (t).

(3) Draw graphs of SX ( f ) and RX (τ ) for W = 1 kHz and W = 10 Hz.

11.6 Power Spectral Density of a Random Sequence

The spectral analysis of a random sequence parallels the analysis of a continuous-time
process. A sample function of a random sequence is an ordered list of numbers. Each
number in the list is a sample value of a random variable. The discrete-time Fourier
transform (DTFT) is a spectral representation of an ordered set of numbers.
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Discrete Time function Discrete Time Fourier Transform

δ[n] = δn 1

1 δ(φ)

δ[n − n0] = δn−n0 e− j2πφn0

u[n] 1

1 − e− j2πφ
+ 1

2

∑∞
k=−∞ δ(φ + k)

e j2πφ0n ∑∞
k=−∞ δ(φ − φ0 − k)

cos 2πφ0n
1

2
δ(φ − φ0) + 1

2
δ(φ + φ0)

sin 2πφ0n
1

2 j
δ(φ − φ0) − 1

2 j
δ(φ + φ0)

anu[n] 1

1 − ae− j2πφ

a|n| 1 − a2

1 + a2 − 2a cos 2πφ

gn−n0 G(φ)e− j2πφn0

gne j2πφ0n G(φ − φ0)

g−n G∗(φ)∑∞
k=−∞ hk gn−k G(φ)H (φ)

Note that δ[n] is the discrete impulse, u[n] is the discrete unit step, and a is a constant with
magnitude |a| < 1.

Table 11.2 Discrete-Time Fourier transform pairs and properties.

Definition 11.3 Discrete-time Fourier Transform (DTFT)
The sequence {. . . , x−2, x−1, x0, x1, x2, . . .} and the function X (φ) are a discrete-time
Fourier transform (DTFT) pair if

X (φ) =
∞∑

n=−∞
xne− j2πφn, xn =

∫ 1/2

−1/2
X (φ)e j2πφn dφ.

Table 11.2 provides a table of common discrete-time Fourier transforms. Note that φ

is a dimensionless normalized frequency, with range −1/2 ≤ φ ≤ 1/2, and X (φ) is
periodic with unit period. This property reflects the fact that a list of numbers in itself
has no inherent time scale. When the random sequence Xn = X (nTs) consists of time
samples of a continuous-time process sampled at frequency fs = 1/Ts Hz, the normalized
frequency φ corresponds to the frequency f = φ fs Hz. The normalized frequency range
−1/2 ≤ φ ≤ 1/2 reflects the requirement of the Nyquist sampling theorem that sampling
a signal at rate fs allows the sampled signal to describe frequency components in the range
− fs/2 ≤ f ≤ fs/2.
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Example 11.17 Calculate the DTFT H(φ) of the order M −1 moving-average filter hn of Example 11.5.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since hn = 1/M for n = 0, 1, . . . , M −1 and is otherwise zero, we apply Definition 11.3
to write

H(φ) =
∞∑

n=−∞
hne− j2πφn = 1

M

M−1∑
n=0

e− j2πφn . (11.105)

Using Math Fact B.4 with α = e− j2πφ and n = M − 1, we obtain

H(φ) = 1

M

(
1 − e− j2πφM

1 − e− j2πφ

)
. (11.106)

We noted earlier that many time functions do not have Fourier transforms. Similarly, the
sum in Definition 11.3 does not converge for sample functions of many random sequences.
To work with these sample functions, our analysis is similar to that of continuous-time
processes. We define a truncated sample function that is identical to xn for −L ≤ n ≤ L
and 0 elsewhere. We use the notation X L(φ) for the discrete-time Fourier transform of this
sequence:

X L(φ) =
L∑

n=−L

xne− j2πφn. (11.107)

The power spectral density function of the random sequence Xn is the expected value
|X L(φ)|2/(2N + 1).

Definition 11.4 Power Spectral Density of a Random Sequence
The power spectral density function of the wide sense stationary random sequence Xn is

SX (φ) = lim
L→∞

1

2L + 1
E

⎡
⎣
∣∣∣∣∣

L∑
n=−L

Xne− j2πφn

∣∣∣∣∣
2⎤
⎦ .

The Wiener-Khintchine Theorem also holds for random sequences.

Theorem 11.14 Discrete-Time Wiener-Khintchine
If Xn is a wide sense stationary stochastic process, RX [k] and SX (φ) are a discrete-time
Fourier transform pair:

SX (φ) =
∞∑

k=−∞
RX [k]e− j2πφk, RX [k] =

∫ 1/2

−1/2
SX (φ)e j2πφk dφ.

The properties of the power spectral density function of a random sequence are similar
to the properties of the power spectral density function of a continuous-time stochastic
process. The following theorem corresponds to Theorem 11.13 and, in addition, describes
the periodicity of SX (φ) for a random sequence.
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Theorem 11.15 For a wide sense stationary random sequence Xn, the power spectral density SX (φ) has
the following properties:

(a) SX (φ) ≥ 0 for all f ,

(b)
∫ 1/2

−1/2
SX (φ) dφ = E[X2

n] = RX [0],
(c) SX (−φ) = SX (φ),

(d) for any integer n, SX (φ + n) = SX (φ).

Example 11.18 The wide sense stationary random sequence Xn has zero expected value and auto-
correlation function

RX [k] =
{

σ 2(2 − |n|)/4 n = −1, 0, 1,

0 otherwise.
(11.108)

Derive the power spectral density function of Xn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Applying Theorem 11.14 and Definition 11.3, we have

SX (φ) =
1∑

n=−1

RX [n]e− j2πnφ (11.109)

= σ 2
[

(2 − 1)

4
e j2πφ + 2

4
+ (2 − 1)

4
e− j2πφ

]
(11.110)

= σ 2

2
+ σ 2

2
cos(2πφ). (11.111)

Example 11.19 The wide sense stationary random sequence Xn has zero expected value and power
spectral density

SX (φ) = 1

2
δ(φ − φ0) + 1

2
δ(φ + φ0) (11.112)

where 0 < φ0 < 1/2. What is the autocorrelation RX [k]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 11.14, we have

RX [k] =
∫ 1/2

−1/2
(δ(φ − φ0) + δ(φ + φ0)) e j2πφk dφ. (11.113)

By the sifting property of the continuous-time delta function,

RX [k] = 1

2
e j2πφ0k + 1

2
e− j2πφ0k = cos(2πφ0k). (11.114)

Quiz 11.6 The random sequence Xn has power spectral density function SX (φ) = 10. Derive RX [k],
the autocorrelation function of Xn.
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11.7 Cross Spectral Density

When two processes are jointly wide sense stationary, we can study the cross-correlation
in the frequency domain.

Definition 11.5 Cross Spectral Density
For jointly wide sense stationary random processes X (t) and Y (t), the Fourier transform
of the cross-correlation yields the cross spectral density

SXY ( f ) =
∫ ∞

−∞
RXY (τ )e− j2π f τ dτ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For jointly wide sense stationary random sequences Xn and Yn, the discrete-time Fourier
transform of the cross-correlation yields the cross spectral density

SXY (φ) =
∞∑

k=−∞
RXY [k]e− j2πφk.

We encounter cross-correlations in experiments that involve noisy observations of a wide
sense stationary random process X (t).

Example 11.20 In Example 10.24, we were interested in X (t) but we could observe only Y (t) =
X (t) + N(t) where N(t) is a wide sense stationary noise process with μN = 0. In this
case, when X (t) and N(t) are jointly wide sense stationary, we found that

RY (τ) = RX (τ) + RX N (τ) + RN X (τ) + RN (τ). (11.115)

Find the power spectral density of the output Y (t).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By taking a Fourier transform of both sides, we obtain the power spectral density of
the observation Y (t).

SY ( f ) = SX ( f ) + SX N ( f ) + SN X ( f ) + SN ( f ). (11.116)

Example 11.21 Continuing Example 11.20, suppose N(t) and X (t) are independent. Find the auto-
correlation and power spectral density of the observation Y (t).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this case,

RX N (τ) = E [X (t)N(t + τ)] = E [X (t)] E [N(t + τ)] = 0. (11.117)

Similarly, RN X (τ) = 0. This implies

RY (τ) = RX (τ) + RN (τ), (11.118)

and
SY ( f ) = SX ( f ) + SN ( f ). (11.119)
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Quiz 11.7 Random process Y (t) = X (t − t0) is a time delayed version of the wide sense stationary
process X (t). Find the cross spectral density SXY (τ ).

11.8 Frequency Domain Filter Relationships

Electrical and computer engineers are well acquainted with frequency domain representa-
tions of filtering operations. If a linear filter has impulse response h(t), H ( f ), the Fourier
transform of h(t), is referred to as the frequency response of the filter. The Fourier trans-
form of the filter output W ( f ) is related to the transform of the input V ( f ) and the filter
frequency response H ( f ) by

W ( f ) = H ( f )V ( f ). (11.120)

Equation (11.120) is the frequency domain representation of the fundamental input-output
property of a continuous-time filter. For discrete-time signals Wn and Vn and the discrete-
time filter with impulse response hn , the corresponding relationship is

W (φ) = H (φ)V (φ) (11.121)

where the three functions of frequency are discrete-time Fourier transforms defined in
Definition 11.3. When the discrete-time filter contains forward and feedback sections as
in Equation (11.32), the transfer function is H (φ) = A(φ)/(1 − B(φ)), where A(φ) and
B(φ) are the discrete-time Fourier transforms of the forward section and feedback section,
respectively.

In studying stochastic processes, our principal frequency domain representation of the
continuous-time process X (t) is the power spectral density function SX ( f ) in Defini-
tion 11.2, and our principal representation of the random sequence Xn is SX (φ) in Defini-
tion 11.4. When X (t) or Xn is the input to a linear filter with transfer function H ( f ) or
H (φ), the following theorem presents the relationship of the power spectral density function
of the output of the filter to the corresponding function of the input process.

Theorem 11.16 When a wide sense stationary stochastic process X (t) is the input to a linear time-invariant
filter with transfer function H ( f ), the power spectral density of the output Y (t) is

SY ( f ) = |H ( f )|2 SX ( f ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
When a wide sense stationary random sequence Xn is the input to a linear time-invariant
filter with transfer function H (φ), the power spectral density of the output Yn is

SY (φ) = |H (φ)|2 SX (φ).

Proof We refer to Theorem 11.12 to recall that SY ( f ) is the Fourier transform of RY (τ). We then
substitute Theorem 11.2(a) in the definition of the Fourier transform to obtain

SY ( f ) =
∫ ∞
−∞

(∫ ∞
−∞

∫ ∞
−∞

h(u)h(v)RX (τ + v − u) du dv

)
e− j2π f τ dτ. (11.122)
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H(f)

f

f0-f0

B

Figure 11.2 The ideal bandpass filter H( f ) with center frequency f0 and bandwidth B Hz.

Substituting τ ′ = τ + v − u yields

SY ( f ) =
∫ ∞
−∞

h(u)e− j2π f u du

︸ ︷︷ ︸
H( f )

∫ ∞
−∞

h(v)e j2π f v dv

︸ ︷︷ ︸
H∗( f )

∫ ∞
−∞

RX (τ ′)e− j2π f τ ′
dτ ′

︸ ︷︷ ︸
SX ( f )

(11.123)

Thus SY ( f ) = H( f )H∗( f )SX ( f ) = |H( f )|2SX ( f ). The proof is similar for random sequences.

Now we are ready to justify the interpretation of SX ( f ) as a density function. As shown
in Figure 11.2, suppose H ( f ) is a narrow, ideal bandpass filter of bandwidth B centered at
frequency f0. That is,

H ( f ) =
{

1 | f ± f0| ≤ B/2,

0 otherwise.
(11.124)

In this case, passing the random process X (t) through the filter H ( f ) always produces an
output waveform Y (t) that is in the passband of the filter H ( f ). As we have shown, the
power spectral density of the filter output is

SY ( f ) = |H ( f )|2 SX ( f ). (11.125)

Moreover, Theorem 11.13(b) implies that the average power of Y (t) is

E
[
Y 2(t)

]
=
∫ ∞

−∞
SY ( f ) d f =

∫ − f0+B/2

− f0−B/2
SX ( f ) d f +

∫ f0+B/2

f0−B/2
SX ( f ) d f. (11.126)

Since SX ( f ) = SX (− f ), when B is very small, we have

E
[
Y 2(t)

]
≈ 2BSX ( f0). (11.127)

We see that the average power of the filter output is approximately the power spectral
density of the input at the center frequency of the filter times the bandwidth of the filter.
The approximation becomes exact as the bandwidth approaches zero. Therefore, SX ( f0)
is the power per unit frequency (the definition of a density function) of X (t) at frequencies
near f0.

Example 11.22 A wide sense stationary process X (t) with autocorrelation function RX (τ) = e−b|τ | is
the input to an RC filter with impulse response

h(t) =
{

(1/RC)e−t/RC t ≥ 0,

0 otherwise.
(11.128)
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Assuming b > 0 and b �= 1/RC, find SY ( f ) and RY (τ), the power spectral density
and autocorrelation of the filter output Y (t). What is the average power of the output
stochastic process?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For convenience, let a = 1/RC. Since the impulse response has the form h(t) =
ae−at u(t) and RX (τ) = e−b|τ |, Table 11.1 tells us that

H( f ) = a

a + j2π f
, SX ( f ) = 2b

(2π f )2 + b2
. (11.129)

Therefore,

|H( f )|2 = a2

(2π f )2 + a2
(11.130)

and, by Theorem 11.16, SY ( f ) = |H( f )|2SX ( f ). We use the method of partial frac-
tions to write

SY ( f ) = 2ba2

[(2π f )2 + a2][(2π f )2 + b2] (11.131)

= 2ba2/(b2 − a2)

(2π f )2 + a2
− 2ba2/(b2 − a2)

(2π f )2 + b2
. (11.132)

Recognizing that for any constant c > 0, e−c|τ | and 2c/((2π f )2 + c2) are Fourier
transform pairs, we obtain the output autocorrelation

RY (τ) = ba

b2 − a2
e−a|τ | − a2

b2 − a2
e−b|τ |. (11.133)

From Theorem 11.13, we obtain the average power

E
[
Y 2(t)

]
= RY (0) = ba − a2

b2 − a2
= a

(b + a)
. (11.134)

Example 11.23 The random sequence Xn has power spectral density

SX (φ) = 2 + 2 cos(2πφ). (11.135)

This sequence is the input to the filter in Quiz 11.2 with impulse response

hn =
⎧⎨
⎩

1 n = 0,

−1 n = −1, 1,

0 otherwise.

(11.136)

Derive SY (φ), the power spectral density function of the output sequence Yn . What is
E[Y 2

n ]?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The discrete Fourier transform of hn is

H(φ) = 1 − e j2πφ − e− j2πφ = 1 − 2 cos(2πφ). (11.137)
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Therefore, from Theorem 11.16 we have

SY (φ) = |H(φ)|2 SX (φ) = [1 − 2 cos(2πφ)]2[2 + 2 cos(2πφ)] (11.138)

= 2 − 6 cos(2πφ) + 8 cos3(2πφ). (11.139)

Applying the identity cos3(x) = 0.75 cos(x) + 0.25 cos(3x), we can simplify this formula
to obtain

SY (φ) = 2 + 2 cos(6πφ). (11.140)

We obtain the mean square value from Theorem 11.15(b):

E
[
Y 2

n

]
=
∫ 1/2

−1/2
[2 + 2 cos(6πφ)] dφ = 2. (11.141)

Example 11.24 We recall that in Example 11.7 that the wide sense stationary random sequence Xn
with expected value μX = 0 and autocorrelation function RX [n] = σ 2δn is passed
through the order M − 1 discrete-time moving-average filter

hn =
{

1/M 0 ≤ n ≤ M − 1,

0 otherwise.
(11.142)

Find the power spectral density SY (φ) for the discrete-time moving-average filter output
Yn .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By using Theorem 11.16, SY (φ) = |H(φ)|2SX (φ). We note that SX (φ) = σ 2. In
Example 11.17, we found that

H(φ) = 1

M

(
1 − e− j2πφM

1 − e− j2πφ

)
. (11.143)

Since |H(φ)|2 = H(φ)H∗(φ), it follows that

SY (φ) = H(φ)H∗(φ)SX (φ) = σ 2

M2

(
1 − e− j2πφM

1 − e− j2πφ

)(
1 − e j2πφM

1 − e j2πφ

)
(11.144)

= σ 2

M2

(
1 − cos(2π Mφ)

1 − cos(2πφ)

)
. (11.145)

We next consider the cross power spectral density function of the input and output of a
linear filter. Theorem 11.2(b) can be interpreted as follows: If a deterministic waveform
RX (τ ) is the input to a filter with impulse response h(t), the output is the waveform RXY (τ ).
Similarly, Theorem 11.2(c) states that if the waveform RXY (τ ) is the input to a filter with
impulse response h(−t), the output is the waveform RY (τ ). The upper half of Figure 11.3
illustrates the relationships between RX (τ ), RXY (τ ), and RY (τ ), as well as the correspond-
ing relationships for discrete-time systems. The lower half of the figure demonstrates the
same relationships in the frequency domain. It uses the fact that the Fourier transform of
h(−t), the time-reversed impulse response, is H ∗( f ), the complex conjugate of the Fourier
transform of h(t). The following theorem states these relationships mathematically.
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Figure 11.3 Input-Output Correlation and Spectral Density Functions

Theorem 11.17 If the wide sense stationary process X (t) is the input to a linear time-invariant filter with
transfer function H ( f ), and Y (t) is the filter output, the input-output cross power spectral
density function and the output power spectral density function are

SXY ( f ) = H ( f )SX ( f ), SY ( f ) = H ∗( f )SXY ( f ).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If the wide sense stationary random sequence Xn is the input to a linear time-invariant
filter with transfer function H (φ), and Yn is the filter output, the input-output cross power
spectral density function and the output power spectral density function are

SXY (φ) = H (φ)SX(φ), SY (φ) = H ∗(φ)SXY (φ).

Quiz 11.8 A wide sense stationary stochastic process X (t) with expected value μX = 0 and au-
tocorrelation function RX (τ ) = e−5000|τ | is the input to an RC filter with time constant
RC = 100μs. The filter output is the stochastic process Y (t).

(1) Derive SXY ( f ), the cross power spectral density function of X (t) and Y (t).

(2) Derive SY ( f ), the power spectral density function of Y (t).

(3) What is E[Y 2(t)], the average power of the filter output?

11.9 Linear Estimation of Continuous-Time Stochastic Processes

In this section, we observe a sample function of a wide sense stationary continuous-time
stochastic process Y (t) and design a linear filter to estimate a sample function of another
wide sense stationary process X (t). The linear filter that minimizes the mean square error
is referred to as a Wiener filter. The properties of a Wiener filter are best represented in the
frequency domain.
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Theorem 11.18 X (t) and Y (t) are wide sense stationary stochastic processes with power spectral density
functions SX ( f ) and SY ( f ), and cross spectral density function SXY ( f ). X̂(t) is the output
of a linear filter with input Y (t) and transfer function H ( f ). The transfer function that
minimizes the mean square error E[(X (t) − X̂(t))2] is

Ĥ( f ) =
⎧⎨
⎩

SXY ( f )

SY ( f )
SY ( f ) > 0,

0 otherwise.

The minimum mean square error is

êL =
∫ ∞

−∞

(
SX ( f ) − |SXY ( f )|2

SY ( f )

)
d f.

We omit the proof of this theorem.
In practice, one of the most common estimation procedures is separating a signal from

additive noise. In this application, the observed stochastic process, Y (t) = X (t) + N(t),
is the sum of the signal of interest and an extraneous stochastic process N(t) referred to
as additive noise. Usually X (t) and N(t) are independent stochastic processes. It follows
that the power spectral function of Y (t) is SY ( f ) = SX ( f )+ SN ( f ), and the cross spectral
density function is SXY ( f ) = SX ( f ). By Theorem 11.18, the transfer function of the
optimum estimation filter is

Ĥ( f ) = SX ( f )

SX ( f ) + SN ( f )
, (11.146)

and the minimum mean square error is

e∗
L =

∫ ∞

−∞

(
SX ( f ) − |SX ( f )|2

SX ( f ) + SN ( f )

)
d f =

∫ ∞

−∞
SX ( f )SN ( f )

SX ( f ) + SN ( f )
d f. (11.147)

Example 11.25 X (t) is a wide sense stationary stochastic process with μX = 0 and autocorrelation
function

RX (τ) = sin(2π5000τ)

2π5000τ
. (11.148)

Observe Y (t) = X (t)+N(t), where N(t) is a wide sense stationary process with power
spectral density function SN ( f ) = 10−5. X (t) and N(t) are mutually independent.

(a) What is the transfer function of the optimum linear filter for estimating X (t) given
Y (t)?

(b) What is the mean square error of the optimum estimation filter?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) From Table 11.1, we deduce the power spectral density function of X (t) is

RX (τ) = 10−4 rect( f/104) =
{

10−4 | f | ≤ 5000,

0 otherwise.
(11.149)
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(b) From Equation (11.146) we obtain Ĥ( f ) = 1/1.1, | f | ≤ 5000, Ĥ( f ) = 0 other-
wise. The mean square error in Equation (11.147) is

e∗
L =

∫ 5000

−5000

10−510−4

10−4 + 10−5
d f = 0.1/1.1 = 0.0909. (11.150)

In this example, the optimum estimation filter is an ideal lowpass filter with an impulse
response that has nonzero values for all τ from −∞ to ∞. This filter cannot be implemented
in practical hardware. The design of filters that minimize the mean square estimation error
under practical constraints is covered in more advanced texts. Equation (11.147) is a lower
bound on the estimation error of any practical filter.

Quiz 11.9 In a spread spectrum communications system, X (t) is an information signal modeled as
wide sense stationary stochastic process with μX = 0 and autocorrelation function

RX (τ ) = sin(2π5000τ )/(2π5000τ ). (11.151)

A radio receiver obtains Y (t) = X (t) + N(t), where the interference N(t) is a wide sense
stationary process with μN = 0 and Var[N] = 1 watt. The power spectral density function
of N(t) is SN ( f ) = N0 for | f | ≤ B and SN ( f ) = 0 for | f | > B. X (t) and N(t) are
independent.

(1) What is the relationship between the noise power spectral density N0 and the inter-
ference bandwidth B?

(2) What is the transfer function of the optimum estimation filter that processes Y (t) in
order to estimate X (t)?

(3) What is the minimum value of the interference bandwidth B Hz that results in a
minimum mean square error e∗

L ≤ 0.05?

11.10 Matlab

We have seen in prior chapters that Matlab makes vector and matrix processing sim-
ple. In the context of random signals, efficient use of Matlab requires discrete-time
random sequences. These may be the result either of a discrete-time process or of sam-
pling a continuous-time process at a rate not less than the Nyquist sampling rate. In addi-
tion, Matlab processes only finite-length vectors corrresponding to either finite-duration
discrete-time signals or to length L blocks of an infinite-duration signal. In either case,
we assume our objective is to process a discrete-time signal, a length L random sequence,
represented by the vector

x = [
x0 · · · xL−1

]′
. (11.152)

Note that x may be deterministic or random. For the moment, we drop our usual convention
of denoting random quanitities by uppercase letters since in Matlab code, we will use
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Figure 11.4 Sample paths of the input Xn and output Yn of the order M − 1 moving-average filter
of Example 11.26.

uppercase letters for vectors in frequency domain. The vector x is often called the data so
as to distinguish it from discrete-time filters that are also represented by vectors.

Time-Domain Processing for Finite-Length Data

time-domain methods, such as the linear filtering for a random sequence introduced in
Section 11.2, can be implemented directly using Matlab matrix and vector processing
techniques. In Matlab, block processing is especially common.

Example 11.26 For the order M − 1 moving-average filter hn and random processes Xn and Yn of
Example 11.5, write the Matlab function smoothfilter(L,M) that generates
a length L sample path X = [

X0 · · · X L−1
]′ under the assumption that Xn is

a Gaussian process. In addition, generate the length L + M − 1 output process
Y = [

Y0 · · · YL+M−2
]′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function y=smoothfilter(L,M);
rx=[4 2 zeros(1,L-2)];
cx=rx-ones(size(rx));
x=gaussvector(1,cx,1);
h= ones(1,M)/M;
y=conv(h,x);
plot(1:L,x,1:L,y(1:L),’:’);
xlabel(’\it n’);
legend(’\it X_n’,’\it Y_n’);

The function smoothfilter gener-
ates the vectors X and Y. The vec-
tor rx is the vector of autocorrela-
tions padded with zeros so that all
needed autocorrelationterms are spec-
ified. Implementing CX [k] = RX [k] −
μ2

X , the vector cx is the corresponding
autocovariance function.

Next, the vector x of samples X0, . . . , X L−1 is generated by gaussvector.
We recall from Chapter 10 that we extended gaussvector such that if the second
argument is an N × 1 vector, then gaussvector internally generates the symmetric
Toeplitz covariance matrix. Finally, conv implements the discrete convolution of Xn
and the filter hn .

For a single sample path Xn , Figure 11.4 shows Xn and the output of the smoothing
filter for M = 2 and M = 10. For M = 2, the sharpest peaks of Xn are attenuated in
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the output sequence Yn . However, the difference between input and output is small
because the first-order filter is not very effective. For M = 10, much more of the
high-frequency content of the signal is removed.

Given an autocorrelation function RX [k] and filter hn , Matlab can also use convolution
and Theorem 11.5 to calculate the output autocorrelation RY [k] and the input-output cross-
correlation RXY [k].

Example 11.27 For random process Xn and smoothing filter hn from Example 11.5, use Matlab to
calculate RY [k] and RXY [k].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The solution, given by smoothcorrelation.m, and corresponding output are:

%smoothcorrelation.m
rx=[2 4 2];
h=[0.5 0.5];
rxy=conv(h,rx)
ry=conv(fliplr(h),rxy)

» smoothcorrelation
rxy =

1.00 3.00 3.00 1.00
ry =

0.50 2.00 3.00 2.00 0.50

The functions RX [k], RXY [k], and RY [k] are represented by the vectors rx, rxy,
and ry. By Theorem 11.5(c), the output autocorrelation ry is the convolution of
RXY [k] with the time-reversed filter h−n . In Matlab, fliplr(h) time reverses,
or flips, the row vector h. Note that the vectors rx, rxy, and ry do not record
the starting time of the corresponding functions. Because rx and ry describe
autocorrelation functions, we can infer that those functions are centered around the
origin. However, without knowledge of the filter hn and autocorrelation RX [k], there is
no way to deduce that rxy(1) = RXY [−1].

Matlab makes it easy to implement linear estimation and prediction filters. In the
following example, we generalize the solution of Example 11.12 to find the order N linear
predictor for Xn+1 given M prior samples.

Example 11.28 For the stationary random sequence Xn with expected value μX = 0, write a Matlab
program lmsepredictor.m to calculate the order M − 1 LMSE predictor filter h for
X = Xn+1 given the observation Xn = [

Xn−M+1 · · · Xn
]′.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From Theorem 11.9, the filter vector h expressed in time-reversed form, is

←−
h =

R−1
Xn

RXn Xn+1 . In this solution, RXn is given in Theorem 11.6 and RXn Xn+1 appears in
Equation (11.66) with k = 1. The solution requires that we know {RX (0), . . . , RX (M)}.
There are several ways to implement a Matlab solution. One way would be for
lmsepredictor to require as an argument a handle for a Matlab function that
calculates RX (k). We choose a simpler approach and pass a vector rx equal to[
RX (0) · · · RX (m − 1)

]′. If M ≥ m, then we pad rx with zeros.

function h=lmsepredictor(r,M);
m=length(r);
rx=[r(:);zeros(M-m+1,1)];

%append zeros if needed
RY=toeplitz(r(1:M));
RYX=r(M+1:-1:2);
a=RY\RYX;
h=a(M:-1:1);

Matlab provides the toeplitz
function to generate the matrix RXn
(denoted by RY in the code). Fi-
nally, we find a such that RXn a =
RXn Xn+1 . The output is h = ←−a , the
time-reversed a.
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The function lmsepredictor.m assumes RX (k) = 0 for k ≥ m. If RX (k) has an
infinite-length tail (RX(k) = (0.9)|k| for example) then the user must make sure that m > M;
otherwise, the results will be innaccurate. This is examined in Problem 11.10.5.

Frequency Domain Processing of Finite-Length Data

Our frequency domain analysis of random sequences has employed the discrete-time Fourier
transform (DTFT). However, the DTFT is a continuous function of the normalized frequency
variable φ. For frequency domain methods in Matlab, we employ the Discrete Fourier
Transform (DFT).

Definition 11.6 Discrete Fourier Transform (DFT)
For a finite-duration signal represented by the vector x = [

x0 · · · xL−1
]′

, the N point

DFT is the length N vector X̃ = [
X̃0 · · · X̃ N−1

]′
, where

X̃n =
L−1∑
k=0

xke− j2π(n/N)k, n = 0, 1, . . . , N − 1.

By comparing Definition 11.6 for the DFT and Definition 11.3 for the DTFT, we see that for
a finite-length signal x, the DFT evaluates the DTFT X (φ) at N equally spaced frequencies,

φn = n

N
, n = 0, 1, . . . , N − 1, (11.153)

over the full range of normalized frequencies 0 ≤ φ ≤ 1. Recall that the DTFT is symmetric
around φ = 0 and periodic with period 1. It is customary to observe the DTFT over
the interval −1/2 ≤ φ ≤ 1/2. By contrast Matlab produces values of the DFT over
0 ≤ φ ≤ 1. When L=N, the two transforms coincide over 0 ≤ φ ≤ 1/2 while the image
of the DFT over 1/2 < φ ≤ 1 corresponds to samples of the DTFT over −1/2 < φ ≤ 0.
That is, X̃ N/2 = X (−1/2), X̃ N/2+1 = X (−1/2 + 1/N), and so on.

Because of the special structure of the DFT transformation, the DFT can be implemented
with great efficiency as the “Fast Fourier Transform” or FFT. In Matlab, if x is a length
L vector, then X=fft(x) produces the L point DFT of x. In addition, X=fft(x,N)
produces the N point DFT of x. In this case, if L < N , then Matlab pads the vector x
with N − L zeros. However, if L > N , then Matlab returns the DFT of the truncation
of x to its first N elements. Note that this is inconsistent with Definition 11.6 of the DFT.
In general, we assume L = N when we refer to an N point DFT without reference to the
data length L. In the form of the FFT, the DFT is both efficient and useful in representing
a random process in the frequency domain.

Example 11.29 Let hn denote the order M − 1 smoothing filter of Example 11.5. For M = 2 and
M = 10, compute the N = 32 point DFT. For each M, plot the magnitude of each DFT
and the magnitude of the corresponding DTFT |H(φ)|.
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Figure 11.5 The magnitude of the DTFT and the 32-point DFT for the order M−1 moving-average
filter hn of Example 11.29.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For each M, we calculate the DFT of the M-element vector h = [

1/M · · · 1/M
]′.

In Example 11.17, we found that the DTFT of hn is

H(φ) = 1

M

(
1 − e− j2πφM

1 − e− j2πφ

)
. (11.154)

function smoothdft(M,N);
phi=0.01:0.01:1;
hdtft=(1-exp(-j*2*pi*phi*M))./ ...

(M*(1-exp(-j*2*pi*phi)));
h=ones(1,M)/M;
hdft=fft(h,N);
n=(0:(N-1))/N;
stem(n,abs(hdft));
hold on;
plot(phi,abs(hdtft));
hold off;

The program smoothdft.m
calculates H(φ) and the N point
DFT and generates the graphs
shown in Figure 11.5. The mag-
nitude |H(φ)| appears in the fig-
ure as the solid curve. The
DFT magnitude is displayed as
a stem plot for normalized fre-
quencies n/N to show the cor-
respondence with |H(φ)| at fre-
quencies φ = n/N .

In Figures 11.5, 11.7, and 11.8, we see the mirror image symmetry of both the DTFT and
the DFT around frequency φ = 1/2. This is a general property of the DFT for real-valued
signals. We explain this property for the smoothing filter hn of Example 11.29. When
the elements of hn are real, H (−φ) = H ∗(φ). Thus |H (−φ)| = |H (φ)|, corresponding
to mirror image symmetry for the magnitude spectrum about φ = 0. Moreover, because
the DTFT H (φ) is periodic with unit period, H (φ) = H (φ − 1). Thus H (φ) over the
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interval 1/2 ≤ φ < 1 is identical to H (φ) over the interval −1/2 ≤ φ < 0. That is, in a
graph of either the DTFT or DFT, the right side of the graph corresponding to normalized
frequencies 1/2 ≤ φ < 1 is the same as the image for negative frequencies −1/2 ≤ φ < 1.
Combining this observation with the mirror image symmetry of H (φ) about φ = 0 yields
mirror image symmetry around φ = 1/2. Thus, when interpreting a DTFT or DFT graph,
low frequencies are represented by the points near the left edge and right edge of the graph.
High-frequency components are described by points near the middle of the graph.

When L = N , we can express the DFT as the N × N matrix transformation

X̃ = DFT(x) = F̃x (11.155)

where the DFT matrix F̃ has n, k element

F̃nk = e− j2π(n/N)k =
[
e− j2π/N

]nk
. (11.156)

Because F̃ is an N × N square matrix with a special structure, its inverse exists and is given
by

F̃−1 = 1

N
F̃∗, (11.157)

where F̃∗ is obtained by taking the complex conjugate of each entry of F̃. Thus, given the
DFT X̃ = F̃x, we can recover the original signal x by the inverse DFT

x = IDFT(X̃) = 1

N
F̃∗X̃. (11.158)

Example 11.30 Write a function F=dftmat(N) that returns the N-point DFT matrix. Find the DFT
matrix F for N = 4 and show numerically that F−1 = (1/N)F∗.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function F = dftmat(N);
n=(0:N-1)’;
F=exp((-1.0j)*2*pi*(n*(n’))/N);

The function dftmat.m is a
direct implementation of Equa-
tion (11.156). In the code, n is the
column vector

[
0 1 · · · N − 1

]′
and n*(n’) produces the N × N
matrix with n, k element equal to nk.

As shown in Figure 11.6, executing F=dftmat(4) produces the 4× 4 DFT matrix

F =

⎡
⎢⎢⎣

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎤
⎥⎥⎦ . (11.159)

In the figure, we also verify that F−1 = (1/4)F∗.

As a consequence, the structure of F̃ allows us to show in the next theorem that an
algorithm for the DFT can also be used as an algorithm for the IDFT.
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» F=dftmat(4)
F =

1.00 1.00 1.00 1.00
1.00 0.00 - 1.00i -1.00 - 0.00i -0.00 + 1.00i
1.00 -1.00 - 0.00i 1.00 + 0.00i -1.00 - 0.00i
1.00 -0.00 + 1.00i -1.00 - 0.00i 0.00 - 1.00i

» (1/4)*F*(conj(F))
ans =

1.00 -0.00 + 0.00i 0.00 + 0.00i 0.00 + 0.00i
-0.00 - 0.00i 1.00 -0.00 0.00 + 0.00i
0.00 - 0.00i -0.00 - 0.00i 1.00 + 0.00i -0.00 + 0.00i
0.00 - 0.00i 0.00 - 0.00i -0.00 - 0.00i 1.00

»

Figure 11.6 The 4-point DFT matrix for Example 11.30 as generated by dftmat.m

Theorem 11.19

IDFT(X̃) = 1

N

(
DFT(X̃∗)

)∗
.

Proof By taking complex conjugates of Equation (11.158), we obtain

x∗ = 1

N
F̃X̃∗ = 1

N
DFT(X̃∗). (11.160)

By conjugating once again, we obtain

x = 1

N

(
DFT(X̃∗)

)∗
. (11.161)

Observing that x = IDFT(X̃) completes the proof.

Thus, if x is a length L data vector with L > N , then the N-point DFT produces a vector
X̃ = DFT(x)of length N . ForMatlab, X=fft(x,N)produces the DFT of the truncation
of x to its first N values. In either case, the IDFT defined by the N × N matrix F̃−1, or
equivalently ifft, also returns a length N output. If L > N , the IDFT output cannot
be the same as the length L original input x. In the case of Matlab, ifft returns the
truncated version of the original signal. If L < N , then the inverse DFT returns the original
input x padded with zeros to length N .

The DFT for the Power Spectral Density

The DFT can also be used to transform the discrete autocorrelation RX [n] into the power
spectral density SX (φ). We assume that RX [n] is the length 2L − 1 signal given by the
vector

r = [
RX [−(L − 1)] RX [−L + 2] · · · RX [L − 1]]′ . (11.162)
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The corresponding PSD is

SX (φ) =
L−1∑

k=−(L−1)

RX [k]e− j2πφk . (11.163)

Given a vector r, we would like to generate the vector S = [
S0 · · · SN−1

]′ such that
Sn = SX (n/N). A complication is that the PSD given by Equation (11.163) is a double-
sided transform while the DFT in the form of Definition 11.6, or the Matlab function
fft, is a single-sided transform. For single-sided signals, the two transforms are the same.
However, for a double-sided autocorrelation function RX [n], the difference matters.

Although the vector r represents an autocorrelation function, it can be viewed as simply a
sequence of numbers, the same as any other discrete-time signal. Viewed this way,Matlab
can use fft to calculate the DFT R̃ = DFT(r) where

R̃n =
2L−2∑
l=0

RX [l − (L − 1)]e− j2π(n/N)l. (11.164)

We make the substitution k = l − (L − 1) to write

R̃n =
L−1∑

k=−(L−1)

RX [k]e− j2π(n/N)(k+L−1) = e− j2π(n/N)(L−1)SX (n/N). (11.165)

Equivalently, we can write

Sn = SX (n/N) = R̃ne j2π(n/N)(L−1). (11.166)

Thus the difference between the one-sided DFT and the double-sided DTFT results in the
elements of R̃ being linearly phase shifted from the values of SX (n/N) that we wished for.
If all we are interested in is the magnitude of the frequency response, this phase can be
ignored because |R̃n| = |SX (n/N)|. However, in many instances, the correct phase of the
PSD is needed.

function S=fftc(varargin);
%DFT for a signal r
%centered at the origin
%Usage:
% fftc(r,N): N point DFT of r
% fftc(r): length(r) DFT of r
r=varargin{1};
L=1+floor(length(r)/2)
if (nargin>1)

N=varargin{2}(1)
else

N=(2*L)-1
end
R=fft(r,N);
n=reshape(0:(N-1),size(R));
phase=2*pi*(n/N)*(L-1);
S=R.*exp((1.0j)*phase);

In this case, the progam fftc.m pro-
vides a DFT for signals r that are cen-
tered at the origin. Given the simple task
of fftc, the code may seem unusually
long. In fact, the actual phase shift correc-
tion occurs only in the very last line line
of the program. The additional code em-
ploys Matlab’s varargin function to
support the same variable argument calling
conventions as fft; fftc(r) returns
the n-point DFT where n is the length of
r, while fftc(r,N) returns the N-point
DFT.
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Circular Convolution

Given a discrete-time signal xn as the input to a filter hn , we know that the output yn is
the convolution of xn and hn . Equivalently, convolution in the time domain yields the
multiplication Y (φ) = H (φ)X (φ) in the frequency domain.

When xn is a length L input given by the vector x = [
x0 · · · xL−1

]′, and hn is the

order M − 1 causal filter h = [
h0 · · · hM−1

]′
, the corresponding output y has length

L + M − 1. If we choose N ≥ L + M − 1, then the N-point DFTs of h, x, and y have the
property that

Ỹk = Y (k/N), H̃k = H (k/n), X̃k = X (k/N). (11.167)

It follows that at frequencies k/N , we have that Ỹk = H̃kX̃k . Moreover, IDFT(Ỹ) will
recover the time-domain output signal yn .

Infinite-duration Random Sequences

We have observed that for finite-duration signals and finite-order filters, the DFT can be
used almost as a substitute for the DTFT. The only noticeable differences are phase shifts
that result from the fft function assuming that all signal vectors r are indexed to start at
time n = 0. For sequences of length L ≤ N , the DFT provides both an invertible frequency
domain transformation as well as providing samples of the DTFT at frequencies φn = n/N .

On the other hand, there are many applications involving infinite duration random se-
quences for which we would like to obtain a frequency domain characterization. In this case,
we can only apply the DFT to a finite-length data sample x = [

xi xi+1 · · · xi+L−1
]′.

In this case, the DFT should be used with some care as an approximation or substitute for
the DTFT. First, as we see in the following example, the DFT frequency samples may not
exactly match the peak frequencies of X (φ).

Example 11.31 Calculate the N = 20 point and N = 64 point DFT of the length L = N sequence
xk = cos(2π(0.15)k). Plot the magnitude of the DFT as a function of the normalized
frequency.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function X=fftexample1(L,N)
k=0:L-1;
x=cos(2*pi*(0.15)*k);
X=fft(x,N);
phi=(0:N-1)/N;
stem(phi,abs(X));

The program fftexample1.m gener-
ates and plots the magnitude of the N-
point DFT. The plots for N = 20 and
N = 64 appear in Figure 11.7. We see
that the DFT does not precisely describe
the DTFT unless the sinusoid xk is at fre-
quency n/N for an integer n.

Even if N is chosen to be large, the DFT is likely to be a poor approximation to the
DTFT if the data length L is chosen too small. To understand this, we view x as a vector
representation of the signal xkwL[k] where wL [k] is a windowing function satisfying

wL [k] =
{

1 k = 0, . . . , L − 1,

0 otherwise.
(11.168)

From Equation (11.168), we see that wL[k] is just a scaled version of the order M−1 moving-
average filter hn in Example 11.26. In particular, for M = L, wL [k] = Lhk and the DTFT
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Figure 11.7 20 point and 64 point DFTs of xk = cos(2π(0.15)k)

of wL [k] is WL (φ) = L H (φ). Thus, for L = M = 10, WL(φ) will resemble H (φ) in the
lower graph of Figure 11.5. The DTFT of the time domain multiplication xkwL[k] results
in the frequency domain convolution of X (φ) and WL(φ). Thus the windowing introduces
spurious high-frequency components associated with the sharp transitions of the function
wL [k]. In particular, if X (φ) has sinusoidal components at frequencies φ1 and φ2, those
signal components will not be distinguishable if |φ1 − φ2| < 1/L, no matter how large we
choose N .

Example 11.32 Consider the discrete-time function

xk = cos(2π(0.20)k) + cos(2π(0.25)k), k = 0, 1, . . . , L − 1. (11.169)

For L = 10 and L = 20, plot the magnitude of the N = 20 point DFT.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function X=fftexample2(L,N)
k=0:L-1;
x=cos(2*pi*(0.20)*k) ...

+cos(2*pi*(0.25)*k);
X=fft(x,N);
stem((0:N-1)/N,abs(X));

The program fftexample2.m plots the
magnitude of the N-point DFT. Results for
L = 10, 20 appear in Figure 11.8. The
graph for L = 10 shows how the short
data length introduce spurious frequency
components even though the N = 20 point
DFT should be sufficient to identify the two
sinusoidal components. For data length
L = 20, we are able to precisely identify
the two signal components.

We have observed that we can specify the number of frequency points N of the DFT
separately from the data length L. However, if xn is an infinite-length signal, then the
ability of the DFT to resolve frequency components is limited by the data length L. Thus,
if we are going to apply an N point DFT to a length L sequence extracted from an infinite-
duration data signal, there is little reason to extract fewer than N samples.

On the other hand, if L > N , we can generate a length N wrapped signal with the same
DFT. In particular, if x has length L > N , we express x as the concatenation of length N
segments

x = [x1 x2 · · · xi ]. (11.170)

where the last segment xi may be padded with zeroes to have length N . In this case, we
define the length N wrapped signal as x̂ = x1 + x2 + · · · + xi . Because e− j2π(n/N)k has
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Figure 11.8 The N = 20 point DFT of xk = cos(2π(0.20)k)+ cos(2π(0.25)k) for data length L .

period N , it can be shown that x and x̂ have the same DFT. If X̃ = DFT(x) = DFT(x̂), then
IDFT(X̃) will return the wrapped signal x̂. Thus, to preserve the invertibility of the DFT, it
is desirable to use data record of length L equal to N , the number of points in the DFT.

Quiz 11.10 The wide sense stationary process Xn of Example 11.5 is passed through the order M − 1
moving-average filter. The output is Yn. Use a 32 point DFT to plot the power spectral
density functions
(1) SX (φ), (2) SY (φ) for M = 2,

(3) SY (φ) for M = 10.
Use these graphs to interpret the results of Example 11.26.

Chapter Summary

This chapter addresses two practical applications of random vectors and stochastic pro-
cesses: linear filtering and estimation. The two applications converge in linear estimates of
random sequences and linear estimates of continuous-time stochastic processes.

• The output of a linear time-invariant filter is a wide sense stationary stochastic process
if the input is a wide sense stationary process.

• The autocorrelation function of the filter output is related to the autocorrelation function
of the input process and the filter impulse response. The relationship is expressed in a
double convolution integral.

• The cross-correlation function of the filter input and the filter output is the convolution
of the filter impulse response and the autocorrelation function of the filter input.

• The optimum linear predictor of a random sequence is the solution to a set of linear
equations in which the coefficients are values of the autocorrelation function of the
random sequence.

• The power spectral density function of the filter output is the product of the power
spectral density function of the input and the squared magnitude of the filter transfer
function.
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• The transfer function of the optimum linear estimator of a continuous-time stochastic
process is the ratio of the cross spectral density function of the observed and estimated
process and the power spectral density function of the observed process.

• Further Reading: Probability theory, stochastic processes, and digital signal processing
(DSP) intersect in the study of random signal processing. [MSY98] and [Orf96] are
accessible entry points to the study of DSP with the help of Matlab. [BH92] covers
the theory of random signal processing in depth and concludes with a chapter devoted
to the Global Positioning System. [Hay96] presents basic principles of random signal
processing in the context of a few important practical applications.

Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

11.1.1• Let X (t) denote a wide sense stationary process
with μX = 0 and autocorrelation RX (τ). Let
Y (t) = 2 + X (t). What is RY (t, τ )? Is Y (t) wide
sense stationary?

11.1.2• X (t), the input to a linear time-invariant filter is a
wide sense stationary random process with expected
value μX = −3 volts. The impulse response of the
filter is

h(t) =
{

1 − 106t2 0 ≤ t ≤ 10−3 sec,
0 otherwise.

What is the expected value of the output process
Y (t)?

11.1.3• X (t), the input to a linear time-invariant filter is a
wide sense stationary stochastic process with ex-
pected value μX = 4 volts. The filter output Y (t)
is a wide sense stationary stochastic process with
expected μY = 1 volt. The filter impulse response
is

h(t) =
{

e−t/a t ≥ 0,

0 otherwise.

What is the value of the time constant a?

11.1.4
�

A white Gaussian noise signal W (t) with autocorre-
lation function RW (τ) = η0δ(τ) is passed through
an LTI filter h(t). Prove that the output Y (t) has
average power

E
[
Y 2(t)

]
= η0

∫ ∞
−∞

h2(u) du.

11.2.1• The random sequence Xn is the input to a discrete-
time filter. The output is

Yn = Xn+1 + Xn + Xn−1

3
.

(a) What is the impulse response hn?

(b) Find the autocorrelation of the output Yn when
Xn is a wide sense stationary random sequence
with μX = 0 and autocorrelation

RX [n] =
{

1 n = 0,

0 otherwise.

11.2.2• X (t) is a wide sense stationary process with auto-
correlation function

RX (τ) = 10
sin(2000π t) + sin(1000π t)

2000π t
.

The process X (t) is sampled at rate 1/Ts = 4,000
Hz, yielding the discrete-time process Xn . What is
the autocorrelation function RX [k] of Xn?

11.2.3
�

The output Yn of the smoothing filter in Exam-
ple 11.5 has μY = 1 and autocorrelation function

RY [n] =

⎧⎪⎪⎨
⎪⎪⎩

3 n = 0,

2 |n| = 1,

0.5 |n| = 2,

0 otherwise.

Yn is the input to another smoothing filter with im-
pulse response

hn =
{

1 n = 0, 1,

0 otherwise.
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The output of this second smoothing filter is Wn .

(a) What is μW , the expected value of the output of
the second filter?

(b) What is the autocorrelation function of Wn?

(c) What is the variance of Wn?

(d) Wn is a linear function of the original input pro-
cess Xn in Example 11.5:

Wn =
M−1∑
i=0

gi Xn−i .

What is the impulse response gi of the combined
filter?

11.2.4
�

Let the random sequence Yn in Problem 11.2.3 be
the input to the differentiator with impulse response,

hn =
⎧⎨
⎩

1 n = 0,

−1 n = 1,

0 otherwise.

The output is the random sequence Vn .

(a) What is the expected value of the output μV ?

(b) What is the autocorrelation function of the out-
put RV [n]?

(c) What is the variance of the output Var[Vn]?
(d) Vn is a linear function of the original input pro-

cess Xn in Example 11.5:

Vn =
M−1∑
i=0

fi Xn−i .

What is the impulse response fi of the combined
filter?

11.2.5
�

Example 11.5 describes a discrete-time smoothing
filter with impulse response

hn =
{

1 n = 0, 1,

0 otherwise.

For a particular wide sense stationary input process
Xn , the output process Yn is a wide sense stationary
random sequence, with μY = 0 and autocorrelation
function

RY [n] =
⎧⎨
⎩

2 n = 0,

1 |n| = 1,

0 otherwise.

What is the autocorrelation RX [n] of the input Xn?

11.2.6
�

The input . . . , X−1, X0, X1, . . . and output
. . . , Y−1, Y0, Y1, . . . of a digital filter obey

Yn = 1

2

(
Xn + Yn−1

)
.

Let the inputs be a sequence of iid random variables
with E[Xi ] = μXi = 0 and Var[Xi ] = σ 2. Find
the following properties of the output sequence:
E[Yi ], Var[Yi ], Cov[Yi+1, Yi ], and ρYi+1,Yi .

11.2.7
�

Z0, Z1, . . . is an iid random sequence with
E[Zn] = 0 and Var[Zn] = σ̂ 2. The random se-
quence X0, X1, . . . obeys the recursive equation

Xn = cXn−1 + Zn−1, n = 1, 2, . . . ,

where c is a constant satisfying |c| < 1. Find σ̂ 2

such that X0, X1, . . . is a random sequence with
E[Xn] = 0 such that for n ≥ 0 and n + k ≥ 0,

RX [n, k] = σ 2c|k|.

11.2.8
��

The iid random sequence X0, X1, . . . of standard
normal random variables is the input to a digital fil-
ter. For a constant a satisfying |a| < 1, the filter
output is the random sequence Y0, Y1, . . . such that
Y0 = 0 and for n > 1,

Yn = a
(
Xn + Yn−1

)
.

Find E[Yi ] and the autocorrelation RY [m, k] of the
output sequence. Is the random sequence Yn wide
sense stationary?

11.3.1• Xn is a stationary Gaussian sequence with ex-
pected value E[Xn] = 0 and autocorrelation func-
tion RX (k) = 2−|k| . Find the PDF of X =[
X1 X2 X3

]′.
11.3.2• Xn is a sequence of independent random vari-

ables such that Xn = 0 for n < 0 while for
n ≥ 0, each Xn is a Gaussian (0, 1) random var-
iable. The sequece Xn is passed through the filter
h = [

1 −1 1
]′. Find the PDFs of:

(a) X3 = [
x1 x2 x3

]′,
(b) X2 = [

x1 x2
]′.

11.3.3
�

The stationary Gaussian process Xn with expected
value E[Xn] = 0 and autocorrelation function
RX (k) = 2−|k| is passed through the linear filter
given by the filter vector h = [

1 −1 1
]′. Find

the PDF of X = [
X3 X4 X5

]′.
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11.3.4
�

The stationary Gaussian process Xn with expected
value E[Xn] = 0 and autocorrelation function
RX (k) = 2−|k| is passed through the a inear fil-
ter given by the filter vector h = [

1 −1 1
]′.

Find the PDF of X = [
X3 X4 X5

]′.
11.4.1• Xn is a wide sense stationary random sequence with

μX = 0 and autocorrelation function

RX [k] =
{

1 − 0.25 |k| |k| ≤ 4,

0 otherwise.

For M = 2 samples, find h = [
h0 h1

]′, the
coefficients of the optimum linear prediction filter
of Xn+1, given Xn−1 and Xn . What is the mean
square error of the optimum linear predictor?

11.4.2• Xn is a wide sense stationary random sequence with
μX = 0 and autocorrelation function

RX [k] =
⎧⎨
⎩

1.1 k = 0,

1 − 0.25 |k| 1 ≤ |k| ≤ 4,

0 otherwise.

For M = 2 samples, find h = [
h0 h1

]′, the co-
efficients of the optimum linear predictor of Xn+1,
given Xn−1 and Xn . What is the mean square error
of the optimum linear predictor?

11.4.3• Let Xn be a wide sense stationary random sequence
with expected value E[Xn ] = 0 and autocorrelation
function

RX [k] = E
[
Xn Xn+k

] = c|k|,

where |c| < 1. We observe the random sequence

Yn = Xn + Zn,

where Zn is an iid noise sequence, independent of
Xn , with E[Zn] = 0 and Var[Zn] = η2. Find the
LMSE estimate of Xn given Yn and the minimum
mean square estimaton error.

11.4.4
�

Continuing Problem 11.4.3, find the optimal filter
h = [

h0 h1
]′ based on M = 2 samples of Yn .

What value of c minimizes the mean square estima-
tion error?

11.4.5
�

Suppose Xn is a random sequence satisfying

Xn = cXn−1 + Zn−1,

where Z1, Z2, . . . is an iid random sequence with
E[Zn] = 0 and Var[Zn] = σ 2 and c is a constant

satisfying |c| < 1. In addition, for convenience, we
assume E[X0] = 0 and Var[X0] = σ 2/(1 − c2).
We make the following noisy measurement

Yn−1 = d Xn−1 + Wn−1,

where W1, W2, . . . is an iid measurement noise se-
quence with E[Wn] = 0 and Var[Wn] = η2 that is
independent of Xn and Zn .

(a) Find the optimal linear predictor, X̂n(Yn−1), of
Xn using the noisy observation Yn−1.

(b) Find the mean square estimation error

e∗
L (n) = E

[(
Xn − X̂n(Yn−1)

)2
]

.

11.5.1• X (t) is a wide sense stationary process with auto-
correlation function

RX (τ) = 10
sin(2000π t) + sin(1000π t)

2000π t
.

What is the power spectral density of X (t)?

11.5.2
�

X (t) is a wide sense stationary process withμX = 0
and Y (t) = X (αt) where α is a nonzero constant.
Find RY (τ) in terms of RX (τ). Is Y (t) wide sense
stationary? If so, find the power spectral density
SY ( f ).

11.6.1• Xn is a wide sense stationary discrete-time random
sequence with autocorrelation function

RX [k] =
{

δk + (0.1)k k = 0, 1, . . . ,

0 otherwise.

Find the power spectral density SX ( f ).

11.7.1• For jointly wide sense stationary processes X (t) and
Y (t), prove that the cross spectral density satisfies

SY X ( f ) = SXY (− f ) = [SXY ( f )]∗.

11.8.1• A wide sense stationary process X (t) with autocor-
relation function RX (τ) = 100e−100|τ | is the input
to an RC filter with impulse response

h(t) =
{

e−t/RC t ≥ 0,

0 otherwise.

The filter output process has average power
E[Y 2(t)] = 100.

(a) Find the output autocorrelation RY (τ).

(b) What is the value of RC?
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11.8.2• Let W (t) denote a wide sense stationary Gaussian
noise process with μW = 0 and power spectral den-
sity SW ( f ) = 1.

(a) What is RW (τ), the autocorrelation of W (t)?

(b) W (t) is the input to a linear time-invariant filter
with impulse response

H( f ) =
{

1 | f | ≤ B/2
0 otherwise.

The filter output is Y (t). What is the power spec-
tral density function of Y (t)?

(c) What is the average power of Y (t)?

(d) What is the expected value of the filter output?

11.8.3
�

The wide sense stationary process X (t) with auto-
correlation function RX (τ) and power spectral den-
sity SX ( f ) is the input to a tapped delay line filter

H( f ) = a1e− j2π f t1 + a2e− j2π f t2 .

Find the output power spectral density SY ( f ) and
the output autocorrelation RY (τ).

11.8.4
�

A wide sense stationary process X (t) with autocor-
relation function

RX (τ) = e−4πτ 2
.

is the input to a filter with transfer function

H( f ) =
{

1 0 ≤ | f | ≤ 2,

0 otherwise.

Find

(a) The average power of the input X (t)

(b) The output power spectral density SY ( f )

(c) The average power of the output Y (t)

11.8.5
�

A wide sense stationary process X (t) with power
spectral density

SX ( f ) =
{

10−4 | f | ≤ 100,

0 otherwise,

is the input to an RC filter with frequency response

H( f ) = 1

100π + j2π f
.

The filter output is the stochastic process Y (t).

(a) What is E[X2(t)]?
(b) What is SXY ( f )?

(c) What is SY X ( f )?

(d) What is SY ( f )?

(e) What is E[Y 2(t)]?
11.8.6
�

A wide sense stationary stochastic process X (t)
with autocorrelation function RX (τ) = e−4|τ | is
the input to a linear time-invariant filter with im-
pulse response

h(t) =
{

e−7t t ≥ 0,

0 otherwise.

The filter output is Y (t).

(a) Find the cross spectral density SXY ( f ).

(b) Find cross-correlation RXY (τ).

11.8.7
�

A white Gaussian noise process N(t) with power
spectral density of 10−15 W/Hz is the input to the

lowpass filter H( f ) = 106e−106| f |. Find the fol-
lowing properties of the output Y (t):

(a) The expected value μY

(b) The power spectral density SY ( f )

(c) The average power E[Y 2(t)]
(d) P[Y (t) > 0.01]

11.8.8
�

In Problem 10.12.1, we found that passing a station-
ary white noise process through an integrator pro-
duced a nonstationary output process Y (t). Does
this example violate Theorem 11.2?

11.8.9
�

Let M(t) be a wide sense stationary random pro-
cess with average power E[M2(t)] = q and power
spectral density SM ( f ). The Hilbert transform of
M(t) is M̂(t), a signal obtained by passing M(t)
through a linear time-invariant filter with frequency
response

H( f ) = − jsgn ( f ) =
{ − j f ≥ 0,

j f < 0.

(a) Find the power spectral density SM̂ ( f ) and the

average power q̂ = E[M̂2(t)].
(b) In a single sideband communications system, the

upper sideband signal is

U(t) = M(t) cos(2π fct + 
)

− M̂(t) sin(2π fct + 
),

where 
 has a uniform PDF over [0, 2π), inde-
pendent of M(t) and M̂(t). What is the average
power E[U2(t)]?
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11.8.10
�

As depicted below, a white noise Gaussian process
W (t) with power spectral density SW ( f ) = 10−15

W/Hz is passed through a random phase modulator
to produce V (t). The process V (t) is then low-pass
filtered (L( f ) is an ideal unity gain low-pass filter
of bandwidth B) to create Y (t).

L f( )W t( )

cos( )2 f t +� �c

V t( )
Y(t)+

The random phase 
 is assumed to be independent
of W (t) and to have a uniform distribution over
[0, 2π].
(a) What is the autocorrelation RW (τ)?

(b) What is E[V (t)]?
(c) What is the autocorrelation RV (τ)? Simplify as

much as possible.

(d) Is Y (t) a wide sense stationary process?

(e) What is the average power of Y (t)?

11.9.1• X (t) is a wide sense stationary stochastic process
with μX = 0 and autocorrelation function

RX (τ) = sin(2πWτ)/(2πWτ).

Observe Y (t) = X (t)+ N(t), where N(t) is a wide
sense stationary process with power spectral density
function SN ( f ) = 10−5 such that X (t) and N(t)
are mutually independent.

(a) What is the transfer function of the optimum lin-
ear filter for estimating X (t) given Y (t)?

(b) What is the maximum signal bandwidth W Hz
that produces leads to a minimum mean square
error e∗

L ≤ 0.04?

11.9.2
�

X (t) is a wide sense stationary stochastic process
with μX = 0 and autocorrelation function

RX (τ) = e−5000|τ |.

Observe Y (t) = X (t)+ N(t), where N(t) is a wide
sense stationary process with power spectral den-
sity function SN ( f ) = 10−5. X (t) and N(t) are
mutually independent.

(a) What is the transfer function of the optimum lin-
ear filter for estimating X (t) given Y (t)?

(b) What is the mean square error of the optimum
estimation filter?

11.10.1• For the digital filter of Problem 11.2.6, generate 100
sample paths Y0, . . . , Y500 assuming the Xi are iid
Gaussian (0, 1) random variables and Y (0) = 0.
Estimate the expected value and variance of Yn for
n = 5, n = 50 and n = 500.

11.10.2• In the program fftc.m, the vector n simply holds
the elements 0, 1, . . . , N − 1. Why is it defined as
n=reshape(0:(N-1),size(R)) rather than
just n=0:N-1?

11.10.3• The stationary Gaussian random sequence Xn
has expected value E[Xn] = 0 and autocor-
relation function RX [k] = cos(0.04πk). Use
gaussvector to generate and plot 10 sample
paths of the form X0, . . . , X99. What do you appear
to observe? Confirm your suspicions by calculating
the 100 point DFT on each sample path.

11.10.4• The LMSE predictor is a = R−1
Y RYX , However,

the next to last line of lmsepredictor.m isn’t
a=inv(RY)*RYX. Why?

11.10.5• Xn is a wide sense stationary random sequence with
expected value μX = 0 and autocorrelation func-
tion RX [k] = (−0.9)|k|. Suppose

rx=(-0.9).ˆ(0:5)
For what values of N does

a=lmsepredictor(rx,N)
produce the correct coefficient vector â?

11.10.6• For the discrete-time process Xn in Problem 11.2.2,
calculate an approximation to the power spectral
density by finding the DFT of the truncated auto-
correlation function

r = [
RX [−100] RX [−99] · · · RX [100]]′ .

Compare your DFT output against the DTFT
SX (φ).

11.10.7
�

For the random sequence Xn defined in Prob-
lem 11.4.1, find the filter h = [

h0 · · · h M−1
]′

of the optimum linear predictor of Xn+1, given
Xn−M+1, . . . , Xn−1, . . . , Xn for M ∈ {2, 4, 8}.
What is the mean square error e∗

L (N) of the M-
tap optimum linear predictor? Graph e∗

L (M) as a
function for M for M = 1, 2, . . . , 10.

11.10.8
�

For a wide sense stationary sequence Xn with zero
expected value, extend lmsepredictor.m to a
function
function h = kpredictor(rx,M,k)
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which produces the filter vector h of the optimal k
step linear predictor of Xn+k given the observation

Yn = [
Xn−M+1 · · · Xn−1 Xn

]′
.

11.10.9
�

Continuing Problem 11.4.5 of the noisy predic-
tor, generate sample paths of Xn and Yn for n =
0, 1, . . . , 50 with the following parameters:

(a) c = 0.9, d = 10

(b) c = 0.9, d = 1

(c) c = 0.9, d = 0.1

(d) c = 0.6, d = 10

(e) c = 0.6, d = 1

(f) c = 0.6, d = 0.1

In each experiment, use η = σ = 1. Use the anal-
ysis of Problem 11.4.5 to interpret your results.

 



12
Markov Chains

12.1 Discrete-Time Markov Chains

In Chapter 10, we introduced discrete-time random processes and we emphasized iid random
sequences. Now we will consider a discrete-value random sequence {Xn |n = 0, 1, 2, . . .}
that is not an iid random sequence. In particular, we will examine systems, called Markov
chains, in which Xn+1 depends on Xn but not on the earlier values X0, . . . , Xn−1 of the
random sequence. To keep things reasonably simple, we restrict our attention to the case
where each Xn is a discrete random variable with range SX = {0, 1, 2, . . .}. In this case,
we make the following definition.

Definition 12.1 Discrete-Time Markov Chain
A discrete-time Markov chain {Xn |n = 0, 1, . . .} is a discrete-time, discrete-value random
sequence such that given X0, . . . , Xn, the next random variable Xn+1 depends only on Xn

through the transition probability

P
[
Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0

] = P
[
Xn+1 = j |Xn = i

] = Pij .

The value of Xn summarizes all of the past history of the system needed to predict the next
variable Xn+1 in the random sequence. We call Xn the state of the system at time n, and
the sample space of Xn is called the set of states or state space. In short, there is a fixed
transition probability Pi j that the next state will be j given that the current state is i . These
facts are reflected in the next theorem.

Theorem 12.1 The transition probabilities Pi j of a Markov chain satisfy

Pi j ≥ 0,

∞∑
j=0

Pij = 1.

We can represent a Markov chain by a graph with nodes representing the sample space of

445
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Xn and directed arcs (i, j) for all pairs of states (i, j) such that Pij > 0.

Example 12.1 The two-state Markov chain can be used to model a wide variety of systems that
alternate between ON and OFF states. After each unit of time in the OFF state, the
system turns ON with probability p. After each unit of time in the ON state, the system
turns OFF with probability q. Using 0 and 1 to denote the OFF and ON states, what
is the Markov chain for the system?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Markov chain for this system is

0 1

p

q

1-p 1-q

The transition probabilities are P00 = 1 − p, P01 = p, P10 = q, and P11 = 1 − q.

Example 12.2 A packet voice communications system transmits digitized speech only during “talk-
spurts” when the speaker is talking. In every 10-ms interval (referred to as a timeslot)
the system decides whether the speaker is talking or silent. When the speaker is talk-
ing, a speech packet is generated; otherwise no packet is generated. If the speaker
is silent in a slot, then the speaker is talking in the next slot with probability p = 1/140.
If the speaker is talking in a slot, the speaker is silent in the next slot with probability
q = 1/100. If states 0 and 1 represent silent and talking, sketch the Markov chain for
this packet voice system.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For this system, the two-state Markov chain is

0 1

1/140

1/100

139/140 99/100

Example 12.3 A computer disk drive can be in one of three possible states: 0 (IDLE), 1 (READ) , or
2 (WRITE). When a unit of time is required to read or write a sector on the disk, the
Markov chain is

0 1 2

P00 P11 P22

P01 P12

P10
P21

P02

P20

The values of the transition probabilities will depend on factors such as the number of
sectors in a read or a write operation and the length of the idle periods.

Example 12.4 In a discrete random walk, a person’s position is marked by an integer on the real
line. Each unit of time, the person randomly moves one step, either to the right (with
probability p) or to the left. Sketch the Markov chain.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Markov chain has state space {. . . , −1, 0, 1, . . .} and transition probabilities

Pi,i+1 = p, Pi,i−1 = 1 − p. (12.1)
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The Markov chain is

-2 -1

pp

1-p1-p

1

p

1-p

p

1-p

0

p

1-p

��� ���

Another name for this Markov chain is the “Drunken Sailor.”

The graphical representation of Markov chains encourages the use of special terminology.
We will often call the transition probability Pij a branch probability because it equals the
probability of following the branch from state i to state j . When we examine Theorem 12.1,
we see that it says the sum of the branch probabilities leaving any state i must sum to 1.
A state transition is also called a hop because a transition from i to j can be viewed as
hopping from i to j on the Markov chain. In addition, the state sequence resulting from a
sequence of hops in the Markov chain will frequently be called a path For example, a state
sequence i, j, k corresponding to a sequence of states Xn = i , Xn+1 = j , and Xn+2 = k
is a two-hop path from i to k. Note that the state sequence i, j, k is a path in the Markov
chain only if each corresponding state transition has nonzero probability.

The random walk of Example 12.4 shows that a Markov chain can have a countably
infinite set of states. We will see in Section 12.7 that countably infinite Markov chains
introduce complexities that initially get in the way of understanding and using Markov
chains. Hence, until Section 12.7, we focus on Markov chains with a finite set of states
{0, 1, . . . , K }. In this case, we represent the one-step transition probabilities by the matrix

P =

⎡
⎢⎢⎢⎢⎣

P00 P01 · · · P0K

P10 P11
...

...
. . .

PK 0 · · · PK K

⎤
⎥⎥⎥⎥⎦ . (12.2)

By Theorem 12.1, P has nonnegative elements and each row sums to 1. A nonnegative
matrix P with rows that sum to 1 is called a state transition matrix or a stochastic matrix.

Example 12.5 The two-state ON/OFF Markov chain of Example 12.1 has state transition matrix

P =
[

1 − p p
q 1 − q

]
. (12.3)

Quiz 12.1 A wireless packet communications channel suffers from clustered errors. That is, whenever
a packet has an error, the next packet will have an error with probability 0.9. Whenever a
packet is error-free, the next packet is error-free with probability 0.99. Let Xn = 1 if the
nth packet has an error; otherwise, Xn = 0. Model the random process {Xn |n ≥ 0} using
a Markov chain. Sketch the chain and find the transition probability matrix P.
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12.2 Discrete-Time Markov Chain Dynamics

In an electric circuit or any physical system described by differential equations, the system
dynamics describe the short-term response to a set of initial conditions. For a Markov
chain, we use the word dynamics to describe the variation of the state over a short time
interval starting from a given initial state. The initial state of the chain represents the initial
condition of the system. Unlike a circuit, the evolution of a Markov chain is a random
process and so we cannot say exactly what sequence of states will follow the initial state.
However, there are many applications in which it is desirable or necessary to predict the
future states given the current state Xm . A prediction of the future state Xn+m given the
current state Xm usually requires knowledge of the conditional PMF of Xn+m given Xm .
This information is contained in the n-step transition probabilities.

Definition 12.2 n-step transition probabilities
For a finite Markov chain, the n-step transition probabilities are given by the matrix P(n)

which has i, j th element

Pi j (n) = P
[
Xn+m = j |Xm = i

]
.

The i, j th element of P(n) tells us the probability of going from state i to state j in exactly
n steps. For n = 1, P(1) = P, the state transition matrix. Keep in mind that Pij (n) must
account for the probability of every n-step path from state i to state j . As a result, it is easier
to define than to calculate the n-step transition probabilities. The Chapman-Kolmogorov
equations give a recursive procedure for calculating the n-step transition probabilities. The
equations are based on the observation that going from i to j in n + m steps requires being
in some state k after n steps. We state this result, and others, in two equivalent forms: as a
sum of probabilities, and in matrix/vector notation.

Theorem 12.2 Chapman-Kolmogorov equations
For a finite Markov chain, the n-step transition probabilities satisfy

Pi j (n + m) =
K∑

k=0

Pik (n)Pkj (m), P(n + m) = P(n)P(m).

Proof By the definition of the n-step transition probability,

Pi j (n + m) =
K∑

k=0

P
[
Xn+m = j, Xn = k|X0 = i

]
(12.4)

=
K∑

k=0

P
[
Xn = k|X0 = i

]
P
[
Xn+m = j |Xn = k, X0 = i

]
(12.5)

By the Markov property, P[Xn+m = j |Xn = k, X0 = i ] = P[Xn+m = j |Xn = k] = Pkj (m). With

the additional observation that
∑K

k=0 P[Xn = k|X0 = i] = Pik (n), we see that Equation (12.5) is
the same as the statement of the theorem.
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For a finite Markov chain with K states, the Chapman-Kolmogorov equations can be
expressed in terms of matrix multiplication of the transition matrix P. For m = 1, the
matrix form of the Chapman-Kolmogorov equations yield P(n + 1) = P(n)P. This implies
our next result.

Theorem 12.3 For a finite Markov chain with transition matrix P, the n-step transition matrix is

P(n) = Pn.

Example 12.6 For the two-state Markov chain described in Example 12.1, find the n-step transition
matrix Pn . Given the system is OFF at time 0, what is the probability the system is
OFF at time n = 33?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The state transition matrix is

P =
[

1 − p p
q 1 − q

]
. (12.6)

The eigenvalues of P are λ1 = 1 and λ2 = 1− (p +q). Since p and q are probabilities,
|λ2| ≤ 1. We can express P in the diagonalized form

P = S−1DS =
[

1 −p
p+q

1 q
p+q

][
λ1 0
0 λ2

] [ q
p+q

p
p+q

−1 1

]
. (12.7)

Note that si , the i th row S, is the left eigenvector of P corresponding to λi . That is,
si P = λi si . Some straightforward algebra will verify that the n-step transition matrix is

Pn =
[

P00(n) P01(n)

P10(n) P11(n)

]
= S−1DnS = 1

p + q

[
q p
q p

]
+ λn

2
p + q

[
p −p

−q q

]
. (12.8)

Given the system is OFF at time 0, the conditional probability the system is OFF at
time n = 33 is simply

P00(33) = q

p + q
+ λ33

2 p

p + q
= q + [1 − (p + q)]33 p

p + q
. (12.9)

The n-step transition matrix is a complete description of the evolution of probabilities in
a Markov chain. Given that the system is in state i , we learn the probability the system is
in state j n steps later just by looking at Pij (n). On the other hand, calculating the n-step
transition matrix is nontrivial. Even for the two-state chain, it was desirable to identify the
eigenvalues and diagonalize P before computing P(n).

Often, the n-step transition matrix provides more information than we need. When
working with a Markov chain {Xn|n ≥ 0}, we may need to know only the state probabil-
ities P[Xn = i]. Since each Xn is a random variable, we could express this set of state
probabilities in terms of the PMF PXn(i). This representation can be a little misleading since
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the states 0, 1, 2, . . . may not correspond to sample values of a random variable but rather
labels for the states of a system. In the two-state chain of Example 12.1, the states 0 and 1
corresponded to OFF and ON states of a system and have no numerical significance. Con-
sequently, we represent the state probabilities at time n by the set {p j (n)| j = 0, 1, . . . , K }
where p j (n) = P[Xn = j]. An equivalent representation of the state probabilities at time
n is the vector p(n) = [

p0(n) · · · pK (n)
]′.

Definition 12.3 State Probability Vector
A vector p = [

p0 · · · pK
]′

is a state probability vector if
∑K

j=0 p j = 1, and each
element p j is nonnegative.

Starting at time n = 0 with the a priori state probabilities {p j (0)}, or, equivalently, the
vector p(0), of the Markov chain, the following theorem shows how to calculate the state
probability vector p(n) for any time n in the future. We state this theorem, as well as others,
in terms of summations over states in parallel with the equivalent matrix/vector form. In this
text, we assume the state vector p(n) is a column vectors. In the analysis of Markov chains,
it is a common convention to use Pij rather than Pji for the probability of a transition from
i to j . The combined effect is that our matrix calculations will involve left multiplication
by the row vector p′(n − 1).

Theorem 12.4 The state probabilities p j (n) at time n can be found by either one iteration with the n-step
transition probabilities:

p j (n) =
K∑

i=0

pi (0)Pij (n), p′(n) = p′(0)Pn,

or n iterations with the one-step transition probabilities:

p j (n) =
K∑

i=0

pi(n − 1)Pij , p′(n) = p′(n − 1)P.

Proof From Definition 12.2,

p j (n) = P [Xn = j ] =
K∑

i=0

P
[
Xn = j |X0 = i

]
P
[
X0 = i

] =
K∑

i=0

Pi j (n)pi (0). (12.10)

From the definition of the transition probabilities,

p j (n) = P [Xn = j] =
K∑

i=0

P
[
Xn = j |Xn−1 = i

]
P
[
Xn−1 = i

] =
K∑

i=0

Pi j pi (n − 1). (12.11)

Example 12.7 For the two-state Markov chain described in Example 12.1 with initial state probabili-
ties p(0) = [

p0 p1
]
, find the state probability vector p(n).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By Theorem 12.4, p′(n) = p′(0)Pn . From P(n) found in Equation (12.8) of Exam-
ple 12.6, we can write the state probabilities at time n as

p′(n) = [
p0(n) p1(n)

] =
[

q
p+q

p
p+q

]
+ λn

2

[
p0 p−p1q

p+q
−p0 p+p1q

p+q

]
(12.12)

where λ2 = 1 − (p + q).

Quiz 12.2 Stock traders pay close attention to the “ticks” of a stock. A stock can trade on an uptick,
even tick, or downtick, if the trade price is higher, the same, or lower than the previous
trade price. For a particular stock, traders have observed that the ticks are accurately
modeled by a Markov chain. Following an even tick, the next trade is an even tick with
probability 0.6, an uptick with probability 0.2, or a downtick with probability 0.2. After
a downtick, another downtick has probability 0.4, while an even tick has probability 0.6.
After an uptick, another uptick occurs with probability 0.4, while an even tick occurs with
probability 0.6. Using states 0, 1, 2 to denote the previous trade being a downtick, an even
tick, or an uptick, sketch the Markov chain, and find the state transition matrix P and the
n-step transition matrix Pn.

12.3 Limiting State Probabilities for a Finite Markov Chain

An important task in analyzing Markov chains is to examine the state probability vector
p(n) as n becomes very large.

Definition 12.4 Limiting State Probabilities
For a finite Markov chain with initial state probability vector p(0), the limiting state prob-
abilities, when they exist, are defined to be the vector π = limn→∞ p(n).

The j th element, π j , of π is the probability the system will be in state j in the distant future.

Example 12.8 For the two-state packet voice system of Example 12.2, what is the limiting state
probability vector

[
π0 π1

]′ = limn→∞ p(n)?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For initial state probabilities p′(0) = [

p0 p1
]′, the state probabilities at time n are

given in Equation (12.12) with p = 1/140 and q = 1/100. Note that the second
eigenvalue is λ2 = 1 − (p + q) = 344/350. Thus

p′(n) =
[

7
12

5
12

]
+ λn

2

[
5

12 p0 − 7
12 p1

−5
12 p0 + 7

12 p1

]
. (12.13)

Since |λ2| < 1, the limiting state probabilities are

lim
n→∞ p′(n) =

[
7

12
5

12

]
. (12.14)

For this system, the limiting state probabilities are the same regardless of how we
choose the initial state probabilities.

 



452 CHAPTER 12 MARKOV CHAINS

The two-state packet voice system is an example of a well-behaved system in which
the limiting state probabilities exist and are independent of the initial state of the system
p(0). In general, π j may or may not exist and if it exists, it may or may not depend on the
initial state probability vector p(0). As we see in the next theorem, limiting state probability
vectors must satisfy certain constraints.

Theorem 12.5 If a finite Markov chain with transition matrix P and initial state probability p(0) has
limiting state probability vector π = limn→∞ p(n), then

π ′ = π ′P.

Proof By Theorem 12.4, p′(n + 1) = p′(n)P. In the limit of large n,

lim
n→∞ p′(n + 1) =

(
lim

n→∞ p′(n)
)

P. (12.15)

Given that the limiting state probabilities exist, π ′ = π ′P.

Closely related to the limiting state probabilities are stationary probabilities.

Definition 12.5 Stationary Probability Vector
For a finite Markov chain with transition matrix P, a state probability vector π is stationary
if π ′ = π ′P.

If the system is initialized with a stationary probability vector, then the state probabilities
are stationary; i.e., they never change: p(n) = π for all n. We can also prove a much
stronger result that the Markov chain Xn is a stationary process.

Theorem 12.6 If a finite Markov chain Xn with transition matrix P is initialized with stationary probability
vector p(0) = π , then p(n) = π for all n and the stochastic process Xn is stationary.

Proof First, we show by induction that p(n) = π for all n. Since p(0) = π , assume p(n − 1) = π .
By Theorem 12.4, p′(n) = p′(n − 1)P = π ′P = π ′. Now we can show stationarity of the process
Xn . By Definition 10.14, we must show that for any set of time instances n1, . . . , nm and time offset
k that

PXn1 ,...,Xnm
(x1, . . . , xm ) = PXn1+k ,...,Xnm+k (x1, . . . , xm ) . (12.16)

Because the system is a Markov chain and PXn1
(x1) = πx1 , we observe that

PXn1 ,...,Xnm
(x1, . . . , xm ) = PXn1

(x1) PXn2 |Xn1
(x2|x1) · · · PXnm |Xnm−1

(x2|x1) (12.17)

= πx1 Px1x2(n2 − n1) · · · Pxm−1xm (nm − nm−1). (12.18)

By the first part of this theorem, PXn1+k (x1) = πx1 . Once again, because the system is a Markov
chain,

PXn j +k |Xn j−1+k

(
x j |x j−1

) = Px j−1x j (n j + k − (n j−1 + k)) = Px j−1x j (n j − n j−1). (12.19)
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It follows that

PXn1+k ,...,Xnm+k (x1, . . . , xm ) = πx1 Px1x2(n2 − n1) · · · Pxm−1xm (nm − nm−1) (12.20)

= PXn1 ,...,Xnm
(x1, . . . , xm ) . (12.21)

A Markov chain in which the state probabilities are stationary is often said to be in steady-
state. When the limiting state probabilities exist and are unique, we can assume the system
has reached steady-state by simply letting the system run for a long time. The following
example presents common terminology associated with Markov chains in steady-state.

Example 12.9 A queueing system is described by a Markov chain in which the state Xn is the number
of customers in the queue at time n. The Markov chain has a unique stationary
distribution π . The following questions are all equivalent.

• What is the steady-state probability of at least 10 customers in the system?

• If we inspect the queue in the distant future, what is the probability of at least 10
customers in the system?

• What is the stationary probability of at least 10 customers in the system?

• What is the limiting probability of at least 10 customers in the queue?

For each statement of the question, the answer is just
∑

j≥10 π j .

Although we have seen that we can calculate limiting state probabilities, the significance
of these probabilities may not be so apparent. For a system described by a “well-behaved”
Markov chain, the key idea is that π j , the probability the system is in state j after a very
long time, should depend only on the fraction of time the system spends in state j . In
particular, after a very long time, the effect of an initial condition should have worn off and
π j should not depend on the system having started in state i at time n = 0.

This intuition may seem reasonable but, in fact, it depends critically on a precise definition
of a “well-behaved” chain. In particular, for a finite Markov chain, there are three distinct
possibilities:

• limn→∞ p(n) exists, independent of the initial state probability vector p(0),

• limn→∞ p(n) exists, but depends on p(0),

• limn→∞ p(n) does not exist.

We will see that the “well-behaved” first case corresponds to a Markov chain P with a unique
stationary probability vector π . The latter two cases are considered “ill-behaved.” The
second case occurs when the Markov chain has multiple stationary probability vectors; the
third case occurs when there is no stationary probability vector. In the following example,
we use the two-state Markov chain to demonstrate these possibilities.

Example 12.10 Consider the two-state Markov chain of Example 12.1 and Example 12.6. For what
values of p and q does limn→∞ p(n)

(a) exist, independent of the initial state probability vector p(0);
(b) exist, but depend on p(0);
(c) or not exist?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Equation (12.8) of Example 12.6, we found that the n-step transition matrix Pn could
be expressed in terms of the eigenvalue λ2 = 1 − (p + q) as

Pn = 1

p + q

[
q p
q p

]
+ λn

2
p + q

[
p −p

−q q

]
. (12.22)

We see that whether a limiting state distribution exists depends on the value of the
eigenvalue λ2. There are three basic cases described here and shown in Figure 12.1.

(a) 0 < p + q < 2

This case is described in Example 12.6. In this case, |λ2| < 1 and

lim
n→∞ Pn = 1

p + q

[
q p
q p

]
. (12.23)

No matter how the initial state probability vector p′(0) = [
p0 p1

]
is chosen,

after a long time we are in state 0 with probability q/(p + q), or we are in state 1
with probability p/(p + q) independent of the initial state distribution p′(0).

(b) p = q = 0

In this case, λ2 = 1 and

Pn =
[

1 0
0 1

]
. (12.24)

When we start in state i , we stay in state i forever since no state changing tran-
sitions are possible. Consequently, p(n) = p(0) for all n and the initial conditions
completely dictate the limiting state probabilities.

(c) p + q = 2

In this instance, λ2 = −1 so that

Pn = 1

2

[
1 + (−1)n 1 − (−1)n

1 − (−1)n 1 + (−1)n

]
. (12.25)

We observe that

P2n =
[

1 0
0 1

]
, P2n+1 =

[
0 1
1 0

]
. (12.26)

In this case, limn→∞ Pn doesn’t exist. Physically, if we start in state i at time 0,
then we are in state i at every time 2n. In short, the sequence of states has a
periodic behavior with a period of two steps. Mathematically, we have the state
probabilities p(2n) = [p0 p1] and p(2n + 1) = [p1 p0]. This periodic behavior
does not permit the existence of limiting state probabilities.

The characteristics of these three cases should be apparent from Figure 12.1.

In the next section, we will see that the ways in which the two-state chain can fail to have
unique limiting state probabilities are typical of Markov chains with many more states.

Quiz 12.3 A microchip fabrication plant works properly most of the time. After a day in which the
plant is working, the plant is working the next day with probability 0.9. Otherwise, a day of
repair followed by a day of testing is required to restore the plant to working status. Sketch
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0 1

1 1

(b) p+q=0

0 1

p

q

1-p 1-q

(a) 0<p+q<2

0 1

1

1

(c) p+q=2

Figure 12.1 Three possibilities for the two-state Markov chain

a Markov chain for the plant states (0) working, (1) repairing, and (2) testing. Given an
initial state distribution p(0), find the limiting state probabilities π = limn→∞ p(n).

12.4 State Classification

In Example 12.10, we saw that the chain does not have unique limiting state probabilities
when either the chain disconnects into two separate chains or when the chain causes periodic
behavior in the state transitions. We will see that these two ways in which the two-state
chain fails to have unique limiting state probabilities are typical of Markov chains with
many more states. In particular, we will see that for Markov chains with certain structural
properties, the state probabilities will converge to a unique stationary probability vector
independent of the initial distribution p(0). In this section, we describe the structure of a
Markov chain by classifying the states.

Definition 12.6 Accessibility
State j is accessible from state i , written i → j , if Pi j (n) > 0 for some n > 0.

When j is not accessible from i , we write i �→ j . In the Markov chain graph, i → j if
there is a path from i to j .

Definition 12.7 Communicating States
States i and j communicate, written i ↔ j , if i → j and j → i .

We adopt the convention that state i always communicates with itself since the system can
reach i from i in zero steps. Hence for any state i , there is a set of states that communicate
with i . Moreover, if both j and k communicate with i , then j and k must communicate. To
verify this, we observe that we can go from j to i to k or we can go from k to i to j . Thus
associated with any state i there is a set or a class of states that all communicate with each
other.

Definition 12.8 Communicating Class
A communicating class is a nonempty subset of states C such that if i ∈ C, then j ∈ C if
and only if i ↔ j .
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A communicating class includes all possible states that communicate with a member of the
communicating class. That is, a set of states C is not a communicating class if there is a
state j �∈ C that communicates with a state i ∈ C .

Example 12.11 In the following Markov chain, we draw the branches corresponding to transition prob-
abilities Pi j > 0 without labeling the actual transition probabilities. For this chain,
identify the communicating classes.

0

1 3

5

4 62

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This chain has three communicating classes. First, we note that states 0, 1, and 2
communicate and form a class C1 = {0, 1, 2}. Second, we observe that C2 = {4, 5, 6}
is a communicating class since every pair of states in C2 communicates. The state 3
communicates only with itself and C3 = {3}.

In Example 12.10, we observed that we could not calculate the limiting state probabilities
when the sequence of states had a periodic behavior. The periodicity is defined by Pii (n),
the probability that the system is in state i at time n given that the system is in state i at
time 0.

Definition 12.9 Periodic and Aperiodic States
State i has period d if d is the largest integer such that Pii (n) = 0 whenever n is not
divisible by d. If d = 1, then state i is called aperiodic.

The following theorem says that all states in a communicating class have the same period.

Theorem 12.7 Communicating states have the same period.

Proof Let d(i) and d( j) denote the periods of states i and j . For some m and n, there is an n-hop
path from j to i and an m-hop path from i to j . Hence Pj j (n + m) > 0 and the system can go
from j to j in n + m hops. This implies d( j) divides n + m. For any k such that Pii (k) > 0, the
system can go from j to i in n hops, from i back to i in k hops, and from i to j in m hops. This
implies Pj j (n + k + m) > 0 and so d( j) must divide n + k + m. Since d( j) divides n + m and
also n + k + m, d( j) must divide k. Since this must hold for any k divisible by d(i), we must have
d( j) ≤ d(i). Reversing the labels of i and j in this argument will show that d(i) ≤ d( j). Hence
they must be equal.

Example 12.12 Consider the five-position discrete random walk with Markov chain

1

1-p

1

2 3 4

p

1-p

p

1

p

1-p

0
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What is the period of each state i?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this discrete random walk, we can return to state i only after an even number of
transitions because each transition away from state i requires a transition back toward
state i . Consequently, Pii (n) = 0 whenever n is not divisible by 2 and every state i
has period 2.

Example 12.13 Example 12.11 presented the following Markov chain:

0

1 3

5

4 62

Find the periodicity of each communicating class.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By inspection of the Markov chain, states 0, 1, and 2 in communicating class C1 have
period d = 3. States 4, 5, and 6 in communicating class C2 are aperiodic.

To analyze the long-term behavior of a Markov chain, it is important to distinguish
between those recurrent states that may be visited repeatedly and transient states that are
visited perhaps only a small number of times.

Definition 12.10 Transient and Recurrent States
In a finite Markov chain, a state i is transient if there exists a state j such that i → j but
j �→ i ; otherwise, if no such state j exists, then state i is recurrent.

As in the case of periodicity, such properties will be coupled to the communicating classes.
The next theorem verifies that if two states communicate, then both must be either recurrent
or transient.

Theorem 12.8 If i is recurrent and i ↔ j , then j is recurrent.

Proof For any state k, we must show j → k implies k → j . Since i ↔ j , and j → k, there is a
path from i to k via j . Thus i → k. Since i is recurrent, we must have k → i . Since i ↔ j , there is
a path from j to i and then to k.

The implication of Theorem 12.8 is that if any state in a communicating class is recurrent,
then all states in the communicating class must be recurrent. Similarly, if any state in a
communicating class is transient, then all states in the class must be transient. That is,
recurrence and transience are properties of the communicating class. When the states of a
communicating class are recurrent, we say we have a recurrent class.

Example 12.14 In the following Markov chain, the branches indicate transition probabilities Pi j > 0.

0 1 3 542
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Identify each communicating class and indicate whether it is transient or recurrent.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
By inspection of the Markov chain, the communicating classes are C1 = {0, 1, 2},
C2 = {3}, and C3 = {4, 5}. Classes C1 and C3 are recurrent while C2 is transient.

In the next theorem, we verify that the expected number of visits to a transient state must
be finite since the system will eventually enter a state from which the transient state is no
longer reachable.

Theorem 12.9 If state i is transient, then Ni , the number of visits to state i over all time, has expected
value E[Ni ] < ∞.

Proof Given an initial state distribution, let Vi denote the event that the system eventually goes
to state i . Obviously P[Vi ] ≤ 1. If Vi does not occur, then Ni = 0, implying E[Ni |V c

i ] = 0.
Otherwise, there exists a time n when the system first enters state i . In this case, given that the state
is i , let Vii denote the event that the system eventually returns to state i . Thus V c

ii is the event that
the system never returns to state i . Since i is transient, there exists state j such that for some n,
Pi j (n) > 0 but i is not accessible from j . Thus if we enter state j at time n, the event V c

ii will occur.
Since this is one possible way that V c

ii can occur, P[V c
ii ] ≥ Pi j (n) > 0. After each return to i , there

is a probability P[V c
ii ] > 0 that state i will never be reentered. Hence, given Vi , the expected number

of visits to i is geometric with conditional expected value E[Ni |Vi ] = 1/P[V c
ii ]. Finally,

E
[
Ni
] = E

[
Ni |V c

i
]

P
[
V c

i
] + E

[
Ni |Vi

]
P
[
Vi
] = E

[
Ni |Vi

]
P
[
Vi
]

< ∞. (12.27)

Consequently, in a finite state Markov chain, not all states can be transient; otherwise, we
would run out of states to visit. Thus a finite Markov chain must always have a set of
recurrent states.

Theorem 12.10 A finite-state Markov chain always has a recurrent communicating class.

This implies we can partition the set of states into a set of transient states T and a set of
r recurrent communicating classes {C1, C2, . . . , Cr }. In particular, in the proof of Theo-
rem 12.9, we observed that each transient state is either never visited, or if it is visited once,
then it is visited a geometric number of times. Eventually, one of the recurrent communi-
cating classes is entered and the system remains forever in that communicating class. In
terms of the evolution of the system state, we have the following possibilities.

• If the system starts in a recurrent class Cl , the system stays forever in Cl .

• If the system starts in a transient state, the system passes through transient states for
a finite period of time until the system randomly lands in a recurrent class Cl . The
system then stays in the class Cl forever.

Example 12.15 Consider again the Markov chain of Example 12.14:

0 1 3 542
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We can make the following observations.

• If the system starts in state j ∈ C1 = {0, 1, 2}, the system never leaves C1.

• Similarly, if the system starts in communicating class C3 = {4, 5}, the system
never leaves C3.

• If the system starts in the transient state 3, then in the first step there is a random
transition to either state 2 or to state 4 and the system then remains forever in
the corresponding communicating class.

One can view the different recurrent classes as individual component systems. The only
connection between these component systems is the initial transient phase that results in
a random selection of one of these systems. For a Markov chain with multiple recurrent
classes, it behooves us to treat the recurrent classes as individual systems and to examine
them separately. When we focus on the behavior of an individual communicating class,
this communicating class might just as well be the whole Markov chain. Thus we define a
chain with just one communicating class.

Definition 12.11 Irreducible Markov Chain
A Markov chain is irreducible if there is only one communicating class.

In the following section, we focus on the properties of a single recurrent class.

Quiz 12.4 In this Markov chain, all transitions with nonzero probability are shown.

0

1 3

5

4 62

(1) What are the communicating classes?

(2) For each communicating class, identify whether the states are periodic or aperiodic.

(3) For each communicating class, identify whether the states are transient or recurrent.

12.5 Limit Theorems For Irreducible Finite Markov Chains

In Section 12.3, we introduced limiting state probabilities for discrete-time Markov chains.
For Markov chains with multiple recurrent classes, we have observed that the limiting
state probabilities depend on the initial state distribution. For a complete understanding of
a system with multiple communicating classes, we need to examine each recurrent class
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separately as an irreducible system consisting of just that class. In this section, we focus
on irreducible, aperiodic chains and their limiting state probabilities.

Theorem 12.11 For an irreducible, aperiodic, finite Markov chain with states {0, 1, . . . , K }, the limiting
n-step transition matrix is

lim
n→∞ Pn = 1π ′ =

⎡
⎢⎢⎢⎣

π0 π1 · · · πK

π0 π1 · · · πK
...

. . .
...

π0 π1 πK

⎤
⎥⎥⎥⎦

where 1 is the column vector
[
1 · · · 1

]′
and π = [

π0 · · · πK
]′

is the unique vector
satisfying

π ′ = π ′P, π ′1 = 1.

Proof The steps of a proof are outlined in Problem 12.5.9.

When the set of possible states of the Markov chain is {0, 1, . . . , K }, the system of equations
π ′ = π ′P has K +1 equations and K +1 unknowns. Normally, K +1 equations are sufficient
to determine K + 1 uniquely. However, the particular set of equations, π ′ = π ′P, does not
not have a unique solution. If π ′ = π ′P, then for any constant c, x = cπ is also a solution
since x′P = cπ ′P = cπ ′ = x′. In this case, there is a redundant equation. To obtain a
unique solution we use the fact that π is a state probability vector by explicitly including
the equation π ′1 = ∑

j π j = 1. Specifically, to find the stationary probability vector π , we
must replace one of the equations in the system of equations π ′ = π ′P with the equation
π ′1 = 1.

Note that the result of Theorem 12.11 is precisely what we observed for the two-state
Markov chain in Example 12.6 when |λ2| < 1 and the two-state chain is irreducible and
aperiodic. Moreover, Theorem 12.11 implies convergence of the limiting state probabilities
to the probability vector π , independent of the initial state probability vector p(0).

Theorem 12.12 For an irreducible, aperiodic, finite Markov chain with transition matrix P and initial state
probability vector p(0), limn→∞ p(n) = π .

Proof Recall that p′(n) = p′(0)Pn . Since p′(0)1 = 1, Theorem 12.11 implies

lim
n→∞ p′(n) = p′(0)

(
lim

n→∞ P(n)
)

= p′(0)1π ′ = π ′. (12.28)

Example 12.16 For the packet voice communications system of Example 12.8, use Theorem 12.12 to
calculate the stationary probabilities

[
π0 π1

]
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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From the Markov chain depicted in Example 12.8, Theorem 12.12 yields the following
three equations:

π0 = π0
139

140
+ π1

1

100
, (12.29)

π1 = π0
1

140
+ π1

99

100
, (12.30)

1 = π0 + π1. (12.31)

We observe that Equations (12.29) and (12.30) are dependent in that each equation
can be simplified to π1 = (100/140)π0 . Applying π0 + π1 = 1 yields

π0 + π1 = π0 + 100

140
π0 = 1. (12.32)

Thus π0 = 140/240 = 7/12 and π1 = 5/12.

Example 12.17 A digital mobile phone transmits one packet in every 20-ms time slot over a wireless
connection. With probability p = 0.1, a packet is received in error, independent of
any other packet. To avoid wasting transmitter power when the link quality is poor, the
transmitter enters a timeout state whenever five consecutive packets are received in
error. During a timeout, the mobile terminal performs an independent Bernoulli trial
with success probability q = 0.01 in every slot. When a success occurs, the mobile
terminal starts transmitting in the next slot as though no packets had been in error.
Construct a Markov chain for this system. What are the limiting state probabilities?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For the Markov chain, we use the 20-ms slot as the unit of time. For the state of
the system, we can use the number of consecutive packets in error. The state corre-
sponding to five consecutive corrupted packets is also the timeout state. The Markov
chain is

0 1

p

1-p

1-p

1-p

1-p

q

pp p p

3 4 52

1-p 1-q

The limiting state probabilities satisfy

πn = pπn−1, n = 1, 2, 3, 4, (12.33)

π5 = pπ4 + (1 − q)π5. (12.34)

These equations imply that for n = 1, 2, 3, 4, πn = pnπ0 and π5 = pπ4/(1 − q). Since∑5
n=1 πn = 1, we have

π0 + · · · + π5 = π0

[
1 + p + p2 + p3 + p4 + p5/(1 − q)

]
= 1. (12.35)

Since 1 + p + p2 + p3 + p4 = (1 − p5)/(1 − p),

π0 = 1

(1 − p5)/(1 − p) + p5/(1 − q)
= (1 − q)(1 − p)

1 − q + qp5 − p6
, (12.36)
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0

1 3

4 7

5 62

S S�

Figure 12.2 The vertical bar indicates a partition of the Markov chain state space into disjoint
subsets S = {0, 1, 2} and S′ = {3, 4, 5, . . .}.

and the limiting state probabilities are

πn =

⎧⎪⎪⎨
⎪⎪⎩

(1−q)(1−p)pn

1−q+qp5−p6 n = 0, 1, 2, 3, 4,

(1−p)p5

1−q+qp5−p6 n = 5,

0 otherwise,

(12.37)

≈
⎧⎨
⎩

9 × 10−(n+1) n = 0, 1, 2, 3, 4,

9.09 × 10−6 n = 5,

0 otherwise.

(12.38)

In Example 12.16, we were fortunate in that the stationary probabilities π could be
found directly from Theorem 12.11 by solving π ′ = π ′P. It is more often the case that
Theorem 12.11 leads to a lot of messy equations that cannot be solved by hand. On the other
hand, there are some Markov chains where a little creativity can yield simple closed-form
solutions for π that may not be obvious from the direct method of Theorem 12.11.

We now develop a simple but useful technique for calculating the stationary probabilities.
The idea is that we partition the state space of an irreducible, aperiodic, finite Markov chain
into disjoint subsets S and S′, as depicted in Figure 12.2. We will count crossings back and
forth across the S − S′ boundary. The key observation is that the cumulative number of
S → S′ crossings and S′ → S crossings cannot differ by more than 1 because we cannot
make two S → S′ crossings without an S′ → S crossing in between. It follows that the
expected crossing rates must be the same. This observation is summarized in the following
theorem, with the details of this argument appearing in the proof.

Theorem 12.13 Consider an irreducible, aperiodic, finite Markov chain with transition probabilities {Pij }
and stationary probabilities {πi }. For any partition of the state space into disjoint subsets
S and S′, ∑

i∈S

∑
j∈S ′

πi Pi j =
∑
j∈S ′

∑
i∈S

π j Pj i .
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Proof To track the occurrence of an S → S′ crossing at time m, we define the indicator ISS ′(m) = 1
if Xm ∈ S and Xm+1 ∈ S′; otherwise ISS ′(m) = 0. The expected value of the indicator is

E
[
ISS ′(m)

] = P
[
ISS ′(n) = 1

] =
∑
i∈S

∑
j∈S ′

pi (m)Pi j . (12.39)

The cumulative number of S → S′ crossings by time n is NSS ′(n) = ∑n−1
m=0 ISS ′(m), which has

expected value

E
[
NSS ′(n)

] =
n−1∑
m=0

E
[
ISS ′(m)

] =
n−1∑
m=0

∑
i∈S

∑
j∈S ′

pi (m)Pi j . (12.40)

Dividing by n and changing the order of summation, we obtain

1

n
E
[
NSS ′(n)

] =
∑
i∈S

∑
j∈S ′

Pi j
1

n

n−1∑
m=0

pi (m). (12.41)

Note that pi (m) → πi implies that 1
n
∑n−1

m=0 pi (m) → πi . This implies

lim
n→∞

1

n
E
[
NSS ′(n)

] =
∑
i∈S

∑
j∈S ′

πi Pi j . (12.42)

By the same logic, the number of S′ → S crossings, NS ′S(n), satisfies

lim
n→∞

1

n
E
[
NS ′S(n)

] =
∑
j∈S ′

∑
i∈S

π j Pj i . (12.43)

Since we cannot make two S → S′ crossings without an S′ → S crossing in between,

NS ′S(n) − 1 ≤ NSS ′(n) ≤ NS ′S(n) + 1. (12.44)

Taking expected values, and dividing by n, we have

E
[
NS ′S(n)

] − 1

n
≤ E

[
NSS ′(n)

]
n

≤ E
[
NS ′S(n)

] + 1

n
. (12.45)

As n → ∞, we have limn→∞ E[NSS ′(n)]/n = limn→∞ E[NS ′S(n)]/n. The theorem then follows
from Equations (12.42) and (12.43).

Example 12.18 In each time slot, a router can either store an arriving data packet in its buffer or
forward a stored packet (and remove that packet from its buffer). In each time slot, a
new packet arrives with probability p, independent of arrivals in all other slots. This
packet is stored as long as the router is storing fewer than c packets. If c packets are
already buffered, then the new packet is discarded by the router. If no new packet
arrives and n > 0 packets are buffered by the router, then the router will forward one
buffered packet. That packet is then removed from the buffer. Let Xn denote the
number of buffered packets at time n. Sketch the Markov chain for Xn and find the
stationary probabilities.
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1 i ci+1

p p p p

1-p p

1-p1-p1-p1-p

0 ��� ���

S S�

Figure 12.3 The Markov chain for the packet buffer of Example 12.18. Also shown is the S − S′
partition we use to calculate the stationary probabilities.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the description of the system, the buffer occupancy is given by the Markov chain
in Figure 12.3. The figure shows the S − S′ boundary where we apply Theorem 12.13,
yielding

πi+1 = p

1 − p
πi . (12.46)

Since Equation (12.46) holds for i = 0, 1, . . . , c − 1, we have that πi = π0αi where
α = p/1 − p. Requiring the state probabilities to sum to 1, we have

c∑
i=0

πi = π0

c∑
i=0

αi = πo
1 − αc+1

1 − α
= 1. (12.47)

The complete state probabilities are

πi = 1 − α

1 − αc−1
αi , i = 0, 1, 2, . . . , c. (12.48)

Quiz 12.5 Let N be a integer-valued positive random variable with range SN = {1, . . . , K + 1}. We
use N to generate a Markov chain in the following way. When the system is in state 0, we
generate a sample value of random variable N. If N = n, the system transitions from state
0 to state n − 1. In any state i ∈ {1, . . . , K }, the next system state is n − 1. Sketch the
Markov chain and find the stationary probability vector.

12.6 Periodic States and Multiple Communicating Classes

In Section 12.5, we analyzed the limiting state probabilities of irreducible, aperiodic, finite
Markov chains. In this section, we consider problematic finite chains with periodic states
and multiple communicating classes.

We start with irreducible Markov chains with periodic states. The following theorem
for periodic chains is equivalent to Theorem 12.11 for aperiodic chains.
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Theorem 12.14 For an irreducible, recurrent, periodic, finite Markov chain with transition probability
matrix P, the stationary probability vector π is the unique nonnegative solution of

π ′ = π ′P, π ′1 = 1.

Example 12.19

Find the stationary probabilitiesfor the Markov chain
shown to the right.

0 1 2

1 1

1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We observe that each state has period 3. Applying Theorem 12.14, the stationary
probabilities satisfy

π1 = π0, π2 = π1, π0 + π1 + π2 = 1. (12.49)

The stationary probabilities are
[
π0 π1 π2

] = [
1/3 1/3 1/3

]
. Although the sys-

tem does not have limiting state probabilities, the stationary probabilities reflect the
fact that the fraction of time spent in each state is 1/3.

Multiple communicating classes are more complicated. For a Markov chain with multi-
ple recurrent classes, we can still use Theorem 12.4 to calculate the state probabilities p(n).
Further, we will observe that p(n) will converge to a stationary distribution π . However,
we do need to be careful in our interpretation of these stationary probabilities because they
will depend on the initial state probabilities p(0).

Suppose a finite Markov chain has a set of transient states and a set of recurrent commu-
nicating classes C1, . . . , Cm . In this case, each communicating class Ck acts like a mode
for the system. That is, if the system starts at time 0 in a recurrent class Ck , then the system
stays in class Ck and an observer of the process sees only states in Ck . Effectively, the
observer sees only the mode of operation for the system associated with class Ck . If the
system starts in a transient state, then the initial random transitions eventually lead to a state
belonging to a recurrent communicating class. The subsequent state transitions reflect the
mode of operation associated with that recurrent class.

When the system starts in a recurrent communicating class Ck , there is a set of limiting
state probabilities π (k) such that π

(k)
j = 0 for j �∈ Ck . Starting in a transient state i , the

limiting probabilities reflect the likelihood of ending up in each possible communicating
class.

Theorem 12.15 For a Markov chain with recurrent communicating classes C1, . . . , Cm, let π (k) denote
the limiting state probabilities associated with class Ck. Given that the system starts in a
transient state i , the limiting probability of state j is

lim
n→∞ Pij (n) = π

(1)
j P [Bi1] + · · · + π

(m)
j P [Bim ]

where P[Bik ] is the conditional probability that the system enters class Ck .
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Proof The events Bi1, Bi2, . . . , Bim are an event space. For each positive recurrent state j , the law
of total probability says that

P
[
Xn = j |X0 = i

] = P
[
Xn = j |Bi1

]
P
[
Bi1

] + · · · + P
[
Xn = j |Bim

]
P
[
Bim

]
. (12.50)

Given Bik , the system ends up in communicating class k and limn→∞ P[Xn = j |Bik ] = π
(k)
j . This

implies

lim
n→∞ P

[
Xn = j |X0 = i

] = π
(1)
j P

[
Bi1

] + · · · + π
(m)
j P

[
Bim

]
. (12.51)

Theorem 12.15 says that if the system starts in transient state i , the limiting state probabilities
will be a weighted combination of limiting state probabilities associated with each commu-
nicating class where the weights represent the likelihood of ending up in the corresponding
class. These conclusions are best demonstrated by a simple example.

Example 12.20 For each possible starting state i ∈ {0, 1, . . . , 4}, find the limiting state probabilities for
the following Markov chain.

20 31 4

¾ ½

¼ ¼

¼
½

½

½

¾ ¾

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We could solve this problem by forming the 5 × 5 state transition matrix P and eval-
uating Pn as we did in Example 12.6, but a simpler approach is to recognize the
communicating classes C1 = {0, 1} and C2 = {3, 4}. Starting in state i ∈ C1, the sys-
tem operates like a two-state chain with transition probabilities p = 3/4 and q = 1/4.
Let π

(1)
j = limn→∞ P[Xn = j |X0 ∈ C1] denote the limiting state probabilities. From

Example 12.6, the limiting state probabilities for this embedded two-state chain are
[
π

(1)
0 π

(1)
1

]
= [

q/(q + p) p/(q + p)
] = [

1/4 3/4
]
. (12.52)

Since this two-state chain is within the five-state chain, the limiting state probability
vector is

π (1) =
[
π

(1)
0 π

(1)
1 π

(1)
2 π

(1)
3 π

(1)
4

]′ = [
1/4 3/4 0 0 0

]′
. (12.53)

When the system starts in state 3 or 4, let π
(2)
j = limn→∞ P[Xn = j |X0 ∈ C2] denote

the limiting state probabilities. In this case, the system cannot leave class C2. The
limiting state probabilities are the same as if states 3 and 4 were a two-state chain
with p = 1/2 and q = 1/4. Starting in class C2, the limiting state probabilities are[
π

(2)
3 π

(2)
4

]
= [

1/3 2/3
]
. The limiting state probability vector is

π (2) =
[
π

(2)
0 π

(2)
1 π

(2)
2 π

(2)
3 π

(2)
4

]′ = [
0 0 0 1/3 2/3

]′
. (12.54)

Starting in state 2, we see that the limiting state behavior depends on the first transition
we make out of state 2. Let event B2k denote the event that our first transition is to a
state in class Ck . Given B21, the system enters state 1 and the limiting probabilities
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are given by π (1). Given B22, the system enters state 3 and the limiting probabilities
are given by π(2). Since P[B21] = P[B22] = 1/2, Theorem 12.15 says that the limiting
probabilities are

lim
n→∞ P

[
Xn = j |X0 = 2

] = 1

2

(
π

(1)
j + π

(2)
j

)
. (12.55)

In terms of vectors, the limiting state probabilities are

π = 1

2
π (1) + 1

2
π (2) = [

1/8 3/8 0 1/6 1/3
]′

. (12.56)

In Section 10.10, we introduced the concept of an ergodic wide sense stationary process
in which the time average (as time t goes to infinity) of the process always equals E[X (t)],
the process ensemble average. A Markov chain with multiple recurrent communicating
classes is an example of nonergodic process. Each time we observe such a system, the
system eventually lands in a recurrent communicating class and any long-term time averages
that we calculate would reflect that particular mode of operation. On the other hand, an
ensemble average, much like the limiting state probabilities we calculated in Example 12.20,
is a weighted average over all the modes (recurrent classes) of the system.

For an irreducible finite Markov chain, the stationary probability πn of state n does in
fact tell us the fraction of time the system will spend in state n. For a chain with multiple
recurrent communicating classes, πn does tell us the probability that the system will be in
state n in the distant future, but πn is not the long-term fraction of time the system will be
in state n. In that sense, when a Markov chain has multiple recurrent classes, the stationary
probabilities lose much of their significance.

Quiz 12.6 Consider the Markov chain shown on the right.

(1) What is the period d of state 0?

(2) What are the stationary probabilities π0, π1, π2, and π3?

(3) Given the system is in state 0 at time 0, what is the probability
the system is in state 0 at time nd in the limit as n → ∞?

10

23

¼

¼¼

¾

¾

¾

¾

¼

12.7 Countably Infinite Chains: State Classification

Until now, we have focused on finite-state Markov chains. In this section, we begin to
examine Markov chains with a countably infinite set of states {0, 1, 2, . . .}. We will see
that a single communicating class is sufficient to describe the complications offered by an
infinite number of states and we ignore the possibility of multiple communicating classes.
As in the case of finite chains, multiple communicating classes represent distinct system
modes that are coupled only through an initial transient phase that results in the system
landing in one of the communicating classes.

An example of countably infinite Markov chain is the discrete random walk of Exam-
ple 12.4. Many other simple yet practical examples are forms of queueing systems in which
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customers wait in line (queue) for service. These queueing systems have a countably infinite
state space because the number of waiting customers can be arbitrarily large.

Example 12.21 Suppose that the router in Example 12.18 has unlimited buffer space. In each time
slot, a router can either store an arriving data packet in its buffer or forward a stored
packet (and remove that packet from its buffer). In each time slot, a new packet is
stored with probability p, independent of arrivals in all other slots. If no new packet
arrives, then one packet will be removed from the buffer and forwarded. Sketch the
Markov chain for Xn , the number of buffered packets at time n.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
From the description of the system, the buffer occupancy is given by the Markov chain

1 2

p p p

1-p

1-p 1-p 1-p

0 ���

For the general countably infinite Markov chain, we will assume the state space is the set
{0, 1, 2, . . .}. Unchanged from Definition 12.2, the n-step transition probabilities are given
by Pij (n). The state probabilities at time n are specified by the set {p j (n)| j = 0, 1, . . .}.
The Chapman-Kolmogorov equations and the iterative methods of calculating the state
probabilities p j (n) in Theorem 12.4 also extend directly to countably infinite chains. We
summarize these results here.

Theorem 12.16 Chapman-Kolmogorov equations
The n-step transition probabilities satisfy

Pi j (n + m) =
∞∑

k=0

Pik(n)Pkj (m).

Theorem 12.17 The state probabilities p j (n) at time n can be found by either one iteration with the n-step
transition probabilities

p j (n) =
∞∑

i=0

pi (0)Pij (n)

or n iterations with the one-step transition probabilities

p j (n) =
∞∑

i=0

pi (n − 1)Pij .
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Just as for finite chains, a primary issue is the existence of limiting state probabilities
π j = limn→∞ p j (n). In Example 12.21, we will see that the existence of a limiting state
distribution depends on the parameter p. When p is near zero, we would expect the system
to have very few customers and the distribution of the number of customers to be well
defined. On the other hand, if p is close to 1, we would expect the number of customers
to grow steadily because most slots would have an arrival and very few slots would have
departures. In the most extreme case of p = 1, there will be an arrival each unit of time
and never any departures. When the system is such that the number of customers grows
steadily, stationary probabilities do not exist.

We will see that the existence of a stationary distribution depends on the recurrence
properties of the chain; however, the recurrence or transience of the system states is some-
what more complicated. For the finite chain, it was sufficient to look simply at the nonzero
transition probabilities and verify that a state i communicated with every state j that was
accessible from i . For the infinite Markov chain, this is not enough. For example, in the
infinite buffer of Example 12.21, the chain has a single communicating class and state 0
communicates with every state; however, whether state 0 is recurrent will depend on the
parameter p.

In this section, we develop a new definition for transient states and we define two types
of recurrent states. For purposes of discussion, we make the following definitions:

Definition 12.12 Visitation, First Return Time, and Number of Returns
Given that the system is in state i at an arbitary time,

(a) Vii is the event that the system eventually returns to visit state i ,

(b) Tii is the time (number of transitions) until the system first returns to i ,

(c) Nii is the number of times (in the future) that the system returns to state i .

Given that the system starts in state i , the event Vii occurs as long as the return time Tii is
finite, i.e.,

P [Vii ] = P [Tii < ∞] = lim
n→∞ FTii (n) . (12.57)

Using the definitions of Vii , Tii , and Nii , we can define transient and recurrent states for
countably infinite chains.

Definition 12.13 Transient and Recurrent States for a Countably Infinite Chain
For a countably infinite Markov chain, state i is recurrent if P[Vii ] = 1; otherwise state i
is transient.

Definition 12.13 can be applied to both finite and countably infinite Markov chains. In both
cases, the idea is that a state is recurrent if the system is certain to return to the state. The
difference is that for a finite chain it is easy to test recurrence for state i by checking that
state i communicates with every state j that is accessible from i . For the countably infinite
chain, the verification that P[Vii ] = 1 is a far more complicated test.

Example 12.22 A system with states {0, 1, 2, . . .} has Markov chain
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Note that for any state i > 0, Pi,0 = 1/(i +1) and Pi,i+1 = i/(i +1). Is state 0 transient,
or recurrent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Assume the system starts in state 0 at time 0. Note that T00 > n if the system reaches
state n before returning to state 0, which occurs with probability

P
[
T00 > n

] = 1 × 1

2
× 2

3
× · · · × n − 1

n
= 1

n
. (12.58)

Thus the CDF of T00 satisfies FT00(n) = 1 − P[T00 > n] = 1 − 1/n. To determine
whether state 0 is recurrent, we calculate

P
[
V00

] = lim
n→∞ FT00 (n) = lim

n→∞ 1 − 1

n
= 1. (12.59)

Thus state 0 is recurrent.

If state i is recurrent and the system is certain to return to i , then over an infinite time,
the expected number of returns E[Nii ] must be infinite. On the other hand, if state i is
transient, Theorem 12.9 showed that the number of visits to state i is finite. Combining
these observations, we have the following theorem.

Theorem 12.18 State i is recurrent if and only if E[Nii ] = ∞.

Theorem 12.18 is useful because we can calculate E[Nii ] from the n-step transition prob-
abilities.

Theorem 12.19 The expected number of visits to state i over all time is

E [Nii ] =
∞∑

n=1

Pii (n).

Proof Given that the starting state X0 = i , we define the Bernoulli indicator random variable Iii (n)

such that Iii (n) = 1 if Xn = i ; otherwise Iii (n) = 0. Over the lifetime of the system, we count
whether an arrival occured at each time step n to find the number of returns to state i :

Nii =
∞∑

n=1

Iii (n). (12.60)

Since Iii (n) is a Bernoulli indicator, E[Iii (n)] = P[Xn = i |X0 = i ] = Pii (n). Taking the expecta-
tion of Equation (12.60), we have E[Nii ] = ∑∞

n=1 E[Iii (n)] = ∑∞
n=1 Pii (n).

Determining whether the infinite sum in Theorem 12.19 converges or diverges is another

 



12.7 COUNTABLY INFINITE CHAINS: STATE CLASSIFICATION 471

way to determine whether state i is recurrent.

Example 12.23 The discrete random walk introduced in Example 12.4 has state space {. . . , −1, 0, 1, . . .}
and Markov chain

-2 -1

pp

1-p1-p

1

p

1-p

p

1-p

0

p

1-p

��� ���

Is state 0 recurrent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To apply Theorem 12.19, we need to determine the n-step transition probability P00(n).
From inspection of the Markov chain, it should be apparent that the system can return
to state 0 only during steps n = 2, 4, 6, . . .. In particular, the system returns to state 0
at step 2n if there were exactly n steps to the right and n steps to the left. Regarding
steps to the right as successes, the probability that we return to state 0 at step 2n has
the binomial probability

P00(2n) =
(

2n

n

)
pn(1 − p)n . (12.61)

To go further, we employ Stirling’s approximation n! ≈ √
2nπnne−n to write

(
2n

n

)
= (2n)!

n!n! ≈ 22n
√

nπ
. (12.62)

It follows that

P00(2n) ≈ 22n
√

nπ
pn(1 − p)n = [4p(1 − p)]n√

nπ
. (12.63)

Defining α = 4p(1 − p), we have

E
[
N00

] =
∞∑

n=1

P00(2n) ≈ 1√
π

∞∑
n=1

αn
√

n
. (12.64)

Note that if α < 1, equivalently p �= 1/2, the sum (12.64) converges. In this case,
E[N00] < ∞ and state 0 is transient. When p < 1/2, the random walk marches off to
−∞; for p > 1/2, the random walk proceeds to +∞. On the other hand, if p = 1/2,
then α = 1, and the sum (12.64) diverges. In this case, state 0 is recurrent and the
system is certain to eventually return to state 0.

Note that we treated Stirling’s approximation as an equality in our analysis. Some
additional analysis can justify the use of the approximation.

Curiously, a countably infinite chain permits two kinds of recurrent states.

Definition 12.14 Positive Recurrence and Null Recurrence
A recurrent state i is positive recurrent if E[Tii ] < ∞; otherwise, state i is null recurrent.

Both positive recurrent and null recurrent states are called recurrent. The distinguishing
property of a recurrent state i is that when the system leaves state i , it is certain to return
eventually to i ; however, if i is null recurrent, then the expected time to re-visit i is infinite.
This difference is demonstrated in the following example.

 



472 CHAPTER 12 MARKOV CHAINS

Example 12.24 In Example 12.22, we found that state 0 is recurrent. Is state 0 positive recurrent or
null recurrent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Example 12.22, we found for n = 1, 2, . . . that P[T00 > n] = 1/n. For n > 1, the
PMF of T00 satisfies

PT00 (n) = P
[
T00 > n − 1

] − P
[
T00 > n

]
,= 1

(n − 1)n
n = 2, 3, . . . (12.65)

The expected time to return to state 0 is

E
[
T00

] =
∞∑

n=2

n PT00 (n) =
∞∑

n=2

1

n − 1
= ∞. (12.66)

From Definition 12.14, we can conclude that state 0 is null recurrent.

It is possible to show that positive recurrence, null recurrence, and transience are class
properties.

Theorem 12.20 For a communicating class of a Markov chain, one of the following must be true:

(a) All states are transient.

(b) All states are null recurrent.

(c) All states are positive recurrent.

Example 12.25 In the Markov chain of Examples 12.22 and 12.24, is state 33 positive recurrent, null
recurrent, or transient?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since Example 12.24 showed that 0 is null recurrent, Theorem 12.20 implies that state
33, as well as every other state, is null recurrent.

From our examples, we can conclude that classifying the states of a countably infinite
Markov chain is decidedly nontrivial. In this section, the examples were carefully chosen in
order to simplify the calculations required for state classification. However, some intuition
was necessary to determine which calculations to perform. For countably infinite Markov
chains, there are no cookbook recipes for state classification.

Quiz 12.7 In a variation on the Markov chain for Example 12.22, a system with states {0, 1, 2, . . .}
has transition probabilities

Pi j =

⎧⎪⎪⎨
⎪⎪⎩

1 i = 0, j = 1,

[i/(i + 1)]α i > 0, j = i + 1,

1 − [i/(i + 1)]α i > 0, j = 0,

0 otherwise.

(12.67)

where α > 0 is an unspecified parameter. Sketch the Markov chain and identify those
values of α for which the states are positive recurrent, null recurrent, and transient.
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1 i i+1

p p p p

1-p

1-p1-p1-p1-p

0 ��� ���

S S�

Figure 12.4 A partition for the discrete-time queue of Example 12.26.

12.8 Countably Infinite Chains: Stationary Probabilities

In Section 12.7, we identified methods for classifying the states of a countably infinite chain.
In this section, we examine the stationary probabilities. First, we observe that the Chapman-
Kolmogorov equations (Theorem 12.2) as well as Theorem 12.4 apply to both finite and
countably infinite Markov chains. In particular, given the state probabilities {p j (n)} at time
n, the state probabilities at time n + 1 are given by

p j (n + 1) =
∞∑

i=0

pi (n)Pij . (12.68)

Most importantly, Theorem 12.11 can be extended to countably infinite Markov chains.

Theorem 12.21 For an irreducible, aperiodic, positive recurrent Markov chain with states {0, 1, . . .}, the
limiting n-step transition probabilities are limn→∞ Pij (n) = π j where {π j | j = 0, 1, 2, . . .}
are the unique state probabilities satisfying

∞∑
j=0

π j = 1, π j =
∞∑

i=0

πi Pi j , j = 0, 1, . . . .

The first part of Theorem 12.21 says that for any starting state i , the probability that the
system is in state j after a long time is π j . That is, because the chain is irreducible,
aperiodic, and positive recurrent, the effect of the initial state wears off. The second part of
Theorem 12.21 provides a direct way to calculate the stationary probabilities of a countably
infinite chain. Sometimes the transition probabilities have a structure that leads to a simple
direct calculation of π j . For other transition probabilities it is helpful to partition the state
space into disjoint subsets S and S′ and use Theorem 12.13 to simplify the calculation.

Example 12.26 Find the stationary probabilities of the router buffer described in Example 12.21. Make
sure to identify for what values of p that the stationary probabilities exist.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We apply Theorem 12.13 by partitioning the state space between S = {0, 1, . . . , i}
and S′ = {i + 1, i + 2, . . .} as shown in Figure 12.4. By Theorem 12.13, for any state
i ≥ 0,

πi p = πi+1(1 − p). (12.69)

This implies

πi+1 = p

1 − p
πi . (12.70)
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Since Equation (12.70) holds for i = 0, 1, . . ., we have that πi = π0αi where α =
p/1 − p. Requiring the state probabilities to sum to 1, we have that for α < 1,

∞∑
i=0

πi = π0

∞∑
i=0

αi = π0

1 − α
= 1. (12.71)

Thus for α < 1, the complete state probabilities are

πi = (1 − α)αi , i = 0, 1, 2, . . . (12.72)

For α ≥ 1 or, equivalently, p ≥ 1/2, the limiting state probabilities do not exist.

Quiz 12.8 In each one-second interval at a convenience store, a new customer arrives with probability
p, independent of the number of customers in the store and also other arrivals at other times.
The clerk gives each arriving customer a friendly “Hello.” In each unit of time in which
there is no arrival, the clerk can provide a unit of service to a waiting customer. Given that
a customer has received a unit of service, the customer departs with probability q. When
the store is empty, the clerk sits idle. Sketch a Markov chain for the number of customers in
the store. Under what conditions on p and q do limiting state probabilities exist? Under
those conditions, find the limiting state probabilities.

12.9 Continuous-Time Markov Chains

For many systems characterized by state transitions, the transitions naturally occur at dis-
crete time instants. These processes are naturally modeled by discrete-time Markov chains.
In this section, we relax our earlier requirement that transitions can occur exactly once each
unit of time. In particular, we examine a class of continuous-time processes in which state
transitions can occur at any time.

These systems are described by a stochastic process {X (t)|t ≥ 0}, where X (t) is the
state of the system at time t . Although state transitions can occur at any time, the model
for state transitions is not completely arbitrary.

Definition 12.15 Continuous-Time Markov Chain
A continuous-time Markov chain {X (t)|t ≥ 0} is a continuous-time, discrete-value random
process such that for an infinitesimal time step of size �,

P [X (t + �) = j |X (t) = i] = qi j �

P [X (t + �) = i |X (t) = i] = 1 −
∑
j �=i

qi j �

Note that this model assumes that only a single transition can occur in the small time �. In
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addition, we observe that Definition 12.15 implies that

P [X (t + �) �= i |X (t) = i] =
∑
j �=i

qi j � (12.73)

In short, in every infinitesimal interval of length �, a Bernoulli trial determines whether
the system exits state i .

The continuous-time Markov chain is closely related to the Poisson process. In Sec-
tion 10.5, we derived a Poisson process of rate λ as the limiting case of a process that for
any small time interval of length �, a Bernoulli trial with success probability λ� indicated
whether an arrival occurred. We also found in Theorem 10.3 that the time until the next
arrival is an exponential (λ) random variable.

In the limit as � approaches zero, we can conclude that for a Markov chain in state i ,
the time until the next transition will be an exponential random variable with parameter

νi =
∑
j �=i

qi j . (12.74)

We call νi the departure rate of state i . Because the exponential random variable is mem-
oryless, we know that no matter how long the system has been in state i , the time until the
system departs state i is always an exponential (νi ) random variable. In particular, this says
that the time the system has spent in state i has no influence on the future sample path of
the system. Recall that in Definition 12.1, the key idea of a discrete-time Markov chain was
that at time n, the Xn summarized the past history of the system. In the same way, X (t) for
a continuous-time Markov chain summarizes the state history prior to time t .

We can further interpret the state transitions for a continuous-time Markov chain in terms
of the sum of independent Poisson processes. We recall from Theorem 10.7 of Section 10.6
that the sum of independent Poisson processes N1(t) + N2(t) could be viewed as a single
Poisson process with rate λ = λ1 + λ2. For this combined process starting at time 0, the
system waits a random time with an exponential (λ) PDF for an arrival. When there is
an arrival, an independent trial determines whether the arrival was from process N1(t) or
N2(t).

For a continuous-time Markov chain, when the system enters state i at time 0, we start
a Poisson process Nik (t) of rate qik for every other state k. If the process Nij (t) is the first
to have an arrival, then the system transitions to state j . The process then resets and starts
a Poisson process N jk(t) for each state k �= j . Effectively, when the system is in state i ,
the time until a transition is an exponential (νi ) random variable. Given the event Di that
the system departs state i in the time interval (t, t + �], the conditional probability of the
event Dij that the system went to state j is

P
[
Dij |Di

] = P
[
Dij

]
P [Di ]

= qi j �

νi�
= qi j

νi
. (12.75)

Thus for a continuous-time Markov chain, the system spends an exponential (νi ) time in
state i , followed by an independent trial that specifies that the next state is j with probability
Pij = qi j /νi . When we ignore the time spent in each state, the transition probabilities Pij

can be viewed as the transition probabilities of a discrete-time Markov chain.
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Definition 12.16 Embedded Discrete-Time Markov Chain
For a continuous-time Markov chain with transition rates qi j and state i departure rates
νi , the embedded discrete-time Markov chain has transition probabilities Pi j = qi j /νi for
states i with νi > 0 and Pii = 1 for states i with νi = 0.

For discrete-time chains, we found that the limiting state probabilities depend on the number
of communicating classes. For continuous-time Markov chains, the issue of communicating
classes remains.

Definition 12.17 Communicating Classes of a Continuous-Time Markov Chain
The communicating classes of a continuous-time Markov chain are given by the communi-
cating classes of its embedded discrete-time Markov chain.

Definition 12.18 Irreducible Continuous-Time Markov Chain
A continuous-time Markov chain is irreducible if the embedded discrete-time Markov chain
is irreducible.

At this point, we focus on irreducible continuous-time Markov chains; we will not
consider multiple communicating classes. In a continuous-time chain, multiple communi-
cating classes still result in multiple modes of operation for the system. These modes can
and should be evaluated as separate irreducible systems.

Definition 12.19 Positive Recurrent Continuous-Time Markov Chain
An irreducible continuous-time Markov chain is positive recurrent if for all states i , the
time Tii to return to state i satisfies E[Tii ] < ∞.

For continuous-time chains, issues of irreducibility and positive recurrence are essentially
the same as for discrete-time chains. Unlike discrete-time chains, however, in a continuous-
time chain we need not worry about periodicity because the time spent in each state is a
continuous random variable.

Example 12.27 In a continuous-time ON-OFF process, alternating OFF and ON (states 0 and 1)
periods have independent exponential durations. The average ON period lasts 1/μ

seconds, while the average OFF period lasts 1/λ seconds. Sketch the continuous-
time Markov chain.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the continuous-time chain, we have states 0 (OFF) and 1 (ON).
The chain, as shown, has transition rates q01 = λ and q10 = μ.

10

�

�

Example 12.28 In the summer, an air conditioner is in one of three states: (0) off, (1) low, or (2)
high. While off, transitions to low occur after an exponential time with expected time
3 minutes. While in the low state, transitions to off or high are equally likely and
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transitions out of the low state occur at rate 0.5 per minute. When the system is in the
high state, it makes a transition to the low state with probability 2/3 or to the off state
with probability 1/3. The time spent in the high state is an exponential (1/2) random
variable. Model this air conditioning system using a continuous-time Markov chain.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Each fact provides information about the state transition rates. First, we learn that
q01 = 1/3 and q02 = 0. Second, we are told that ν1 = 0.5 and that q10/ν1 = q12/ν1 =
1/2. Thus q10 = q12 = 1/4. Next, we see that q21/ν2 = 2/3 and q20/ν2 = 1/3 and that
ν2 = 1/2. Hence q21 = 1/3 and q20 = 1/6. The complete Markov chain is

0 1 2

1/3 1/4

1/4 1/3

1/6

In these examples, we have seen that a Markov chain is characterized by the set {qi j } of
transition rates. Self transitions from state i immediately back to state i are trivial simply
because nothing would actually change in a self transition. Hence, qii = 0 for every state
i . When the continuous-time Markov chain has a finite state space {0, 1, . . . , K }, we can
represent the Markov chain by the state transition matrix Q, which has i, j th entry qi j . It
follows that the main diagonal of Q is always zero.

For our subsequent calculations of probabilities, it will be useful to define a rate matrix
R with i, j th entry

ri j =
{

qi j i �= j,
−νi i = j.

(12.76)

Recall that νi = ∑
j �=i qi j is the departure rate from state i . Off the diagonal, matrices R

and Q are identical; on the diagonal, qii = 0 while rii = −νi .
Just as we did for discrete-time Markov chains, we would like to know how to calculate

the probability that the system is in a state j . For this probability, we will use the notation

p j (t) = P [X (t) = j] . (12.77)

When the Markov chain has a finite set of states {0, . . . , K }, the state probabilities can
be written as the vector p(t) = [

p0(t) · · · pK (t)
]′. We want to compute p j (t) both

for a particular time instant t as well as in the limiting case when t approaches infinity.
Because the continuous-time Markov chain has events occurring in infinitesimal intervals
of length �, transitions in the discrete-time Chapman-Kolmogorov equations are replaced
by continuous-time differential equations that we derive by considering a time step of size
�. For a finite chain, these differential equations can be written as a first-order vector
differential equation for p(t).

In the next two theorems, we write the relevant equations in two forms: on the left using
the notation of individual state probabilities, and on the right in the concise notation of the
state probability vector.
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Theorem 12.22 For a continuous-time Markov chain, the state probabilities p j (t) evolve according to the
differential equations

d p j (t)

dt
=
∑

i

ri j pi (t), j = 0, 1, 2, . . . , or, in vector form,
d p′(t)

dt
= p′(t)R.

Proof Given the state probabilities p j (t) at time t , we can calculate the state probabilities at time
t + � using Definition 12.15:

p j (t + �) = [1 − (ν j �)]p j (t) +
∑
i �= j

(qi j �)pi (t). (12.78)

Subtracting p j (t) from both sides, we have

p j (t + �) − p j (t) = −(ν j �)p j (t) +
∑
i �= j

(qi j �)pi (t). (12.79)

Dividing through by � and expressing Equation (12.79) in terms of the rates ri j yields

p j (t + �) − p j (t)

�
= −ν j p j (t) +

∑
i �= j

qi j pi (t) =
∑

i

ri j pi (t). (12.80)

As � approaches zero, we obtain the desired differential equation.

Students familiar with linear systems theory will recognize that these equations are equiva-
lent to the differential equations that describe the natural response of a dynamic system. For
a system with two states, these equations have the same form as the coupled equations for
the capacitor voltage and inductor current in an RLC circuit. Further, for the finite Markov
chain, it is well known that the solution to the vector differential equation for p(t) is

p′(t) = p′(0)eRt (12.81)

where the matrix eRt , known as the matrix exponential, is defined as

eRt =
∞∑

k=0

(Rt)k

k! . (12.82)

Our primary interest will be systems in which the state probabilities will converge to constant
values, much like circuits or dynamic systems that converge to a steady-state response for a
constant input. By analogy, it is said that the state probabilities converge to a steady-state.
We caution the reader that this analogy can be misleading. If we observe a circuit, the
state variables such as inductor currents or capacitor voltages will converge to constants.
In a Markov chain, if we inspect the system after a very long time, then the “steady-state”
probabilities describe the likelihood of the states. However, if we observe the Markov chain
system, the actual state of the system typically is always changing even though the state
probabilities p j (t) may have converged.

The state probabilities converge when the state probabilities stop changing, that is, when
dp j (t)/dt = 0 for all j . In this case, we say that the state probabilities have reached a
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limiting state distribution. Just as for discrete-time Markov chains, another name for the
limiting state distribution is the stationary distribution because if p j (t) = p j for all states
j , then dp j (t)/dt = 0 and p j (t) never changes.

Theorem 12.23 For an irreducible, positive recurrent continuous-time Markov chain, the state probabilities
satisfy

lim
t→∞ p j (t) = p j , or, in vector form, lim

t→∞ p(t) = p

where the limiting state probabilities are the unique solution to∑
i

ri j pi = 0, or, in vector form, p′R = 0′,

∑
j

p j = 1, or, in vector form, p′1 = 1.

Just as for the discrete-time chain, the limiting state probability p j is the fraction of time
the system spends in state j over the sample path of the process. Since r j j = −ν j , and
ri j = qi j , Theorem 12.23 has a nice interpretation when we write

p jν j =
∑
i �= j

piqi j . (12.83)

On the left side, we have the product of p j , the fraction of time spent in state j , and ν j ,
the transition rate out of state j . That is, the left side is the average rate of transitions out
of state j . Similarly, on the right side, pi qi j is the average rate of transitions from state
i into state j so that

∑
i �= j pi qi j is the average rate of transitions into state j . In short,

the limiting state probabilities balance the average transition rate into state j against the
average transition rate out of state j . Because this is a balance of rates, pi depends on both
the transition probabilities Pij as well as on the expected time 1/νi that the system stays in
state i before the transition.

Example 12.29 Calculate the limiting state probabilities for the ON/OFF system of Example 12.27.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The stationary probabilities satisfy p0λ = p1μ and p0 + p1 = 1. The solution is

p0 = μ

λ + μ
, p1 = λ

λ + μ
. (12.84)

Increasing λ, the departure rate from state 0, decreases the time spent in state 0, and
correspondingly, increases the probability of state 1.

Example 12.30 Find the stationary distribution for the Markov chain describing the air conditioning
system of Example 12.28.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The stationary probabilities satisfy

1

3
p0 = 1

4
p1 + 1

6
p2,

1

2
p1 = 1

3
p0 + 1

3
p2,

1

2
p2 = 1

4
p1. (12.85)

Although we have three equations and three unknowns, these equations do not have
a unique solution. We can conclude only that p1 = p0 and p2 = p0/2. Finally, the
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requirement that p0 + p1 + p2 = 1 yields p0 + p0 + p0/2 = 1. Hence, the limiting state
probabilities are

p0 = 2/5, p1 = 2/5, p2 = 1/5. (12.86)

Quiz 12.9 A processor in a parallel processing computer can work on up to four tasks at once. When
the processor is working on one or more tasks, the task completion rate is three tasks
per millisecond. When there are three or fewer tasks assigned to the processor, tasks are
assigned at the rate of two tasks per millisecond. The processor is unreliable in the sense
that any time the processor is working, it may reboot and discard all of its tasks. In any
state i �= 0, reboots occur at a rate of 0.01 per millisecond. Sketch the continuous-time
Markov chain and find the stationary probabilities.

12.10 Birth-Death Processes and Queueing Systems

A simple yet important form of continuous-time Markov chain is the birth-death process.

Definition 12.20 Birth-Death Process
A continuous-time Markov chain is a birth-death process if the transition rates satisfy
qi j = 0 for |i − j | > 1.

As depicted in Figure 12.5, a birth-death process in state i can make transitions only to
states i − 1 or i + 1. Birth-death processes earn their name because the state can represent
the number in a population. A transition from i to i + 1 is a birth since the population
increases by one. A transition from i to i − 1 is a death in the population.

Queueing systems are often modeled as birth-death processes in which the population
consists of the customers in the system. A queue can represent any service facility in
which customers arrive, possibly wait, and depart after being served. In a Markov model
of a queue, the state represents the number of customers in the queueing system. For a
Markov chain that represents a queue, we make use of some new terminology and notation.
Specifically, the transition probability qi,i−1 is denoted by μi and is called the service rate
in state i since the transition from i to i − 1 occurs only if a customer completes service
and leaves the system. Similarly, λi = qi,i+1 is called the arrival rate in state i since a
transition from state i to i + 1 corresponds to the arrival of a customer.

The continuous-time birth-death process representing a queue always resembles the
chain shown in Figure 12.5. Since any birth-death process can be described in terms of the
transition rates λi and μi , we will use this notation in our subsequent development, whether
or not the birth-death process represents a queue. We will also assume that μi > 0 for all
states i that are reachable from state 0. This ensures that we have an irreducible chain. For
birth-death processes, the limiting state probabilities are easy to compute.
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Figure 12.5 The birth-death model of a queue

Theorem 12.24 For a birth-death queue with arrival rates λi and service rates μi , the stationary probabil-
ities pi satisfy

pi−1λi−1 = piμi ,

∞∑
i=0

pi = 1.

Proof We prove by induction on i that pi−1λi−1 = piμi . For i = 1, Theorem 12.23 implies that
p0λ0 = p1μ1. Assuming pi−1λi−1 = piμi , we observe that Theorem 12.23 requires

pi (λi + μi ) = pi−1λi−1 + pi+1μi+1 . (12.87)

From this equation, the assumption that pi−1λi−1 = piμi implies piλi = pi+1μi+1, completing
the induction.

For birth-death processes, Theorem 12.24 can be viewed as analagous to Theorem 12.13
for discrete-time queues in that it says that the average rate of transitions from state i − 1 to
state i must equal the average rate of transitions from state i to state i − 1. It follows from
Theorem 12.24 that the stationary probabilities of the birth-death queue have a particularly
simple form.

Theorem 12.25 For a birth-death queue with arrival rates λi and service rates μi , let ρi = λi/μi+1. The
limiting state probabilities, if they exist, are

pi =
∏i−1

j=0 ρ j

1 + ∑∞
k=1

∏k−1
j=0 ρ j

.

Whether the stationary probabilities exist depends on the actual arrival and service rates.
Just as in the discrete-time case, the states may be null recurrent or even transient. For the
birth-death process, this depends on whether the sum

∑∞
k=1

∏k−1
j=1 ρ j converges.

In the following sections,we describe several common queue models. Queueing theorists
use a naming convention of the form A/S/n/m for common types of queues. In this
notation, A describes the arrival process, S the service times, n the number of servers,
and m the number of customers that can be in the queue. For example, A = M says
that the arrival process is Memoryless in that the arrivals are a Poisson process. A second
possibility is that A = D for a Deterministic arrival process in which the inter-arrival times
are constant. Another possibility is that A = G corresponding to a General arrival process.
In all cases, a common assumption is that the arrival process is independent of the service
requirements of the customers. Similarly, S = M corresponds to memoryless (exponential)

 



482 CHAPTER 12 MARKOV CHAINS

2 3

l

m

1

l

m

l

m

0

l

m

���

Figure 12.6 The Markov chain of an M/M/1 queue.

service times, S = D is for deterministic service times, and S = G denotes a general service
time distribution. When the number of customers in the system is less than the number of
servers n, then an arriving customer is immediately assigned to a server. When m is finite,
new arrivals are blocked (i.e., discarded) when the queue has m customers. Also, if m is
unspecified, then it is assumed to be infinite.

Using the birth-death Markov chain, we can model a large variety of queues with mem-
oryless arrival processes and service times.

The M/M/1 Queue

In an M/M/1 queue, the arrivals are a Poisson process of rate λ, independent of the service
requirements of the customers. The service time of a customer is an exponential (μ) random
variable, independent of the system state. Since the queue has only one server, the departure
rate from any state i > 0 is μi = μ. Thus μ is often called the service rate of the system.
The Markov chain for number of customers in the M/M/1 queue is shown in Figure 12.6.
The simple structure of the queue makes calculation of the limiting state probabilities quite
simple.

Theorem 12.26 The M/M/1 queue with arrival rate λ > 0 and service rate μ, μ > λ, has limiting state
probabilities

pn = (1 − ρ)ρn, n = 0, 1, 2, . . .

where ρ = λ/μ.

Proof By Theorem 12.24, the limiting state probabilities satisfy pi−1λ = pi μ, implying pi =
ρpi−1. Thus pi = ρi p0. Applying

∑∞
j=0 p j = 1 yields

p0

(
1 + ρ + ρ2 + · · ·

)
= 1. (12.88)

If ρ < 1, we obtain p0 = 1 − ρ and the limiting state probabilities exist.

Note that if λ > μ, then new customers arrive faster than customers depart. In this case,
all states of the Markov chain are transient and the queue backlog grows without bound.
We note that it is a typical property of queueing systems that the system is stable (i.e., the
queue has positive recurrent Markov chain and the limiting state probabilities exist) as long
as the system service rate is greater than the arrival rate when the system is busy.

Example 12.31 Cars arrive at an isolated toll booth as a Poisson process with arrival rate λ = 0.6 cars
per minute. The service required by a customer is an exponential random variable
with expected value 1/μ = 0.3 minutes. What are the limiting state probabilities for
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Figure 12.7 The Markov chain for the M/M/∞ queue.

N , the number of cars at the toll booth? What is the probability that the toll booth has
zero cars some time in the distant future?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The toll booth is an M/M/1 queue with arrival rate λ and service rate μ. The offered
load is ρ = λ/μ = 0.18, so the limiting state probabilities are

pn = (0.82)(0.18)n , n = 0, 1, 2, . . . . (12.89)

The probability that the toll booth is idle is p0 = 0.82.

The M/M/∞ Queue

In an M/M/∞ queue, the arrivals are a Poisson process of rate λ, independent of the state of
the queue. The service time of a customer is an exponential random variable with parameter
μ, independent of the system state. These facts are the same as for the M/M/1 queue. The
difference is that with an infinite number of servers, each arriving customer is immediately
served without waiting. When n customers are in the system, all n customers are in service
and the system departure rate is nμ. Although we still refer to μ as the service rate of the
M/M/∞ queue, we must keep in mind that μ is only the service rate of each individual
customer. The Markov chain describing this queue is shown in Figure 12.7.

Theorem 12.27 The M/M/∞ queue with arrival rate λ > 0 and service rate μ > 0 has limiting state
probabilities

pn =
{

ρne−ρ/n! n = 0, 1, 2, . . . ,

0 otherwise,

where ρ = λ/μ.

Proof Theorem 12.24 implies that the limiting state probabilities satisfy pn = (ρ/n)pn−1 where
ρ = λ/μ. This implies pn = p0(ρ

n/n!). The requirement that
∑∞

n=0 pn = 1 yields

p0

(
1 + ρ + ρ

2! + ρ3

3! + · · ·
)

= p0eρ = 1. (12.90)

Hence, p0 = e−ρ and the theorem follows.

Unlike the M/M/1 queue, the condition λ < μ is unnecessary for the M/M/∞ queue.
The reason is that even if μ is very small, a sufficiently large backlog of n customers will
yield a system service rate nμ greater than the arrival rate λ.
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Figure 12.8 The Markov chain for the M/M/c/c queue.

Example 12.32 At a beach in the summer, swimmers venture into the ocean as a Poisson process
of rate 300 swimmers per hour. The time a swimmer spends in the ocean is an
exponential random variable with expected value of 20 minutes. Find the limiting state
probabilities of the number of swimmers in the ocean.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We model the ocean as an M/M/∞ queue. The arrival rate is λ = 300 swimmers
per hour. Since 20 minutes is 1/3 hour, the expected service time of a customer is
1/mu = 1/3 hours. Thus the ocean is an M/M/∞ queue with ρ = λ/μ = 100. By
Theorem 12.27, the limiting state probabilities are

pn =
{

100ne−100/n! n = 0, 1, 2, . . . ,

0 otherwise.
(12.91)

The expected number of swimmers in the ocean at a random time is
∑∞

n=0 npn = 100
swimmers.

The M/M/c/c Queue

The M/M/c/c queue has c servers and a capacity for c customers in the system. Customers
arrive as a Poisson process of rate λ. When the system has c − 1 or fewer customers in
service, a new arrival immediately goes into service. When there are c customers in the
system, new arrivals are blocked and never enter the system. A customer admitted to the
system has an exponential (μ) service time. The Markov chain for the M/M/c/c queue is
essentially the same as that of the M/M/∞ queue except that the state space is truncated
at c customers. The Markov chain is shown in Figure 12.8.

Theorem 12.28 For the M/M/c/c queue with arrival rate λ and service rate μ, the limiting state proba-
bilities satisfy

pn =
⎧⎨
⎩

ρn/n!∑c
j=0 ρ j/j ! j = 0, 1, . . . , c,

0 otherwise,

where ρ = λ/μ.

Proof By Theorem 12.24, for 1 ≤ n ≤ c, pnnμ = pn−1λ. This implies pn = (ρn/n!)p0. The
requirement that

∑c
n=0 pn = 1 yields

p0

(
1 + ρ + ρ2/2! + ρ3/3! + · · · + ρc/c!

)
= 1. (12.92)
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After a very long time, the number N in the queue will be modeled by the stationary
probabilities pn . That is, PN (n) = pn for n = 0, 1, . . .. The probability that a customer
is blocked is the probability that a new arrival finds the queue has c customers. Since the
arrival at time t is independent of the current state of the queue, a new arrival is blocked
with probability

PN (c) = ρc/c!∑c
k=0 ρk/k! . (12.93)

This result is called the Erlang-B formula and has many applications.

Example 12.33 A rural telephone switch has 100 circuits available to carry 100 calls. A new call is
blocked if all circuits are busy at the time the call is placed. Calls have exponential
durations with an expected length of 2 minutes. If calls arrive as a Poisson process of
rate 40 calls per minute, what is the probability that a call is blocked?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We can model the switch as an M/M/100/100 queue with arrival rate λ = 40, service
rate μ = 1/2, and load ρ = λ/μ = 80. The probability that a new call is blocked is

PN (100) = 80100/100!∑100
k=0 80k/k! = 0.0040. (12.94)

Example 12.34 One cell in a cellular phone system has 50 radio channels available to carry cellphone
calls. Calls arrive at a Poisson rate of 40 calls per minute and have an exponential
duration lasting 1 minute on average. What is the probability that a call is blocked?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We can model the cell as an M/M/50/50 queue with load ρ = 40. The probability that
a call is blocked is

PN (50) = 4050/50!∑50
k=0 40k/k! = 0.0187. (12.95)

More about Queues

In both the M/M/1 and M/M/∞ queues, the ratio ρ = λ/μ of the customer arrival rate to
the service rate μ completely characterizes the limiting state probabilities. This is typical
of almost all queues in which customers arrive as a Poisson process of rate λ and a customer
in service is served at rate μ. Consequently, ρ is called the load on the queue. In the case
of the M/M/1 queue, the limiting state probabilities fail to exist if ρ ≥ 1. In this case, the
queue will grow infinitely long because customers arrive faster than they are served.

For a queue, the limiting state probabilities are significant because they describe the
performance of the service facility. For a queue that has been operating for a very long
time, an arbitrary arrival will see a random number N of customers already in the system.
Since the queue has been functioning for a long time, the random variable N has a PMF
that is given by the limiting state probabilities for the queue. That is, PN (n) = pn for
n = 0, 1, . . .. Furthermore, we can use the properties of the random variable N to calculate
performance measures such as the average time a customer spends in the system.
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Example 12.35 For the M/M/1 queue with offered load ρ = λ/μ, find the PMF of N , the number of
customers in the queue. What is the expected number of customers E[N]? What is
the average system time of a customer?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For the M/M/1 queue, the stationary probability of state n is pn = (1 − ρ)ρn . Hence
the PMF of N is

PN (n) =
{

(1 − ρ)ρn n = 0, 1, 2, . . . ,

0 otherwise.
(12.96)

The expected number in the queue is

E [N] =
∞∑

n=0

n(1 − ρ)ρn = ρ

∞∑
n=1

n(1 − ρ)ρn−1 = ρ

1 − ρ
= λ

μ − λ
. (12.97)

When an arrival finds N customers in the system, the arrival must wait for each of
the N queued customers to be served. After that, the new arrival must have its own
service requirement satisfied. Using Yi to denote the service requirement of the i th
queued customer, and Y to denote the service needed by the new arrival, the system
time of the new arrival is

T = Y1 + · · · + YN + Y. (12.98)

We see that T is a random sum of iid random variables. Since the service times are
exponential (μ) random variables, E[Yi ] = E[Y ] = 1/μ. From Theorem 6.13,

E [T ] = E [Y ] E [N] + E [Y ] = E [N] + 1

μ
= 1

μ − λ
. (12.99)

Quiz 12.10 The M/M/c/∞ queue has c servers but infinite waiting room capacity. Arrivals occur as
a Poisson process of rate λ arrivals per second and service times measured in seconds are
exponential (μ) random variables. A new arrival waits for service only if all c servers are
busy at the time of arrival. Find the PMF of N, the number of customers in the queue after
a long period of operation.

12.11 Matlab

Matlab can be applied to Markov chains for calculation of probabilities such as the n-step
transition matrix or the stationary distribution, and also for simulation of systems described
by a Markov chain. In the following two subsections, we consider discrete-time Markov
chains and continuous-time chains separately.

Discrete-Time Markov Chains

We start by calculating an n-step transition matrix.

Example 12.36 Suppose in the disk drive of Example 12.3 that an IDLE system stays IDLE with
probability 0.95, goes to READ with probability 0.04, or goes to WRITE with probability
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0.01. From READ, the next state is READ with probability 0.9, otherwise the system
is equally likely to go to IDLE OR WRITE. Similarly, from WRITE, the next state is
WRITE with probability 0.9, otherwise the system is equally likely to go to IDLE OR
READ. Write a Matlab function markovdisk(n) to calculate the n-step transition
matrix. Calculate the 10-step transition matrix P(10).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function M = markkovdisk(n)
P= [0.95 0.04 0.01; ...

0.05 0.90 0.05; ...
0.05 0.05 0.90];

M=Pˆn;

» markovdisk(10)
ans =

0.6743 0.2258 0.0999
0.3257 0.4530 0.2213
0.3257 0.2561 0.4182

From the problem description, the state tran-
sition matrix is

P =
⎡
⎣0.95 0.04 0.01

0.05 0.90 0.05
0.05 0.05 0.90

⎤
⎦ . (12.100)

The program markovdisk.m simply em-
beds this matrix and calculates Pn . Execut-
ing markovdisk(10) produces the output
as shown.

Another natural application of Matlab is the calculation of the stationary distribution
for a finite Markov chain described by the state transition matrix P.

function pv = dmcstatprob(P)
n=size(P,1);
A=(eye(n)-P);
A(:,1)=ones(n,1);
pv=([1 zeros(1,n-1)]*Aˆ(-1))’;

From Theorem 12.11, we need to find the
vector π satisfying π ′(I−P) = 0 and π ′1 =
1. In dmcstatprob(P), the matrix A is
I−P, except we replace the first column by
the vector 1. The solution is π ′ = e′A−1

where e = [
1 0 · · · 0

]′.
Example 12.37 Find the stationary probabilities for the disk drive of Example 12.36.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

» P
P =

0.9500 0.0400 0.0100
0.0500 0.9000 0.0500
0.0500 0.0500 0.9000

» dmcstatprob(P)’
ans =

0.5000 0.3000 0.2000
»

As shown, it is a trivial exercise for
Matlab to find the stationary prob-
abilities of the simple 3-state chain of
the disk drive. It should be apparent
thatMatlab can easily solve far more
complicated systems.

We can also use the state transition matrix P to simulate a discrete-time Markov chain.
For an n-step simulation, the output will be the random sequence X0, . . . , Xn . Before
proceeding, it will be helpful to clarify some issues related to indexing vectors and matrices.
In Matlab, we use the matrix P for the transition matrix P. We have chosen to label
the states of the Markov chain 0, 1, . . . , K because in a variety of systems, most notably
queues, it is natural to use state 0 for an empty system. On the other hand, the Matlab
convention is to use x(1) for the first element in a vector x. As a result, P00, the 0, 0th
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function x=simdmc(P,p0,n)
K=size(P,1)-1; %highest no. state
sx=0:K; %state space
x=zeros(n+1,1); %initialization
if (length(p0)==1) %convert integer p0 to prob vector

p0=((0:K)==p0);
end
x(1)=finiterv(sx,p0,1); %x(m)= state at time m-1
for m=1:n,

x(m+1)=finiterv(sx,P(x(m)+1,:),1);
end

Figure 12.9 The function simdmc.m for simulating n steps of a discrete-time Markov chain with
state transition probability matrix P and initial state probabilities p0.

element of P, is represented in Matlab by P(1,1). Similarly,
[
Pi0 Pi1 · · · Pi K

]
,

the i th row of P, holds the conditional probabilities PXn+1|Xn ( j |i). However, these same
conditional probabilities appear in P(i+1,:), which is row i + 1 of P. Despite these
indexing offsets, it is fairly simple to implement a Markov chain simulation in Matlab.

The function x=simdmc(P,p0,n) simulates n steps of a discrete-time Markov chain
with state transition matrix P. The starting state is specified in p0. If p0 is simply an integer
i , then the system starts in state i at time 0; otherwise, if p0 is a state probability vector for
the chain, then the initial state at time 0 is chosen according to the probabilities of p0. The
output x is an N + 1-element vector that holds a sample path X0, . . . , X N of the Markov
chain. In Matlab, it is generally preferable to generate vectors using vector operations.
However, in simulating a Markov chain, we cannot generate Xn+1 until Xn is known and so
we must proceed sequentially. The primary step occurs in the use of finitepmf( ). We
recall from Section 2.10 that finiterv(sx,px,1) returns a sample value of a discrete
random variable which takes on value sx(i) with probability px(i). In simdmc.m,
P(x(n)+1,:), which is row x(n)+1 of P, holds the conditional transition probabilities
for state x(n+1) given that the current state is x(n). Proceeding sequentially, we
generate x(n+1) using the conditional pmf of x(n+1) given x(n).

Example 12.38 Simulate the router buffer of Example 12.18 for p = 0.48, buffer capacity c = 30
packets, and x0 = 20 packets initially buffered. Perform simulation runs for 40 and 400
time steps.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function x=simbuffer(p,c,x0,N)
P=zeros(c+1,c+1);
P(1,1)=1-p;
for i=1:c,

P(i,i+1)=p; P(i+1,i)=1-p;
end
P(c+1,c+1)=p;
x=simdmc(P,x0,N);

Based on the Markov chain in
Figure 12.3, almost all of the
simbuffer.m code is to set up
the transition matrix P. For starting
state x0 and N steps, the actual sim-
ulation requires only the command
simdmc(P,x0,N). Figure 12.10
shows two sample paths.
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Figure 12.10 Two simulation traces from Example 12.38.

Continuous-Time Chains

function pv = cmcprob(Q,p0,t)
%Q has zero diagonal rates
%initial state probabilities p0
K=size(Q,1)-1; %max no. state
%check for integer p0
if (length(p0)==1)

p0=((0:K)==p0);
end
R=Q-diag(sum(Q,2));
pv= (p0(:)’*expm(R*t))’;

For a continuous-time Markov chain,
cmcprob.m calculates the state proba-
bilities p(t) by a direct implementation
of matrix exponential solution of Equa-
tion (12.81).

Example 12.39 Assuming the air conditioner of Example 12.28 is off at time t = 0, calculate the state
probabilities at time t = 3.3 minutes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The program aircondprob.m performs the calculation for arbitrary initial state (or
state probabilities) p0 and time t . For the specified conditions, here is the output:

function pv=aircondprob(p0,t)
Q=[ 0 1/3 0 ; ...

1/4 0 1/4; ...
1/6 1/3 0];

pv=cmcprob(Q,p0,t);

» aircondprob(0,3.3)’
ans =

0.5024 0.3744 0.1232
»

Finding p j (t) for an arbitrary time t may not be particularly instructive. Often, more can be
learned using Theorem 12.23 to find the limiting state probability vector p. We implement
the Matlab function cmcstatprob(Q) for this purpose.
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function pv = cmcstatprob(Q)
%Q has zero diagonal rates
R=Q-diag(sum(Q,2));
n=size(Q,1);
R(:,1)=ones(n,1);
pv=([1 zeros(1,n-1)]*Rˆ(-1))’;

As we did in the discrete Markov chain,
we replace the first column of R with[
1 · · · 1

]′ to impose the constraint that
the state probabilities sum to 1.

Example 12.40 Find the stationary probabilities of the air conditioning system of Example 12.28.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

» Q=[0 1/3 0 ; ...
1/4 0 1/4; ...
1/6 1/3 0];

» cmcstatprob(Q)’
ans =

0.4000 0.4000 0.2000

Although this problem is easily solved by
hand, it is also an easy problem for Mat-
lab. Of course, the value of Matlab is the
ability to solve much larger problems.

Finally, we wish to simulate continuous-time Markov chains. This is more complicated
than for discrete-time chains. For discrete-time systems, a sample path is completely
specified by the random sequence of states. For a continuous-time chain, this is insufficient.
For example, consider the 2 state ON/OFF continuous-time Markov chain. Starting in
state 0 at time t = 0, the state sequence is always 0, 1, 0, 1, 0 . . .; what distinguishes one
sample path from another is how long the system spends in each state. Thus a complete
characterization of a sample path specifies

• the sequence of states X0, X1, X2, . . . , X N ,

• the sequence of state visit times T0, T1, T2, . . . , TN .

We generate these random sequences with the functions S=simcmcstep(Q,p0,n)
and S=simcmc(Q,p0,T) shown in Figure 12.11. The function simcmcstep.m
produces n steps of a continuous-time Markov chain with rate transition matrix Q. Using
simcmcstep.m as a building block, simcmc(Q,p0,T) produces a sample path with
a sufficient number, N , of state transitions to ensure that the simulation runs for time T .
Note that N , the number of state transitions in a simulation of duration T , is a random
variable. For repeated simulation experiments, simcmc(Q,p0,T) is preferable because
each simulation run has the same time duration and comparing results from different runs
is more straightforward.

As in the discrete-time simulation simdmc.m, if parameter p0 is an integer, then it
is the starting state of the simulation; otherwise, p0 must be a state probability vector for
the initial state. The output S is a (N + 1) × 2 matrix. The first column, S(:,1), is
the vector of states

[
X0 X1 · · · X N

]′. The second column, S(:,2), is the vector of

visit times
[
T0 T1 · · · TN

]′.
The code for simcmc.m is somewhat ugly in that it tries to guess a number n such

that n transitions are sufficient for the simulation to run for time T . The guess n is based
on the stationary probabilities and a calculated average state transition rate. If the n-step
simulation, simcmcstep(Q,p0,n), runs past time T , the output is truncated to time T .
If n transitions are not enough, an additional n′ = �n/2
 are simulated. Additional segments
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function ST=simcmc(Q,p0,T);
K=size(Q,1)-1; max no. state
%calc average trans. rate
ps=cmcstatprob(Q);
v=sum(Q,2); R=ps’*v;
n=ceil(0.6*T/R);
ST=simcmcstep(Q,p0,2*n);
while (sum(ST(:,2))<T),

s=ST(size(ST,1),1);
p00=Q(1+s,:)/v(1+s);
S=simcmcstep(Q,p00,n);
ST=[ST;S];

end
n=1+sum(cumsum(ST(:,2))<T);
ST=ST(1:n,:);
%truncate last holding time
ST(n,2)=T-sum(ST(1:n-1,2));

function S=simcmcstep(Q,p0,n);
%S=simcmcstep(Q,p0,n)
% Simulate n steps of a cts
% Markov Chain, rate matrix Q,
% init. state probabilities p0
K=size(Q,1)-1; %max no. state
S=zeros(n+1,2);%init allocation
%check for integer p0
if (length(p0)==1)

p0=((0:K)==p0);
end
v=sum(Q,2); %state dep. rates
t=1./v;
P=diag(t)*Q;
S(:,1)=simdmc(P,p0,n);
S(:,2)=t(1+S(:,1)) ...

.*exponentialrv(1,n+1);

Figure 12.11 The Matlab functions simcmcstep and simcmc for simulation of continuous-
time Markov chains.

of n′ simulation steps are appended until a simulation of duration T is assembled. Note that
care is taken so that state transitions across the boundaries of the simulation segments have
the correct transition probabilities. The program simcmc.m is not optimized to minimize
its run time. We encourage you to examine and improve the code if you wish.

The real work of simcmc.m occurs in simcmcstep.m, which first generates the
vectors

[
ν0 · · · νK

]′ of state departure rates and
[
t0 · · · tK

]′ where ti = 1/νi is
the average time the system spends in a visit to state i . We recall that qi j /νi is the con-
ditional probability that the next system state is j given the current state is i . Thus we
create a discrete-time state transition matrix P by dividing the i th row of Q by νi . We then
use P in a discrete-time simulation to produce the state sequence

[
X0 X1 · · · X N

]′,
stored in the column S(:,1). To generate the visit times, we first create the vector[
tX0 tX1 · · · tX N

]′, stored in the Matlab vector t(1+S(:,1)), where the compo-
nent tXi is the conditional average duration of visit i ,given that visit i was in state Xi . Lastly,
we recall that if Y is an exponential (1) random variable, then W = tY is an exponential
(1/t) random variable. To take advantage of this, we generate the vector

[
Y0 · · · YN

]′
of N + 1 iid exponential (1) random variables. Finally, the vector

[
T0 · · · TN

]′ with
Tn = tXn Yn has the exponential visit times with the proper parameters. In particular, if
Xn = i , then Tn is an exponential (νi ) random variable. In terms of Matlab, the vector[
T0 · · · TN

]′ is stored in the column S(:,2).
To display the result S of a simulation generated by either simcmc or simcmcstep,

we use the function simplot(S,xlabel,ylabel)which uses the stairs function
to plot the state changes as a function of time. The optional arguments xlabel and
ylabel label the x and y plot axes.

Example 12.41 Simulate the m/M/c/c blocking queue with the following system parameters:

(a) λ = 8 arrivals/minute, c = 10 servers, μ = 1 min−1, T = 5 minutes.
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Figure 12.12 Simulation runs of the M/M/c/c queue for Example 12.41.

(b) λ = 16 arrivals/minute, c = 20 servers, μ = 1, T = 20 minutes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The function simmmcc implements a simulation of the M/M/c/c queue.

function ...
S=simmmcc(lam,mu,c,p0,T);

%Simulate M/M/c/c queue, time T.
%lam=arr. rate, mu=svc. rate
%p0=init. state distribution
%c= number of servers
Q=zeros(c+1,c+1);
for i=1:c,

Q(i,i+1)=lam;
Q(i+1,i)=(i-1)*mu;

end
S=simcmc(Q,p0,T);

The program calculates the rate
transition matrix Q and calls
S=simcmc(Q,0,20) to per-
form the simulation for 20 time
units. Sample simulation runs
for the M/M/c/c queue appear
in Figure 12.12. The output of
Figure 12.12(a) is generated with
the commands:
lam=8;mu=1.0;c=10;T=5;
S=simmmcc(lam,mu,c,0,T);
simplot(S,’t’, ’X(t)’);

The simulation programs simdmc and simcmc can be quite useful because they
simulate a system given a state transition matrix P or Q that one is likely to have coded
in order to calculate the stationary probabilities. However, these simulation programs do
suffer from serious limitations. In particular, for a system with K + 1 states, complete
enumeration of all elements of a K + 1 × K + 1 state transition matrix is needed. This
can become a problem because K can be very large for practical problems. In this case,
complete enumeration of the states becomes impossible.
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Matlab Function Output/Explanation

p = dmcstatprob(P) stationary probability vector of a discrete MC
x = simdmc(P,p0,n) n step simulation of a discrete MC
p = cmcprob(Q,p0,t) state prob. vector at time t for a continuous MC
p = cmcstatprobQ stationary prob. vector for a continuous MC
S = simcmcstep(Q,p0,n) n step simulation of a continuous-time Markov chain
S = simcmc(Q,p0,T) simulation of a continuous MC for time T
simplot(x,xlabel,ylabel) stairs plot for discrete-time state sequence x
simplot(S,xlabel,ylabel) stairs plot for simcmc output S

In these Matlab functions, P is a transition probability matrix for a discrete-time Markov
chain, p0 is an initial state probability vector, p is a stationary state probability vector,
and Q is a transition rate matrix for a continuous-time Markov chain.

Table 12.1 Matlab functions for Markov chains.

Chapter Summary

A Markov chains is a stochastic process in which the memory of the system is completely
summarized by the current system state.

• Discrete-time Markov chains are discrete-value random sequences such that the cur-
rent value of the sequence summarizes the past history of the sequence with respect to
predicting the future values.

• Limiting state probabilities comprise a probability model of state occupancy in the distant
future. The limiting state probabilities may depend the initial system state.

• Stationary probabilities comprise a probability model that does not change with time.
Limiting state probabilities are stationary probabilities.

• An aperiodic, irreducible, finite discrete-time Markov chain has unique limiting state
probabilities, independent of the initial system state.

• Continuous-time Markov chains are continuous-time, discrete-value processes in which
the time spent in each state is an exponential random variable..

• An irreducible, positive recurrent continuous-time Markov chain has unique limiting
state probabilities.

• Matlab makes it easy to calculate probabilities for Markov chains. A collection of
Matlab functions appears in Table 12.1.

• Further Reading: Markov chains and queuing theory comprise their own branches of
mathematics. [Ros03], [Gal96] and [Kle75] are entry points to these subjects for students
who want to go beyond the scope of this book.
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Problems
Difficulty: • Easy � Moderate � Difficult �� Experts Only

12.1.1• Find the state transition matrix P for the Markov
chain:

0

1 2

½

½

½

½ ½

¼

¼

12.1.2• In a two-state discrete-time Markov chain, state
changes can occur each second. Once the system is
OFF, the system stays off for another second with
probability 0.2. Once the system is ON, it stays on
with probability 0.1. Sketch the Markov chain and
find the state transition matrix P.

12.1.3• The packet voice model of Example 12.2 can be en-
hanced by examining speech in mini-slots of 100
microseconds duration. On this finer timescale, we
observe that the ON periods are interrupted by mini-
OFF periods. In the OFF state, the system goes to
ON with probability 1/14,000. In the ON state,
the system goes to OFF with probability 0.0001, or
goes to mini-OFF with probability 0.1; otherwise,
the system remains ON. In the mini-OFF state, the
system goes to OFF with probability 0.0001 or goes
to ON with probability 0.3; otherwise, it stays in
the mini-OFF state. Sketch the Markov chain with
states (0) OFF, (1) ON, and (2) mini-OFF. Find the
state transition matrix P.

12.1.4• Each second, a laptop computer’s wireless LAN
card reports the state of the radio channel to an ac-
cess point. The channel may be (0) poor, (1) fair,
(2) good, or (3) excellent. In the poor state, the next
state is equally likely to be poor or fair. In states 1,
2, and 3, there is a probability 0.9 that the next sys-
tem state will be unchanged from the previous state
and a probability 0.04 that the next system state will
be poor. In states 1 and 2, there is a probability 0.6
that the next state is one step up in quality. When
the channel is excellent, the next state is either good
with probability 0.04 or fair with probability 0.02.
Sketch the Markov chain and find the state transition
matrix P.

12.1.5
�

For Example 12.3, suppose each read or write op-
eration reads or writes an entire file and that files
contain a geometric number of sectors with mean
50. Further, suppose idle periods last for a geo-
metric time with mean 500. After an idle period,
the system is equally likely to read or write a file.
Following the completion of a read, a write follows
with probability 0.8. However, on completion of a
write operation, a read operation follows with prob-
ability 0.6. Label the transition probabilities for the
Markov chain in Example 12.3.

12.1.6
�

The state of a discrete-time Markov chain with tran-
sition matrix P can change once each second; Xn de-
notes the system state after n seconds. An observer
examines the system state every m seconds, pro-
ducing the observation sequence X̂0, X̂1, . . . where
X̂n = Xmn . Is X̂0, X̂1, . . . a Markov chain? If so,
find the state transition matrix P̂.

12.1.7
�

The state of a discrete-time Markov chain with
transition matrix P can change once each second;
Xn ∈ {0, 1, . . . , K } denotes the system state after
n seconds. An observer examines the system state
at a set of random times T0, T1, . . .. Given an iid
random sequence K0 , K1, . . . with PMF PK (k), the
random inspection times are given by T0 = 0 and
Tm = Tm−1 + Km−1 for m ≥ 1. Is the observation
sequence Yn = XTn a Markov chain? If so, find the

transition matrix P̂.

12.1.8
��

Continuing Problem 12.1.7, suppose the observer
waits a random time that depends on the most re-
cent state observation until the next inspection. The
incremental time Kn until inspection n +1 depends
on the state Yn ; however, given Yn , Kn is condi-
tionally independent of K0, . . . , Kn−1. In particu-
lar, assume that PKn |Yn (k|y) = gy(k), where each
gy(k) is a valid PMF satisfying gy(k) ≥ 0 and∑K

k=0 gy(k) = 1. Is Y0, Y1, . . . a Markov chain?

12.2.1• Find the n-step transition matrix P(n) for the
Markov chain of Problem 12.1.2.

12.2.2
�

Find the n-step transition matrix Pn for the Markov
chain of Problem 12.1.1.

12.3.1• Consider the packet voice system in Example 12.8.
If the speaker is silent at time 0, how long does it
take until all components p j (n) of p(n) are within
1% of the stationary probabilities π j .
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12.3.2
�

A Markov chain with transition probabilities Pi j has
an unusual state k such that Pik = q for every state
i . Prove that the probability of state k at any time
n ≥ 1 is pk(n) = q.

12.3.3
�

A wireless packet communications channel suffers
from clustered errors. That is, whenever a packet
has an error, the next packet will have an error with
probability 0.9. Whenever a packet is error-free,
the next packet is error-free with probability 0.99.
In steady-state, what is the probability that a packet
has an error?

12.4.1• For the Markov chain in Problem 12.2.2, find all
the ways that we can replace a transition Pi j with
a new transition Pi j ′ = Pi j to create an aperiodic
irreducible Markov chain.

12.4.2• What is the minimum number of transitions Pi j > 0
that must be added to the Markov chain in Exam-
ple 12.11 to create an irreducible Markov chain?

12.4.3
�

Prove that if states i and j are positive recurrent
and belong to the same communicating class, then
E[Ti j ] < ∞.

12.5.1• For the transition probabilities found in Prob-
lem 12.1.5, find the stationary distribution π .

12.5.2• Find the stationary probability vector π for the
Markov chain of Problem 12.2.2.

12.5.3• Consider a variation on the five-position random
walk of Example 12.12 such that:

•In state 0, the system goes to state 1 with prob-
ability P01 = p or stays in state 0 with proba-
bility P00 = 1 − p.

•In state 4, the system with stays there with
probability p or goes to state 3 with probabil-
ity 1 − p.

Sketch the Markov chain and find the stationary
probability vector.

12.5.4
�

In this problem, we extend the random walk of Prob-
lem 12.5.3 to have positions 0, 1, . . . , K . In partic-
ular, the state transitions are

Pi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − p i = j = 0,

p j = i + 1; i = 0, . . . , K − 1,

p i = j = K ,

1 − p j = i − 1; i = 1, . . . , K ,

0 otherwise.

Sketch the Markov chain and calculate the station-
ary probabilities.

12.5.5
�

A circular game board has K spaces numbered
0, 1, . . . , K − 1. Starting at space 0 at time n = 0,
a player rolls a fair six-sided die to move a token.
Given the current token position Xn , the next token
position is Xn+1 = (Xn + Rn) mod K where Rn
is the result of the player’s nth roll. Find the station-
ary probability vector π = [

π0 · · · πK−1
]′.

12.5.6
�

A very busy bank has two drive-thru teller win-
dows in series served by a single line. When there
is a backlog of waiting cars, two cars begin ser-
vice simultaneously. The front customer can leave
if she completes service before the rear customer.
However, if the rear customer finishes first, he can-
not leave until the front customer finishes. Conse-
quently, the teller at each window will sometimes
be idle if their customer completes service before
the customer at the other window. Assume there is
an infinite backlog of waiting cars and that service
requirements of the cars (measured in seconds) are
geometric random variables with a mean of 120 sec-
onds. Draw a Markov chain that describes whether
each teller is busy. What is the stationary probabil-
ity that both tellers are busy?

12.5.7
�

Repeat Problem 12.5.6 under the assumption that
each service time is equally likely to last either ex-
actly one minute or exactly two minutes.

12.5.8
��

Prove that for an aperiodic, irreducible finite
Markov chain there exists a constant δ > 0 and
a time step τ such that

min
i, j

Pi j (τ) = δ.

12.5.9
��

To prove Theorem 12.11, complete the following
steps.

(a) Define

m j (n) = min
i

Pi j (n),

M j (n) = max
i

Pi j (n).

Show that m j (n) ≤ m j (n+1) and M j (n+1) ≤
M j (n).

(b) To complete the proof, we need to show that
� j (n) = M j (n) − m j (n) goes to zero. First,
show that

� j (n+τ) = max
α,β

∑
k

(
Pαk(τ) − Pβk(τ)

)
Pkj (n).
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(c) Define Q = {k|Pαk(τ) ≥ Pβk(τ)} and show
that

∑
k

(Pαk(τ) − Pβk(τ))Pkj (n)

≤ � j (n)
∑
k∈Q

(Pαk(τ) − Pβk(τ)).

(d) Show that step (c) combined with the result of
Problem 12.5.8 implies

� j (n + τ) ≤ (1 − δ)� j (n).

(e) Conclude that limn→∞ Pi j (n) = π j for all i .

12.6.1
�

Consider an irreducible Markov chain. Prove that
if the chain is periodic, then Pii = 0 for all states i .
Is the converse also true? If Pii = 0 for all i , is the
irreducible chain periodic?

12.6.2
��

Let N be an integer-valued positive random variable
with range SN = {1, . . . , K + 1}. We use N to gen-
erate a Markov chain with state space {0, . . . , K } in
the following way. In state 0, a transition back to
state 0 occurs with probability PN (1). When the
system is in state i ≥ 0, either a transition to state
i + 1 occurs with probability

Pi,i+1 = P [N > i + 1/N > i ] ,

or a transition to state 0 occurs with probability

Pi,0 = P [N = i + 1/N > i] .

Find the stationary probabilities. Compare your an-
swer to the solution of Quiz 12.5.

12.6.3
�

A particular discrete-time finite Markov chain has
the property that the set of states can be partioned
into classes {C0, C2, . . . , CL−1} such that for all
states i ∈ Cl , Pi j = 0 for all j �∈ Cl+1 mod L .
Prove that all states have period d = L .

12.6.4
�

For the periodic chain of Problem 12.6.3, either
prove that the chain has a single recurrent commu-
nicating class or find a counterexample to show this
is not always the case.

12.6.5
�

In this problem, we prove a converse to the claim of
Problem 12.6.3. An irreducible Markov chain has
period d . Prove that the set of states can be partioned
into classes {C0, C2, . . . , Cd−1} such that for all
states i ∈ Cl , Pi j = 0 for all j �∈ Cl+1 mod d .

12.8.1• Consider a discrete random walk with state space
{0, 1, 2, . . .} similar to Example 12.4 except there

is a barrier at the origin so that in state 0, the system
can remain in state 0 with probability 1 − p or go
to state 1 with probability p. In states i > 0, the
system can go to state i − 1 with probability 1 − p
or to state i with probability p. Sketch the Markov
chain and find the stationary probabilities.

12.8.2
�

At an airport information kiosk, customers wait in
line for help. The customer at the front of the line
who is actually receiving assistance is called the cus-
tomer in service. Other customers wait in line for
their turns. The queue evolves under the following
rules.

•If there is a customer in service at the start of
the one-second interval, that customer com-
pletes service (by receiving the information
she needs) and departs with probability q, in-
dependent of the number of past seconds of
service she has received; otherwise that cus-
tomer stays in service for the next second.

•In each one-second interval, a new customer
arrives with probability p; otherwise no new
customer arrives. Whether a customer arrives
is independent of both the number of cus-
tomers already in the queue and the amount
of service already received by the customer in
service.

Using the number of customers in the system as
a system state, construct a Markov chain for this
system. Under what conditions does a stationary
distribution exist? Under those conditions, find the
stationary probabilities.

12.9.1• A tiger is always in one of three states: (0) sleeping,
(1) hunting, and (2) eating. A tiger’s life is fairly
monotonous, and it always goes from sleeping to
hunting to eating and back to sleeping. On average,
the tiger sleeps for 3 hours, hunts for 2 hours, and
eats for 30 minutes. Assuming the tiger remains in
each state for an exponential time, model the tiger’s
life by a continuous-time Markov chain. What are
the stationary probabilities?

12.9.2• In a continuous-time model for the two-state packet
voice system, talkspurts (active periods) and silent
periods have exponential durations. The average
silent period lasts 1.4 seconds and the average talk-
spurt lasts 1 second. What are the limiting state
probabilities? Compare your answer to the limiting
state probabilities in the discrete-time packet voice
system of Example 12.8.
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12.9.3• Consider a continuous-time Markov chain with
states {1, . . . , k}. From every state i , the transition
rate to any state j is qi j = 1. What are the limiting
state probabilities?

12.9.4• Let N0(t) and N1(t) be independent Poisson pro-
cesses with rates λ0 and λ1. Construct a Markov
chain that tracks whether the most recent arrival was
type 1 or type 2. Assume the system starts at time
t = 0 in state 0 since there were no previous ar-
rivals. In the distant future, what is the probability
that the system is in state 1?

12.10.1• For the M/M/c/c queue with c = 2 servers, what
is the maximum normalized load ρ = λ/μ such that
the blocking probability is no more than 0.1?

12.10.2• For the telephone switch in Example 12.33, sup-
pose we double the number of circuits to 200 in
order to serve 80 calls per minute. Assuming the
average call duration remains at 2 minutes, what is
the probability that a call is blocked?

12.10.3• Find the limiting state distribution of the M/M/1/c
queue that has one server and capacity c.

12.10.4
�

A set of c toll booths at the entrance to a highway
can be modeled as a c server queue with infinite ca-
pacity. Assuming the service times are independent
exponential random variables with mean μ = 1 sec-
ond, sketch a continuous-time Markov chain for the
system. Find the limiting state probabilities. What
is the maximum arrival rate such that the limiting
state probabilities exist?

12.10.5
�

Consider a grocery store with two queues. At either
queue, a customer has an exponential service time
with an expected value of 3 minutes. Customers
arrive at the two queues as a Poisson process of rate
λ customers per minute. Consider the following
possibilities:

(a) Customers choose a queue at random so each
queue has a Poisson arrival process of rate λ/2.

(b) Customers wait in a combined line. When a
customer completes service at either queue, the
customer at the front of the line goes into service.

For each system, calculate the limiting state proba-
bilities. Under which system is the average system
time smaller?

12.10.6
�

In a last come first served (LCFS) queue, the most
recent arrival is put at the front of the queue and
given service. If a customer was in service when an
arrival occurs, that customer’s service is discarded

when the new arrival goes into service. Find the
limiting state probabilities for this queue when the
arrivals are Poisson with rate λ and service times
are exponential with mean 1/μ.

12.10.7
�

In a cellular phone system, each cell must handle
new call attempts as well as handoff calls that orig-
inated in other cells. Calls in the process of handoff
from one cell to another cell may suffer forced ter-
mination if all the radio channels in the new cell are
in use. Since dropping, which is another name for
forced termination, is considered very undesirable,
a number r of radio channels are reserved for hand-
off calls. That is, in a cell with c radio channels,
when the number of busy circuits exceeds c − r ,
new calls are blocked and only handoff calls are ad-
mitted. Both new calls and handoff calls occupy a
radio channel for an exponential duration lasting 1
minute on average. Assuming new calls and hand-
off calls arrive at the cell as independent Poisson
processes with rates λ and h calls/minute, what is
the probability P[H ] that a handoff call is dropped?

12.11.1
�

In a self-fulfilling prophecy, it has come to pass that
for a superstitious basketball player, his past free
throws influence the probability of success of his
next attempt in the following curious way. After n
consecutive successes, the probability of success on
the next free throw is

αn = 0.5 + 0.1 min(n, 4).

Similarly, after n consecutive failures, the probabil-
ity of failure is also αn = 0.5 + 0.1 min(n, 4). At
the start of the game, the player has no past history
and so n = 0. Identify a Markov chain for the sys-
tem using state space {−4,−3, . . . , 4} where state
n > 0 denotes n consecutive successes and state
n < 0 denotes |n| consecutive misses. With a few
seconds left in a game, the player has already at-
tempted 10 free throws in the game. What is the
probability that his eleventh free will be successful.

12.11.2
�

A store employs a checkout clerk and a manager.
Customers arrive at the checkout counter as a Pois-
son process of rate λ and have independent expo-
nential service times with a mean of 1 minute. As
long as the number of checkout customers stays be-
low five, the clerk handles the checkout. However,
as soon as there are five customers in the check-
out, the manager opens a new checkout counter.
At that point, both clerk and manager serve the
customers until the checkout counters have just
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a single customer. Let N denote the number of
customers in the queue in steady-state. For each
λ ∈ {0.5, 1, 1.5}, answer the following questions
regarding the steady-state behavior of the checkout
queue:

(a) What is E[N]?
(b) What is the probability, P[W ], that the manager

is working the checkout?

Hint: Although the chain is countably infinite, a bit
of analysis and solving a system of nine equations
is sufficient to find the stationary disribution.

12.11.3
�

At an autoparts store, let Xn denote how many brake
pads are in stock at the start of day n. Each day, the
number of orders for brake pads is a Poisson random
variable K with mean E[K ] = 50. If K ≤ Xn , then
all orders are fulfilled and K pads are sold during
the day. If K > Xn , then Xn pads are sold but
K − Xn orders are lost. If at the end of the day, the
number of pads left in stock is less than 60, then 50
additional brake pads are delivered overnight. Iden-
tify the transition probabilities for the Markov chain
Xn . Find the stationary probabilities. Let Y denote
the number of pads sold in a day. What is E[Y ]?

12.11.4
�

The Veryfast Bank has a pair of drive-thru teller win-
dows in parallel. Each car requires an independent
exponential service time with a mean of 1 minute.
Cars wait in a common line such that the car at the
head of the waiting line enters service with the next
available teller. Cars arrive as a Poisson process of
rate 0.75 car per minute, independent of the state of
the queue. However, if an arriving car sees that there
are six cars waiting (in addition to the cars in ser-
vice), then the arriving customer becomes discour-
aged and immediately departs. Identify a Markov
chain for this system, find the stationary probabili-
ties, and calculate the average number of cars in the
system.

12.11.5
�

In the game of Risk, adjacent countries may attack
each other. If the attacking county has a armies,
the attacker rolls min(a − 1, 3) dice. If the de-
fending country has d armies, the defender rolls
min(d −1, 2) dice. The highest rolls of the attacker
and the defender are compared. If the attacker’s roll
is strictly greater, then the defender loses 1 army;
otherwise the attacker loses 1 army. In the event that
a > 1 and d > 1, the attacker and defender com-
pare their second highest rolls. Once again, if the
attacker’s roll is strictly higher, the defender loses

1 army; otherwise the attacker loses 1 army. Sup-
pose the battle ends when either the defender has 0
armies or the attacker is reduced to 1 army. Given
that the attacker starts with a0 armies and the de-
fender starts with d0 armies, what is the probability
that the attacker wins? Find the answer for a0 = 50
and d0 ∈ {10, 20, 30, 40, 50, 60}

12.11.6
�

The Veryfast Bank has a pair of drive-thru teller win-
dows in parallel. Each car requires an independent
exponential service time with a mean of 1 minute.
Because of a series of concrete lane dividers, an
arriving car must choose a waiting line. In partic-
ular, a car always chooses the shortest waiting line
upon arrival. Cars arrive as a Poisson process of
rate 0.75 car per minute, independent of the state
of the queue. However, if an arriving car sees that
each teller has at least 3 waiting cars, then the ar-
riving customer becomes discouraged and imme-
diately departs. Identify a Markov chain for this
system, find the stationary probabilities, and calcu-
late the average number of cars in the system. Hint:
The state must track the number of cars in each line.

12.11.7
��

Consider the following discrete-time model for a
traffic jam. A traffic lane is a service facility
consisting of a sequence of L spaces numbered
0, 1, . . . , L −1. Each of the L spaces can be empty
or hold one car. One unit of time, a “slot,” is the
time required for a car to move ahead one space.
Before space 0, cars may be waiting (in an “exter-
nal” queue) to enter the service facility (the traffic
lane). Cars in the queue and cars occupying the
spaces follow these rules in the transition from time
n to n + 1:

•If space l + 1 is empty, a car in space l moves
to space l + 1 with probability q > 0.

•If space l + 1 is occupied, then a car in space
l cannot move ahead.

•A car at space L − 1 departs the system with
probability q.

•If space 0 is empty, a car waiting at the head
of the external queue moves to space 0.

•In each slot, an arrival (another car) occurs
with probability p, independent of the state of
the system. If the external queue is empty at
the time of an arrival, the new car moves imme-
diately into space 0; otherwise the new arrival
joins the external queue. If the external queue
already has c customers, the new arrival is dis-
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carded (which can be viewed as an immediate
departure).

Find the stationary distribution of the system for
c = 30 and q = 0.9. Find and plot the average
number E[N] of cars in the system in steady-state
as a function of the arrival rate p for L = 1, 2, . . ..

Hints: Note that the state of the system will
need to track both the positions of the cars in the
L spaces as well as the number of cars in the ex-
ternal queue. A state description vector would be
(k, y0, . . . , yL−1) where k is the number of cars
in the external queue and yi ∈ {0, 1} is a binary
indicator for whether space i holds a car. To re-
duce this descriptor to a state index, we suggest that
(k, y0, . . . , yL−1) correspond to state

i = i(k, y0, y1, . . . , yL−1) = k2L +
L−1∑
i=0

yi 2
i .

12.11.8
��

The traffic jam of Problem 12.11.7 has the fol-
lowing continuous analogue. As in the discrete-
time system, the system state is still specified by
(k, y0, . . . , yL−1) where k is the number in the ex-
ternal queue and yi indicates the occupancy of space
i . Each of the L spaces can be empty or hold one car.
In the continuous-time system, cars in the queue and
cars occupying the spaces follow these rules:

•If space l + 1 is empty, a car in space l moves
to space l + 1 at rate μ. Stated another way, at
any instant that space l +1 is empty, the resid-
ual time a car spends in space i is exponential
with mean 1/μ.

•If space l + 1 is occupied, then a car in space
l cannot move ahead.

•A car at space L − 1 departs the system with
rate μ.

•If space 0 is empty, a car waiting at the head
of the external queue moves to space 0.

•Arrivals of cars occur as an independent (of
the system state) Poisson process of rate λ If
the external queue is empty at the time of an
arrival, the new car moves immediately into
space 0; otherwise the new arrival joins the
external queue. If the external queue already
has c customers, the new arrival is discarded.

Find the stationary distribution of the system for
c = 30 and μ = 1.0. Pind and plot the aver-
age number E[K ] of cars in the external queue in
steady-state as a function of the arrival rate λ for

L = 1, 2, . . .. The same hints apply as for the dis-
crete case.

12.11.9
��

The game of Monopoly has 40 spaces. It is of some
interest to Monopoly players to know which spaces
are the most popular. For our purposes, we will as-
sume these spaces are numbered 0 (GO) through 39
(Boardwalk). A player starts at space 0. The sum K
of two independent dice throws, each a discrete uni-
form (1, 6) random variable, determines how many
spaces to advance. In particular, the position Xn
after n turns obeys

Xn+1 = (Xn + K ) mod 40.

However, there are several complicating factors.

•After rolling “doubles” three times in a row,
the player is sent directly to space 10 (Jail).
Or, if the player lands on space 30 (Go to Jail),
the player is immediately sent to Jail.

•Once in Jail, the player has several options to
continue from space 10.

–Pay a fine, and roll the dice to advance.

–Roll the dice and see if the result is dou-
bles and then advance the amount of the
doubles. However, if the roll is not dou-
bles, then the player must remain in Jail
for the turn. After three failed attempts at
rolling doubles, the player must pay the
fine and simply roll the dice to advance.

Note that player who lands on space 10 via an
ordinary roll is “Just Visiting” and the special
rules of Jail do not apply.

•Spaces 7, 22, and 36 are labeled “Chance.”
When landing on Chance, the player draws
1 of 15 cards, including 10 cards that spec-
ify a new location. Among these 10 cards, 6
cards are in the form “Go to n” where n ∈
{0, 5, 6, 19, 10, 39}. Note that the rule “Go to
10” sends the player to Jail where those spe-
cial rules take effect. The remaining 4 cards
implement the following rules.

–Go back three spaces

–Go to nearest utility: from 7 or 36, go to
12; from 22 go to 28.

–Go to nearest railroad: from 7 go to 15;
from 22 go to 25; from 36 go to 5.

Note that there are two copies of the “Go to
nearest Railroad” card.
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•Spaces 2, 17 and 33 are labeled “Community
Chest.” Once again, 1 of 15 cards is drawn.
Two cards specify new locations:

–Go to 10 (Jail)

–Go to 0 (G0)

Find the stationary probabilities of a player’s po-
sition Xn . To simplify the Markov chain, suppose
that when you land on Chance or Community Chest,
you independently draw a random card. Consider
two possible strategies for Jail: (a) immediately pay
to get out, and (b) stay in jail as long as possible.
Does the choice of Jail strategy make a difference?

 



Appendix A
Families of Random

Variables
A.1 Discrete Random Variables

Bernoulli (p)

For 0 ≤ p ≤ 1,

PX (x) =
⎧⎨
⎩

1 − p x = 0
p x = 1
0 otherwise

φX (s) = 1 − p + pes

E [X] = p

Var[X] = p(1 − p)

Binomial (n, p)

For a positive integer n and 0 ≤ p ≤ 1,

PX (x) =
(

n

x

)
px(1 − p)n−x φX (s) = (

1 − p + pes)n

E [X] = np

Var[X] = np(1 − p)

*
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Discrete Uniform (k, l)

For integers k and l such that k < l,

PX (x) =
{

1/(l − k + 1) x = k, k + 1, . . . , l
0 otherwise

φX (s) = esk − es(l+1)

(l − k + 1)(1 − es)

E [X] = k + l

2

Var[X] = (l − k)(l − k + 2)

12

Geometric (p)

For 0 < p ≤ 1,

PX (x) =
{

p(1 − p)x−1 x = 1, 2, . . .

0 otherwise
φX (s) = pes

1 − (1 − p)es

E [X] = 1/p

Var[X] = (1 − p)/p2

Multinomial
For integer n > 0, pi ≥ 0 for i = 1, . . . , n, and p1 + · · · + pn = 1,

PX1,...,Xr (x1, . . . , xr ) =
(

n

x1, . . . , xr

)
px1

1 · · · pxr
r

E [Xi ] = npi

Var[Xi ] = npi(1 − pi)

Pascal (k, p)

For positive integer k, and 0 < p < 1,

PX (x) =
(

x − 1

k − 1

)
pk(1 − p)x−k φX (s) =

(
pes

1 − (1 − p)es

)k

E [X] = k/p

Var[X] = k(1 − p)/p2
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Poisson (α)

For α > 0,

PX (x) =
⎧⎨
⎩

αx e−α

x ! x = 0, 1, 2, . . .

0 otherwise
φX (s) = eα(es−1)

E [X] = α

Var[X] = α

Zipf (n, α)

For positive integer n > 0 and constant α ≥ 1,

PX (x) =
{ c(n, α)

xα
x = 1, 2, . . . , n

0 otherwise

where

c(n, α) =
(

n∑
k=1

1

kα

)−1

A.2 Continuous Random Variables

Beta (i, j)
For positive integers i and j , the beta function is defined as

β(i, j) = (i + j − 1)!
(i − 1)!( j − 1)!

For a β(i, j) random variable X ,

fX (x) =
{

β(i, j)xi−1(1 − x) j−1 0 < x < 1
0 otherwise

E [X] = i

i + j

Var[X] = i j

(i + j)2(i + j + 1)
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Cauchy (a, b)

For constants a > 0 and −∞ < b < ∞,

fX (x) = 1

π

a

a2 + (x − b)2 φX (s) = ebs−a|s|

Note that E[X] is undefined since
∫∞
−∞ x fX (x) dx is undefined. Since the PDF is symmetric

about x = b, the mean can be defined, in the sense of a principal value, to be b.

E [X] ≡ b

Var[X] = ∞

Erlang (n, λ)

For λ > 0, and a positive integer n,

fX (x) =
⎧⎨
⎩

λnxn−1e−λx

(n − 1)! x ≥ 0

0 otherwise
φX (s) =

(
λ

λ − s

)n

E [X] = n/λ

Var[X] = n/λ2

Exponential (λ)

For λ > 0,

fX (x) =
{

λe−λx x ≥ 0
0 otherwise

φX (s) = λ

λ − s

E [X] = 1/λ

Var[X] = 1/λ2

Gamma (a, b)

For a > −1 and b > 0,

fX (x) =
⎧⎨
⎩

xae−x/b

a!ba+1
x > 0

0 otherwise
φX (s) = 1

(1 − bs)a+1

E [X] = (a + 1)b

Var[X] = (a + 1)b2
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Gaussian (μ, σ )

For constants σ > 0, −∞ < μ < ∞,

fX (x) = e−(x−μ)2/2σ 2

σ
√

2π
φX (s) = esμ+s2σ 2/2

E [X] = μ

Var[X] = σ 2

Laplace (a, b)

For constants a > 0 and −∞ < b < ∞,

fX (x) = a

2
e−a|x−b| φX (s) = a2ebs

a2 − s2

E [X] = b

Var[X] = 2/a2

Log-normal (a, b, σ )

For constants −∞ < a < ∞, −∞ < b < ∞, and σ > 0,

fX (x) =
⎧⎨
⎩

e−(ln(x−a)−b)2/2σ 2

√
2πσ(x − a)

x > a

0 otherwise

E [X] = a + eb+σ 2/2

Var[X] = e2b+σ 2
(

eσ 2 − 1
)

Maxwell (a)

For a > 0,

fX (x) =
{ √

2/πa3x2e−a2x2/2 x > 0
0 otherwise

E [X] =
√

8

a2π

Var[X] = 3π − 8

πa2
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Pareto (α,μ)

For α > 0 and μ > 0,

fX (x) =
{

(α/μ) (x/μ)−(α+1) x ≥ μ

0 otherwise

E [X] = αμ

α − 1
(α > 1)

Var[X] = αμ2

(α − 2)(α − 1)2
(α > 2)

Rayleigh (a)

For a > 0,

fX (x) =
{

a2xe−a2x2/2 x > 0
0 otherwise

E [X] =
√

π

2a2

Var[X] = 2 − π/2

a2

Uniform (a, b)

For constants a < b,

fX (x) =
⎧⎨
⎩

1

b − a
a < x < b

0 otherwise
φX (s) = ebs − eas

s(b − a)

E [X] = a + b

2

Var[X] = (b − a)2

12

 



Appendix B
A Few Math Facts

This text assumes that the reader knows a variety of mathematical facts. Often these facts
go unstated. For example, we use many properties of limits, derivatives, and integrals.
Generally, we have omitted comment or reference to mathematical techniques typically
employed by engineering students.

However, when we employ math techniques that a student may have forgotten, the result
can be confusion. It becomes difficult to separate the math facts from the probability facts.
To decrease the likelihood of this event,we have summarized certain key mathematical facts.
In the text, we have noted when we use these facts. If any of these facts are unfamiliar, we
encourage the reader to consult with a textbook in that area.

Trigonometric Identities

Math Fact B.1 Half Angle Formulas

cos(A + B) = cos A cos B − sin A sin B sin(A + B) = sin A cos B + cos A sin B

cos 2A = cos2 A − sin2 A sin 2A = 2 sin A cos A

Math Fact B.2 Products of Sinusoids

sin A sin B = 1

2

[
cos(A − B) − cos(A + B)

]
cos A cos B = 1

2

[
cos(A − B) + cos(A + B)

]
sin A cos B = 1

2

[
sin(A + B) + sin(A − B)

]

Math Fact B.3 The Euler Formula
The Euler formula e jθ = cos θ + j sin θ is the source of the identities

cos θ = e jθ + e− jθ

2
sin θ = e jθ − e− jθ

2 j
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Sequences and Series

Math Fact B.4 Finite Geometric Series
The finite geometric series is

n∑
i=0

qi = 1 + q + q2 + · · · + qn = 1 − qn+1

1 − q
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To see this, multiply left and right sides by (1 − q) to obtain

(1 − q)

n∑
i=0

qi = (1 − q)(1 + q + q2 + · · · + qn) = 1 − qn+1.

Math Fact B.5 Infinite Geometric Series
When |q| < 1,

∞∑
i=0

qi = lim
n→∞

n∑
i=0

qi = lim
n→∞

1 − qn+1

1 − q
= 1

1 − q
.

Math Fact B.6
n∑

i=1

iqi = q (1 − qn[1 + n(1 − q)])
(1 − q)2

.

Math Fact B.7 If |q| < 1,
∞∑

i=1

iqi = q

(1 − q)2
.

Math Fact B.8
n∑

j=1

j = n(n + 1)

2
.

Math Fact B.9
n∑

j=1

j2 = n(n + 1)(2n + 1)

6
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Calculus

Math Fact B.10 Integration by Parts
The integration by parts formula is∫ b

a
u dv = uv|ba −

∫ b

a
v du.

Math Fact B.11 Gamma Function
The gamma function is defined as

�(z) =
∫ ∞

0
t z−1e−t dt .

If z = n, a positive integer, then �(n) = (n − 1)!. Also note that �(1/2) = √
π ,

�(3/2) = √
π/2, and �(5/2) = 3

√
π/4.

Math Fact B.12 Leibniz’s Rule
The function

R(α) =
∫ b(α)

a(α)

r(α, x) dx

has derivative

d R(α)

dα
= −r

(
α, a(α)

)da(α)

dα
+ r

(
α, b(α)

)db(α)

dα
+
∫ b(α)

a(α)

∂r(α, x)

∂α
dx .

In the special case when a(α) = a and b(α) = b are constants,

R(α) =
∫ b

a
r(α, x) dx,

and Leibniz’s rule simplifies to

d R(α)

dα
=
∫ b

a

∂r(α, x)

∂α
dx .

Math Fact B.13 Change-of-Variable Theorem
Let x = T (y) be a continuously differentiable transformation from Un to Rn . Let R be a
set in Un having a boundary consisting of finitely many smooth sets. Suppose that R and
its boundary are contained in the interior of the domain of T , T is one-to-one of R, and
det(()T ′), the Jacobian determinant of T , is nonzero on R. Then, if f (x) is bounded and
continuous on T (R), ∫

T (R)

f (x)dVx =
∫

R
f (T (y))|det (T )′ | dVy.
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Vectors and Matrices

Math Fact B.14 Vector/Matrix Definitions

(a) Vectors x and y are orthogonal if x′y = 0.

(b) A number λ is an eigenvalue of a matrix A if there exists a vector x such that Ax = λx.
The vector x is an eigenvector of matrix A.

(c) A matrix A is symmetric if A = A′.
(d) A square matrix A is unitary if A′A equals the identity matrix I.

(e) A real symmetric matrix A is positive definite if x′Ax > 0 for every nonzero vector
x.

(f) A real symmetric matrix A is positive semidefinite if x′Ax ≥ 0 for every nonzero
vector x.

(g) A set of vectors {x1, . . . , xn} is orthonormal if x′
i x j = 1 if i = j and otherwise

equals zero.

(h) A matrix U is unitary if its columns {u1, . . . , un} are orthonormal.

Math Fact B.15 Real Symmetric Matrices
A real symmetric matrix A has the following properties:

(a) All eigenvalues of A are real.

(b) If x1 and x2 are eigenvectors of A corresponding to eigenvalues λ1 �= λ2, then x1 and
x2 are orthogonal vectors.

(c) A can be written as A = UDU′ where D is a diagonal matrix and U is a unitary matrix
with columns that are n orthonormal eigenvectors of A.

Math Fact B.16 Positive Definite Matrices
For a real symmetric matrix A, the following statements are equivalent:

(a) A is a positive definite matrix.

(b) x′Ax > 0 for all nonzero vectors x.

(c) Each eigenvalue λ of A satisfies λ > 0.

(d) There exists a nonsingular matrix W such that A = WW′.

Math Fact B.17 Positive Semidefinite Matrices
For a real symmetric matrix A, the following statements are equivalent:

(a) A is a positive semi-definite matrix.

(b) x′Ax ≥ 0 for all vectors x.

(c) Each eigenvalue λ of A satisfies λ ≥ 0.

(d) There exists a matrix W such that A = WW′.
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Index

A

A/S/n/m naming convention for
queues, 481

k-combination, 29
k-permutation, 29
M-PSK communications system,

322, 324
M/M/1 queue, 482
M/M/∞ queue, 483
M/M/c/∞ queue, 486
M/M/c/c queue, 484
n-step transition probabilities, 448
a priori probability, 16
a priori probabilities, 302
acceptance set, 300
accessible state, 455
aircondprob.m, 489
alternative hypothesis, 301
aperiodic states, 456
arrival process

deterministic, 481
general, 481
memoryless, 481

arrival rate in state i , 480
arrival, 60
arrivals, 362
asymptotically unbiased estimator,

280
autocorrelation function, 353, 371

Brownian motion, 371
random sequence, 371
wide sense stationary process,

377
autocovariance function random

sequence, 370
autocovariance function, 353, 370

Brownian motion, 371
stochastic process, 371

average power, 377–378
wide sense stationary process,

377
axioms of probability, 12, 212

conditional probability, 17
consequences of, 15

B

Bayes’ theorem, 20
bell curve, 257

Bernoulli decomposition, 366
Bernoulli process, 361
Bernoulli random variable

expected value, 67
Bernoulli random variable, 55, 57,

501
bernoullicdf.m, 88
bernoullipmf.m, 88
bernoullirv.m, 88
beta random variable, 338–340,

503
bias

in estimators, 280
bigpoissonpmf.m, 100
binary hypothesis test, 301–306,

315
minimum cost, 308
discrete Neyman-Pearson, 311
maximum a posteriori

probability, 305–306
maximum likelihood, 312–313
minimum cost, 309
Neyman-Pearson, 310

binomial coefficient, 30
binomial random variable, 57, 69,

96, 98, 262–263, 338, 501
expected value, 69

binomialcdf.m, 88
binomialpmf.m, 88, 274
binomialrv.m, 88
birth-death process, 480
birth-death queue, 481
blind estimation, 328
branch probability, 447
Brownian motion process, 368
Brownian motion, 368

joint PDF, 369
brownian.m, 386

C

Cauchy random variable, 504
CDMA communications system,

323–324, 351
central limit theorem, 258, 295

applications of, 261
approximation, 259
confidence interval estimation,

290
significance tests, 301

Chapman-Kolmogorov equations
continuous-time, 477
discrete-time, 448, 468
finite Markov chain, 449

Chebyshev inequality, 277–278
Chernoff Bound, 265
chiptest.m, 41
circuits.m, 210
circular convolution, 436
cmcprob.m, 489, 493
cmcstatprob.m, 489, 493
collectively exhaustive sets, 5
collectively exhaustive, 5
combinations, 29
communicating classes, 455

multiple, 464
communicating states, 455
communications system

M-PSK, 322, 324
CDMA, 323–324, 351
packet voice, 446, 451–452, 460,

494, 496
QAM, 322
QPSK, 315–316, 322–323, 356,

390
ternary amplitude shift keying,

321
ternary ASK, 322

compact disc, 261
complement, 5
complementary CDF

standard normal, 122
components in parallel, 38
components in series, 38
conditional expected value, 84

as a random variable, 184
given a random variable, 182
given an event, 139
of a function given an event, 178
of a function, 184

conditional joint probability
density function, 178

conditional joint probability mass
function, 177

conditional mean square error, 329
conditional PDF

given an event, 137
conditional probability density

function, 182
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continuous random variables,
183

conditional probability mass
function, 81, 181

conditional probability, 17, 42
conditional variance, 179
confidence coefficient, 286–287,

289
confidence interval, 286–287, 289

Gaussian, 290
consistent estimator, 280
continuous random variable, 51,

101, 104
cumulative distribution function,

104
expected value, 111

continuous-time process, 358
sampling, 399

continuous-value process, 358
convergence

almost always, 284
almost everywhere, 284
almost surely, 284
in probability, 283–284
with probability 1, 284

convolution, 247, 395
correlation coefficient, 175

in linear estimation, 333
correlation matrix

Toeplitz, 405
correlation of a random vector, 225
correlation, 173

of random vectors, 225
count.m, 89, 268, 385
countequal.m, 48
counting process, 362
counting

fundamental principle of, 28
methods, 28

covariance matrix, 225
random vector, 225

covariance, 173
of random vectors, 225

cross spectral density, 421
cross-correlation function, 380
cross-correlation, 227–228, 353

of random vectors, 226
cross-covariance, 227–228

of random vectors, 227
cumulative distribution function

of a pair of random vectors, 215
continuous random variable, 104
discrete random variable, 62
joint, 154
random vector, 215
standard normal, 120

D

DC voltage, 378
De Moivre–Laplace formula, 263
De Morgan’s law, 6
decision regions, 316
decision statistic, 302
decorrelation, 323
delta function, 125
departures, 386
derived random variable, 70

probability density function, 131
deterministic arrival process, 481
diabetes test, 151
digital signal processor (DSP), 399
discrete Fourier transform, 431

inverse, 434
discrete Neyman-Pearson binary

hypothesis test, 311
discrete random variable, 51

conditional PMF, 181
variance, 77

discrete uniform random variable,
59, 69, 502

expected value, 69
discrete-time differentiator, 404
discrete-time Fourier transform

(DTFT), 417
discrete-time Fourier transform,

418
table, 418

discrete-time integrator, 403
discrete-time linear filtering, 400
discrete-time Markov chain, 445
discrete-time process, 358
discrete-value process, 358
disjoint events, 22
disjoint sets, 5
dispersion, 77
distinguishable objects, 29
dmcstatprob.m, 487, 493
Drunken Sailor, 447
dtrianglerv.m, 200
duniformcdf.m, 88
duniformpmf.m, 88
duniformrv.m, 88

E

eigenvalue, 234, 449, 451, 454, 510
eigenvector, 449, 510
elements of a set, 3
ensemble averages, 355
ensemble, 354
equally likely outcomes, 14
erf.m, 142
ergodic, 378
Erlang random variable, 118, 504
Erlang-B formula, 485
erlangcdf.m, 143

erlangpdf.m, 143
erlangrv.m, 143
estimator

asymptotically unbiased, 280
consistent, 280
linear mean square error

(LMSE), 333
maximum a posteriori

probability, 337
minimum mean square error

(MMSE), 330
unbiased, 280–281

event space, 10
event, 9–10, 41
expectation, 52, 66
expected value, 52, 66, 276

Bernoulli random variable, 67
binomial random variable, 69
conditional, 84
continuous random variable, 111
discrete random variable, 66
discrete uniform random

variable, 69
exponential random variable, 117
geometric random variable, 68
given an event, 139
of a function, 112
Pascal random variable, 69
random matrix, 224
random sum, 256
random vector, 224
stochastic process, 370

experiment, 7
exponential random variable, 115,

504
expected value, 117
variance, 117

exponentialcdf.m, 143
exponentialpdf.m, 143
exponentialrv.m, 143

F

factorial.m, 87
false acceptance, 301
false alarm, 303
false rejection, 301
fax3pmf.m, 86
faxlength8.m, 99
find.m, 91
finest-grain, 8
finite random variable, 51
finitecdf.m, 88
finitepmf.m, 86, 88, 91, 197,

266, 488
finiterv.m, 88, 197–198, 488
first moment, 78
floor.m, 88
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Fourier transform, 412
discrete-time, 418
table, 413

frequency response, 422
freqxy.m, 199

G

gamma random variable, 504
gausscdf.m, 143
Gaussian PDF

bivariate, 393
multivariate, 229, 393

Gaussian process
white noise, 383
wide sense stationary, 383

Gaussian random variable, 119,
505

Gaussian random variables
bivariate, 191

Gaussian random vector, 229
Gaussian stochastic process, 383
gausspdf.m, 143
gaussrv.m, 143
gaussvector.m, 236, 387–388
gaussvectorpdf.m, 235–236
general arrival process, 481
genetics, 44–45
geometric random variable, 56–57,

502
expected value, 68

geometriccdf.m, 88
geometricpmf.m, 86–88
geometricrv.m, 88–89, 100,

152
georv.m, 152
Gray code, 325
gseq.m, 388

H

handoffs, 43
hist.m, 41, 48, 90, 199
hop

Markov chain, 447
human granulocytic ehrlichiosis,

45
hypothesis test, 300

binary, 302
maximum a posteriori

probability, 306
Neyman-Pearson, 310–311

maximum a posteriori
probability, 306

multiple, 314
maximum a posteriori

probability, 315
maximum likelihood, 315

I

icdf3spin.m, 144
icdfrv.m, 144, 152
icdfw.m, 152
identically distributed, 219
iid random sequence, 361
imagepmf.m, 197
imagerv.m, 198
imagesize.m, 197–198
imagestem.m, 199
improper experiments, 50
increments process, 392
independence

3 events, 23
Gaussian random vector, 230
more than two events, 24
N random variables, 218
random variables, 188
random vectors, 219

independent and identically
distributed, 219

independent events, 21, 42
independent increments, 368, 371
independent random variables, 188
independent trials, 35
independent, 21
indicator random variable, 279
interarrival times, 364–366

Poisson process, 364–365
intersection of sets, 5
inverse discrete Fourier transform,

434
irreducible Markov chain

continuous-time, 476
discrete-time, 459

J

jitter, 99
joint cumulative distribution

function, 154
derived from joint PDF, 162
multivariate, 211

joint probability density function,
160

conditional, 178
multivariate, 212
properties, 161

joint probability mass function, 155
conditional, 177
multivariate, 212

jointly Gaussian random variables,
229

jointly wide sense stationary
processes, 380

cross-correlation, 382
julytemps.m, 237

L

Laplace random variable, 505
Laplace transform, 248
last come first served (LCFS)

queue, 497
last come first served queue, 497
law of averages, 276
law of large numbers

validation of relative frequencies,
283

weak, 283
law of total probability, 19
likelihood functions, 303
likelihood ratio, 306
limiting state distribution, 479
limiting state probabilities, 451
linear estimation, 328, 332

using a random vector, 341–342
linear estimator, 408

Gaussian, 334
minimum mean square error, 411

linear filter, 395
causal, 401
feedback section, 402
Finite impulse response (FIR),

401
forward section, 402
Gaussian input process

continuous-time, 398
discrete-time, 406–407

Infinite impulse response (IIR),
402

input-output cross power spectral
density, 426

order, 401
output power spectral density,

422
linear mean square error (LMSE)

estimator, 333
linear prediction filter

minimum mean square error, 409
linear prediction, 344
linear predictor, 408

Markov property, 409
linear time invariant filter

discrete-time
input-output cross-correlation,

400
output autocorrelation, 401
wide sense stationary input,

400
input-output cross-correlation,

396
output autocorrelation, 396
wide sense stationary input, 396

linear transformation
Gaussian random vector, 231
moment generating function, 250
of a random vector, 223, 227
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log-normal random variable, 505
lottery, 47, 95, 97–98, 240, 242
Lyme disease, 45

M

marginal probability density
function, 165–166

marginal probability mass
function, 158–159

Markov chain, 445
multiple recurrent

communicating classes,
465

n-step transition probabilities,
448

n-step transition probabiliy, 449
accessible state, 455
birth-death process, 480
Chapman-Kolmogorov

equations, 448
communicating class, 455–456,

472
communicating states, 455
continuous-time, 474

limiting state probabilities, 479
state probabilities, 478

departure rate, 475
discrete-time, 445
embedded discrete-time, 476
finite state, 458
hop, 447
irreducible, 459, 476
limiting n-step transition

probabilities, 473
limiting state probabilities, 451,

460
limiting state probability vector,

452
null recurrent state, 471
path, 447
period, 456
positive recurrent state, 471
positive recurrent, 476
recurrent class, 457
recurrent state, 469–470
state probabilities, 450
state probability vector, 450
state visits, 470
stationary probability vector,

452–453, 455, 460,
464–465, 495

steady-state, 453
transient state, 469
transition probabilities, 445
two-state, 446

Markov inequality, 277
markovdisk.m, 487

Matlab function
aircondprob, 489
bernoullicdf, 88
bernoullipmf, 88
bernoullirv, 88
bigpoissonpmf, 100
binomialcdf, 88
binomialpmf, 88, 274
binomialrv, 88
brownian, 386
chiptest, 41
circuits, 210
cmcprob, 489, 493
cmcstatprob, 489, 493
count, 89, 268, 385
countequal, 48
dmcstatprob, 487, 493
dtrianglerv, 200
duniformcdf, 88
duniformpmf, 88
duniformrv, 88
erf, 142
erlangcdf, 143
erlangpdf, 143
erlangrv, 143
exponentialcdf, 143
exponentialpdf, 143
exponentialrv, 143
factorial, 87
fax3pmf, 86
faxlength8, 99
find, 91
finitecdf, 88
finitepmf, 86, 88, 91, 197,

266, 488
finiterv, 88, 197–198, 488
floor, 88
freqxy, 199
gausscdf, 143
gausspdf, 143
gaussrv, 143
gaussvector, 236, 387–388
gaussvectorpdf, 235–236
geometriccdf, 88
geometricpmf, 86–88
geometricrv, 88–89, 100,

152
georv, 152
gseq, 388
hist, 41, 48, 90, 199
icdf3spin, 144
icdfrv, 144, 152
icdfw, 152
imagepmf, 197
imagerv, 198
imagesize, 197–198
imagestem, 199
julytemps, 237

markovdisk, 487
meshgrid, 197
modemrv, 152
mse, 346
ndgrid, 48, 196–197, 266–267
newarrivals, 394
pascalcdf, 88
pascalpmf, 88
pascalrv, 88–89
phi, 142
plot, 274
plot3, 199
pmfplot, 90
poissonarrivals, 384, 394
poissoncdf, 88
poissonpmf, 87–88, 100
poissonprocess, 385
poissonrv, 88–89
quiz31rv, 152
quiz36rv, 152
rand, 40, 89, 102, 135, 141–143
randn, 142, 236, 266–267
simbuffer, 488–489
simcmc, 490–493
simcmcstep, 490–491, 493
simdmc, 488, 490, 492–493
simmmcc, 492
simplot, 491, 493
simswitch, 386
stairs, 491
stem3, 199
sumx1x2, 266
svd, 236
t2rv, 144
threesum, 267
toeplitz, 388
trianglecdfplot, 210
uniform12, 268
uniformcdf, 143
uniformpdf, 143
uniformrv, 143
unique, 91, 197, 199
urv, 152
voltpower, 90
wrv1, 152, 210
wrv2, 210
x5, 235
xytrianglerv, 200

maximum a posteriori probability
binary hypothesis test, 305

maximum a posteriori probability
estimator, 337

maximum likelihood binary
hypothesis test, 312–313

maximum likelihood decision rule,
312

maximum likelihood estimate, 337
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maximum likelihood multiple
hypothesis test, 315

Maxwell random variable, 505
McNabb, Donovan, 271
mean square error, 281, 327
mean value, 66, 276
mean, 65, 276
median, 65–66
memoryless arrival process, 481
memoryless process, 366
memoryless, 364
meshgrid.m, 197
minimum cost binary hypothesis

test, 309
minimum mean square error

(MMSE) estimator, 330
miss, 303
mixed random variable, 125, 129
mode, 65–66
model

of an experiment, 7
models, 7
modem, 107, 114, 152, 305, 314

2400 bps, 322
modemrv.m, 152
moment generating function, 248

sums of random variables, 251
table of, 249

moments
exponential random variable, 250
random variable, 78

Monopoly, 499
moving-average filter

continuous time, 397
continuous-time, 398
discrete time Fourier transform,

419
discrete-time, 401–402, 407,

425, 429, 432, 436, 438
moving-average process, 400
mse.m, 346
multimodal, 65
multinomial coefficient, 33–34
multinomial random variable, 213,

502
multiple hypothesis test, 314–315

maximum likelihood, 315
multivariate joint CDF, 211
multivariate joint PDF, 212
multivariate joint PMF, 212
mutually exclusive sets, 5

N

ndgrid.m, 48, 196–197,
266–267

newarrivals.m, 394

Neyman-Pearson binary hypothesis
test, 310

nonergodic, 467
normal random variable, 118
normal, 119
null hypothesis, 300–301
null set, 4

O

observations, 7
one-tail significance test, 302
order statistics, 239
ordered sample, 32
orthogonal random variables, 174
orthogonality principle, 334
orthonormal, 510
outcome, 8, 10, 41

P

pacemaker factory, 319
packet voice communications

system, 446, 451–452, 460,
494, 496

Pareto random variable, 146, 506
Pascal random variable, 58, 69, 502

expected value, 69
pascalcdf.m, 88
pascalpmf.m, 88
pascalrv.m, 88–89
path

Markov chain, 447
periodic states, 456
permutations, 29
phi.m, 142
plot.m, 274
plot3.m, 199
pmfplot.m, 90
Poisson process, 363

arrival rate, 363
Bernoulli decomposition, 367
interarrival times, 364–365
memoryless property, 364

Poisson processes
competing, 368
sum of, 366

Poisson random variable, 60, 503
poissonarrivals.m, 384, 394
poissoncdf.m, 88
poissonpmf.m, 87–88, 100
poissonprocess.m, 385
poissonrv.m, 88–89
positive definite matrix, 234, 510
positive recurrent Markov chain,

476
positive semidefinite, 510
power spectral density function,

412

discrete-time, 419
power spectral density

discrete time
properties, 420

discrete-time moving-average
filter, 425

properties, 415
wide sense stationary process,

414
prediction, 327
prior probabilities, 302
prior probability, 16
probability density function, 102,

106
derived random variable, 131
joint, 160
marginal, 165–166
multivariate marginal, 217
of a pair of random vectors, 215
random vector, 215

probability mass function, 52
conditional, 81, 181
joint, 155
marginal, 158–159
multivariate marginal, 216
of a pair of random vectors, 215
random vector, 215

probability measure, 42
procedure, 7
projection, 334

Q

QAM communications system, 322
QPSK communication system, 315
QPSK communications system,

315–316, 321–323, 356,
390

quantization noise, 151
quantizer

uniform, 138, 151–152
queue

M/M/1, 482, 486
M/M/∞, 483
M/M/c/∞, 486
M/M/c/c, 484
as birth-death process, 480
last come first served, 497

quiz31rv.m, 152
quiz36rv.m, 152

R

radar system, 303–304, 311, 320
rand.m, 40, 89, 102, 135,

141–143
randn.m, 142, 236, 266–267
random matrix, 224

expected value, 224
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random sequence, 358
as Markov chain, 445
autocorrelation function, 371
autocovariance function, 370
Bernoulli, 361
iid, 361
in digital signal processing, 399
joint PMF/PDF, 361
noisy estimation, 441
stationary, 373
wide sense stationary, 376, 404

random sum, 254–255
random variable, 49–50

nth moment, 250
Bernoulli, 55, 501
beta, 338–340, 503
binomial, 57, 69, 96, 338, 501
Cauchy, 504
derived, 70
discrete uniform, 59, 69, 502
discrete, 51
Erlang, 118, 504
exponential, 115, 504
finite, 51
gamma, 504
Gaussian, 119, 505
geometric, 57, 502
indicator, 279
Laplace, 505
log-normal, 505
Maxwell, 505
moments, 78, 249
multinomial, 213, 502
normal, 118
Pareto, 146, 506
Pascal, 58, 69, 502
Poisson, 60, 503
Rayleigh, 506
standard normal, 120, 233
uniform, 114, 506
Zipf, 95, 100, 503

random variables
jointly Gaussian, 229
maximum of, 221
minimum of, 221
uncorrelated, 244

random vector, 214
correlation, 225
covariance matrix, 225
cumulative distribution function,

215
expected value, 224
function of, 220, 222
Gaussian, 229
probability density function, 215
probability mass function, 215
sample value, 215
standard normal, 232–233

random vectors
independence, 219

range, 49
Rayleigh random variable, 506
receiver operating curve (ROC),

303
recurrent state, 457

Markov chain, 469
region of convergence, 248
rejection set, 300
relative frequency, 12–13, 283, 288

and laws of large numbers, 283
reliability problems, 38
right hand limit, 64
Risk, 498

S

sample function, 354
sample mean trace, 292
sample mean, 275–276, 276

as estimator, 281
consistent estimator, 282
expected value, 276
mean square error, 282
stationary stochastic process, 378
unbiased estimator, 282
variance, 276

sample space grid, 196
sample space, 8, 41
sample value

random vector, 215
sample variance

biased, 284
unbiased, 285

sample, 29
ordered, 32

sampling, 29
continuous-time process, 399
with replacement, 29
without replacement, 29, 31

second moment, 78
second order statistics, 224
second-order statistics, 227
sequential experiments, 24
service rate, 480
set of states, 445
set, 3

complement, 5
sets

collectively exhaustive, 5
difference, 5
disjoint, 5
intersection, 5
mutually exclusive, 5
union, 4

sifting property
of the delta function, 126

signal constellation, 316
signal space, 316
significance level, 300
significance test, 299–300

central limit theorem, 320
simbuffer.m, 488–489
simcmc.m, 490–493
simcmcstep.m, 490–491, 493
simdmc.m, 488, 490, 492–493
simmmcc.m, 492
simplot.m, 491, 493
simswitch.m, 386
singular value decomposition,

233–234, 236
snake eyes, 295
stairs.m, 491
standard deviation, 77
standard error, 282
standard normal complementary

CDF, 122
standard normal cumulative

distribution function, 120
standard normal random variable,

120, 233
standard normal random vector,

232–233
standardized random variable, 99
state probability vector, 450
state space, 445
state transition matrix, 447
state, 445
stationary distribution, 479
stationary probabilities, 452
stationary probability vector, 452
stationary random sequence, 373
stationary stochastic process, 373

properties, 374
sample mean, 378

statistic, 66
statistical inference, 275, 299
steady-state, 478
stem3.m, 199
Stirling’s approximation, 471
stochastic matrix, 447
stochastic process, 354

autocorrelation function, 371
autocovariance function,

370–371
expected value, 370
Gaussian, 383
stationary, 373
wide sense stationary, 376

strict sense stationary, 377
subexperiments, 24
subset, 3
sums of random variables variance,

244
sums of random variables, 243
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expected value of, 243
exponential, 253
Gaussian, 253
moment generating function, 251
PDF, 246
Poisson, 252
variance, 244

sumx1x2.m, 266
SVD, 234, 236
svd.m, 236
symmetric, 510

T

t2rv.m, 144
tails, 122
ternary amplitude shift keying

communications system,
321

ternary ASK communications
system, 322

three-sigma event, 122
threesum.m, 267
time average, 355
time sequence, 353
Toeplitz correlation matrix, 405
Toeplitz forms, 344, 405
toeplitz.m, 388
transient state, 457

Markov chain, 469
transition probability, 445
tree diagram, 24
tree diagrams, 24
trial, 13
trials

independent, 35

trianglecdfplot.m, 210
two-tail significance test, 302
Type II errors, 301
Type I errors, 301
typical value, 276

U

unbiased estimator, 280–281
uncorrelated random variables, 175
uniform quantizer, 138, 151–152
uniform random variable, 114, 506
uniform12.m, 268
uniformcdf.m, 143
uniformpdf.m, 143
uniformrv.m, 143
union, 4
unique.m, 91, 197, 199
unit impulse function, 125
unit step function, 126
unitary, 510
universal set, 4
urv.m, 152

V

variance, 77
conditional, 179
discrete random variable, 77
estimation of, 284
exponential random variable, 117
sums of random variables, 244

vectors
orthogonal, 510

Venn diagrams, 4
voltpower.m, 90

W

weak law of large numbers, 283
white Gaussian noise, 383,

397–398, 439, 441
white noise, 400
wide sense stationary process

input to linear time invariant
filter, 396

autocorrelation function, 377
average power, 377

wide sense stationary random
sequence, 344, 376

wide sense stationary sequence
input to discrete-time linear time

invariant filter, 400
wide sense stationary stochastic

process, 376
wide sense stationary

Gaussian process, 383
Wiener filter, 426
Wiener-Khintchine theorem, 414

continuous time, 414
discrete time, 419

wrapped signal, 438
wrv1.m, 152, 210
wrv2.m, 210

X

x5.m, 235
xytrianglerv.m, 200

Z

Zipf random variable, 95, 100, 503
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